Positive High-Voltage, Hot-Swap Controllers

Abstract

The MAX5933A-MAX5933F/MAX5947A/B/C fully integrated hot-swap controllers for +9 V to +80 V positive supply rails (MAX5947A/B/C), allow for the safe insertion and removal of circuit cards into live backplanes without causing glitches on the backplane power-supply rail. The MAX5947B is pin- and function-compatible with the LT1641-2. The other devices offer added features such as a choice of active-high or active-low power-good outputs (PWRGD/PWRGD), latched/autoretry fault management, and autoretry duty-cycle options of 3.75% or 0.94% (see the Selector Guide). The MAX5933A-MAX5933F are available with a default undervoltage lockout threshold of +31 V and operate over a supply voltage range of +33 V to +80 V . The MAX5947A/B/C are available with a default undervoltage of +8.3 V . All devices feature a programmable analog foldback current limit. If the device remains in current limit for more than a programmable time, the external n-channel MOSFET is either latched off (MAX5933A/ MAX5933C/MAX5947A) or is set to automatically restart after a timeout delay (MAX5933B/MAX5933D/MAX5933E/ MAX5933F/MAX5947B/MAX5947C). The MAX5933_ and MAX5947_ operate in the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. These devices are available in an 8-pin SO package.

\section*{General Description}

Applications

Hot Board Insertion

Electronic Circuit Breakers
Industrial High-Side Switch/Circuit Breakers
Network Routers and Switches
24V/48V Industrial/Alarm Systems
-

- Pin- and Function-Compatible with the LT1641-2 (MAX5947B)
- Provides Safe Hot Swap for +9 V to +80 V PowerSupply Range (MAX5947A/B/C)
- Safe Board Insertion and Removal from Live Backplanes
- Latched/Autoretry Management
- Active-Low or Active-High Power-Good Output
- Programmable Foldback Current Limiting
- High-Side Drive for an External N-Channel MOSFET
- Built-In Thermal Shutdown
- Undervoltage Lockout (UVLO)
- Overvoltage Protection
- User-Programmable Supply Voltage

Power-Up Rate
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5933_ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX5947_ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

*Insert the desired suffix from the Selector Guide into the blank to complete the part number.

Typical Application Circuit and Pin Configuration appear at end of data sheet.

Selector Guide

PART	LATCHED FAULT PROTECTION	AUTORETRY FAULT PROTECTION	PWRGD OUTPUT LOGIC	DUTY CYCLE (\%)	DEFAULT UVLO (V)	SUPPLY VOLTAGE RANGE (V)
MAX5933A	Yes	-	High	-	31	33 to 80
MAX5933B	-	Yes	High	3.75	31	33 to 80
MAX5933C	Yes	-	Low	-	31	33 to 80
MAX5933D	-	Yes	Low	3.75	31	33 to 80
MAX5933E	-	Yes	High	0.94	31	33 to 80
MAX5933F	-	Yes	Low	0.94	31	33 to 80
MAX5947A	Yes	-	Low	-	8.3	9 to 80
MAX5947B	-	Yes	High	3.75	8.3	9 to 80
MAX5947C	-	Yes	Low	3.75	8.3	9 to 80

Positive High-Voltage, Hot-Swap Controllers

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................. 470 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ ESD Rating (Human Body Model)......................................2000V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+24 \mathrm{~V}(\mathrm{MAX5947A/B} / \mathrm{C}), \mathrm{V}_{\mathrm{C}}=+48 \mathrm{~V}\right.$ (MAX5933A-MAX5933F), GND $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC	MAX5947A/B/C		9		80	V
		MAX5933A-MAX5933F		33		80	
Supply Current	ICC	$\mathrm{V}_{\mathrm{ON}}=3 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=80 \mathrm{~V}$			1.4	3.5	mA
VCC Undervoltage Lockout	VLKO	VCC low-to-high transition	MAX5947A/B/C	7.5	8.3	8.8	V
			MAX5933A-MAX5933F	29.5	31	32.5	
VCC Undervoltage Lockout Hysteresis	VLKOHYST	MAX5947A/B/C			0.4		V
		MAX5933A-MAX5933F		2			
FB High-Voltage Threshold	VFBH	FB low-to-high transition		1.280	1.313	1.345	V
FB Low-Voltage Threshold	$V_{\text {FBL }}$	FB high-to-low transition		1.221	1.233	1.245	V
FB Hysteresis	$\mathrm{V}_{\text {FBHYST }}$				80		mV
FB Input Bias Current	IINFB	$V_{F B}=0 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
FB Threshold Line Regulation	$\Delta V_{\text {FB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}(\mathrm{MIN})} \leq \mathrm{V}_{\mathrm{CC}} \leq 80 \mathrm{~V}, \mathrm{ON}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				0.05	mV/V
SENSE Trip Voltage	VSENSETRIP	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	12	17	mV
(VCC - VSENSE)		$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		39	47	55	mV
GATE Pullup Current	IGATEUP	Charge pump on, $\mathrm{V}_{\text {GATE }}=7 \mathrm{~V}$		-5	-10	-20	$\mu \mathrm{A}$
GATE Pulldown Current	IGATEDN	Any fault condition, $\mathrm{V}_{\text {GATE }}=2 \mathrm{~V}$		35	70	100	mA
External N-Channel Gate Drive	$\Delta V_{\text {GATE }}$	VGAte - VCC	MAX5933A-MAX5933F	10	13.6	18	V
			$\begin{aligned} & V_{C C}=10.8 \mathrm{~V} \text { to } 20 \mathrm{~V}, \\ & \text { MAX5947A/B/C } \end{aligned}$	4.5	6.2	18.0	
			VCC $=20 \mathrm{~V}$ to 80 V , MAX5947A/B/C	10	13.2	18	
TIMER Pullup Current	Itimerup	$\mathrm{V}_{\text {TIMER }}=0 \mathrm{~V}$		-24	-80	-120	$\mu \mathrm{A}$
TIMER Pulldown Current	Itimeron	$\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$	MAX5933A-MAX5933D, MAX5947A/B/C	1.5	3	4.5	$\mu \mathrm{A}$
			MAX5933E/MAX5933F	0.37	0.75	1.12	
ON Logic-High Threshold	VONH	ON low-to-high transition		1.280	1.313	1.345	V
ON Logic-Low Threshold	VONL	ON high-to-low transition		1.221	1.233	1.245	V

Positive High-Voltage, Hot-Swap Controllers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+24 \mathrm{~V}(\mathrm{MAX5947A} / \mathrm{B} / \mathrm{C}), \mathrm{V} C \mathrm{C}=+48 \mathrm{~V}\right.$ (MAX5933A-MAX5933F), GND $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ON Hysteresis	VONHYST			80		mV
ON Input Bias Current	IINON	VON $=0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
PWRGD Leakage Current	IOH	VPWRGD $=80 \mathrm{~V}$			10	$\mu \mathrm{A}$
$\overline{\text { PWRGD Leakage Current }}$	IOL	$V_{\text {PWRGD }}=80 \mathrm{~V}$			10	$\mu \mathrm{A}$
PWRGD/PWRGD Output Low Voltage		$\mathrm{IO}=2 \mathrm{~mA}$			0.4	V
		$\mathrm{IO}=4 \mathrm{~mA}$			2.5	
SENSE Input Bias Current	ISENSE	$V_{\text {SENSE }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-1		+3	$\mu \mathrm{A}$
Thermal Shutdown		Temperature rising	+150			${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis			20			${ }^{\circ} \mathrm{C}$
ON Low-to-GATE Low Propagation Delay	tPHLON	CGATE $=0$, Figures 1, 2	6			$\mu \mathrm{s}$
ON High-to-GATE High Propagation Delay	tPLHON	CGATE $=0$, Figures 1, 2	1.7			$\mu \mathrm{S}$
FB Low-to-PWRGD Low Propagation Delay	tPHLFB	Figures 1, 3	3.2			$\mu \mathrm{s}$
FB High-to-PWRGD High Propagation Delay	tPLHFB	Figures 1, 3	1.5			$\mu \mathrm{s}$
(VCC - VSENSE) High-to-GATE Low Propagation Delay	tPHLSENSE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{CGATE}=0$, Figures 1, 4	0.5		2	$\mu \mathrm{s}$

Note 1: All currents into the device are positive and all currents out of the device are negative. All voltages are referenced to ground, unless otherwise noted.

Positive High-Voltage, Hot-Swap Controllers

Positive High-Voltage, Hot-Swap Controllers

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+48 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FB HIGH-VOLTAGE THRESHOLD

GATE DRIVE vs. TEMPERATURE

FB LOW-VOLTAGE THRESHOLD vs. TEMPERATURE

Igate pullup current vs. TEMPERATURE

MAX5947
GATE DRIVE vs. Vcc

Positive High-Voltage, Hot-Swap Controllers

Positive High-Voltage, Hot-Swap Controllers

Pin Description

PIN	NAME	FUNCTION
1	ON	ON/OFF Control Input. ON is used to implement the undervoltage lockout threshold and resets the part after a fault condition for the latched-off version (MAX5933A/MAX5933C/MAX5947A, see the Detailed Description section).
2	FB	Power-Good Comparator Input. Connect a resistive divider from output to FB to GND to monitor the output voltage (see the Power-Good Detection section). FB is also used as a feedback for the current-limit foldback function.
3	$\frac{\text { PWRGD/ }}{\text { PWRGD }}$	Open-Drain Power-Good Output. PWRGD is high ($\overline{\mathrm{PWRGD}}$ is low) when V_{FB} is higher than $\mathrm{V}_{\mathrm{FBH}}$. PWRGD is low ($\overline{\mathrm{PWRGD}}$ is high) when V_{FB} is lower than $\mathrm{V}_{\mathrm{FBL}}$.
4	GND	Ground
5	TIMER	Timing Input. Connect a capacitor from TIMER to GND to program the maximum time the part is allowed to remain in current limit (see the TIMER section).
6	GATE	Gate-Drive Output. The high-side gate drive for the external N-channel MOSFET (see the GATE Voltage section).
7	SENSE	Current-Sense Input. Connect a sense resistor from $V_{C C}$ to SENSE and the drain of the external n-channel MOSFET.
8	VCC	Power-Supply Input. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Input voltage range is from +9 V to +80 V for the MAX5947A/B/C. Input voltage range is from +33 V to +80 V for the MAX5933A-MAX5933F.

Positive High-Voltage, Hot-Swap Controllers

Positive High-Voltage, Hot-Swap Controllers

Detailed Description

The MAX5933_ and MAX5947_ are fully integrated hotswap controllers for positive supply rails. The devices allow for the safe insertion and removal of circuit cards into live backplanes without causing glitches on the backplane power-supply rail. During startup, the MAX5933_ and MAX5947_ act as current regulators using an external sense resistor and a MOSFET to limit the amount of current drawn by the load.
The MAX5933_ operate from $a+33 \mathrm{~V}$ to +80 V supply voltage range and have a default undervoltage lockout (UVLO) set to +31V. The MAX5947_ operate from a +9 V to +80 V supply voltage range and have a default UVLO set to +8.3 V . The UVLO threshold is adjustable using a resistive divider connected from VCC to ON to GND (see Figure 5).

The MAX5933_ and MAX5947_ monitor the input voltage, the output voltage, the output current, and the die temperature. These devices feature power-good outputs (PWRGD/PWRGD) to indicate the status of the output voltage by monitoring the voltage at FB (see the PowerGood Detection section).

As shown in Figure 5, a sense resistor is connected between VCC and SENSE to regulate the voltage across the sense resistor (VIN - VSENSE) to 47 mV when the voltage at $\mathrm{FB} \geq 0.5 \mathrm{~V}$. The current-limit threshold (VSENSETRIP) decreases linearly from 47 mV to 12 mV as FB decreases from 0.5 V to 0 V .

An undervoltage fault is detected when ON goes below the threshold (VONL $=1.233 \mathrm{~V}$) and the voltage at GATE goes low as a result to turn off the MOSFET. ON must pass the $\mathrm{VONH}=1.313 \mathrm{~V}$ threshold to turn on the MOSFET again.

Figure 5. Application Circuit

Positive High-Voltage, Hot-Swap Controllers

Abstract

Applications Information Hot-Circuit Insertion When circuit boards are inserted into a live backplane, the supply bypass capacitors on the boards draw high peak currents from the backplane power bus as they charge up. The transient currents can permanently damage the connector pins and glitch the system supply, causing other boards in the system to reset.

Power-Up Sequence
The power supply on a board is controlled by placing an external n-channel MOSFET (Q1) in the power path (Figure 5). Resistor RSENSE provides current detection and capacitor C1 provides control of the GATE slew rate. Resistor R6 provides current control-loop compensation, while R5 prevents high-frequency oscillations in Q1. Resistors R1 and R2 provide undervoltage sensing.
After the power pins first make contact, transistor Q1 is turned off. When the voltage at ON exceeds the turn-on threshold voltage, the voltage on VCC exceeds the undervoltage lockout threshold, and when the voltage on TIMER is less than 1.233 V , transistor Q1 turns on (Figure 6).
The voltage at GATE rises with a slope equal to $10 \mu \mathrm{~A} / \mathrm{C} 1$ and the supply inrush current is set at:

$$
\text { IINRUSH }=C L \times 10 \mu A / C 1
$$

When the voltage across the current-sense resistor RSENSE reaches VSENSETRIP, the inrush current is limited by the internal current-limit circuitry that adjusts the voltage on GATE to maintain a constant voltage across the sense resistor.
Once the voltage at the output has reached its final value, as sensed by resistors R3 and R4, PWRGD goes high or PWRGD goes low.

Figure 6. Power-Up Waveforms

Short-Circuit Protection

The MAX5933_MAX5947_ feature a programmable foldback current limit with an electronic circuit breaker that protects against short circuits or excessive supply currents. The current limit is set by placing a sense resistor between VCC (pin 8) and SENSE (pin 7).
To prevent excessive power dissipation in the pass transistor and to prevent voltage spikes on the input supply during short-circuit conditions at the output, the current folds back as a function of the output voltage that is sensed at FB (Figure 7).
When the voltage at FB is OV , the current-limit circuit drives GATE to force a constant 12 mV drop across the sense resistor. As the output voltage at FB increases, the voltage across the sense resistor increases until FB reaches 0.5 V . At this point, the voltage across the sense resistor is held constant at 47 mV .
The maximum current limit is calculated as:
ILIMIT = 47mV / RSENSE

For a 0.025Ω sense resistor, the current limit is set at 1.88 A and folds back to 480 mA when the output is shorted to ground.
The MAX5933_MAX5947_ also feature a variable overcurrent response time. The time required to regulate Q1's drain current depends on:

1) Q1's input capacitance
2) GATE capacitor C1 and compensation resistor R6
3) The internal delay from SENSE to GATE

Figure 8 shows the delay from a voltage step at SENSE until GATE voltage starts falling, as a function of overdrive.

Figure 7. Current-Limit Sense Voltage vs. Feedback Voltage

Positive High-Voltage, Hot-Swap Controllers

Figure 8. Response Time to Overcurrent
TIMER
TIMER provides a method for programming the maximum time the device is allowed to operate in current limit. When the current-limit circuitry is not active, TIMER is pulled to GND by a $3 \mu \mathrm{~A}$ current source. After the current-limit circuit becomes active, an $80 \mu \mathrm{~A}$ pullup current source is connected to TIMER, and the voltage rises with a slope equal to $77 \mu \mathrm{~A} / \mathrm{CTIMER}$, as long as the current-limit circuit remains active. Once the desired maximum current-limit time is chosen, the capacitor value is:

$$
\mathrm{C}(\mathrm{nF})=65 \times \mathrm{t}(\mathrm{~ms})
$$

or

$$
\text { TLIMIT }=(\text { CTIMER } / 80 \mu \mathrm{~A}) \times 1.233 \mathrm{~V}
$$

When the current-limit circuit turns off, TIMER is discharged to GND by the $3 \mu \mathrm{~A}$ current source.
Whenever TIMER reaches 1.233 V , the internal fault latch is set. GATE is immediately pulled to GND and TIMER is pulled back to GND by the $3 \mu \mathrm{~A}$ current source. When TIMER falls below 0.5 V , ON is pulsed low to reset the internal fault latch.
The waveform in Figure 9 shows how the output latches off following a short circuit. The drop across the sense resistor is held at 12 mV as the timer ramps up. Since the output did not rise, FB remains below 0.5 V and the circuit latches off. For Figure 9, $C_{T}=100 \mathrm{nF}$.

Undervoltage and Overvoltage Detection ON can be used to detect an undervoltage condition at the power-supply input. ON is internally connected to an analog comparator with 80 mV of hysteresis. If ON falls below its threshold voltage (1.233V), GATE is pulled low and is held low until ON is high again.

Figure 9. Short-Circuit Waveforms
Figure 10 shows an overvoltage detection circuit. When the input voltage exceeds the Zener diode's breakdown voltage, D1 turns on and starts to pull TIMER high. After TIMER is pulled higher than 1.233 V , the fault latch is set and GATE is pulled to GND immediately, turning off transistor Q1 (see Figure 11). Operation is restored either by interrupting power or by pulsing ON low.

Power-Good Detection The MAX5933_/MAX5947_ include a comparator for monitoring the output voltage. The noninverting input (FB) is compared against an internal 1.233 V precision reference and exhibits 80 mV hysteresis. The comparator's output (PWRGD) is open drain and capable of operating from a pullup as high as 80 V . The PWRGD is similar to PWRGD with an opposite polarity (active low) output.
The PWRGD ($\overline{\text { PWRGD }}$) can be used to directly enable/disable a power module with an active-high enable input. Figure 12 shows how to use PWRGD to control an active-low enable-input power module. Signal inversion is accomplished by transistor Q2 and R7.

Supply Transient Protection

 The MAX5933_MAX5947_ are 100\% tested and guaranteed to be safe from damage with supply voltages up to 80 V . However, spikes above 85 V may damage the device. During a short-circuit condition, the large change in currents flowing through the power-supply traces can cause inductive voltage spikes which could exceed 85 V . To minimize the spikes, the power-trace parasitic inductance should be minimized by using wider traces or heavier trace plating and a $0.1 \mu \mathrm{~F}$ bypass capacitor placed between VCc and GND. A transient voltage suppressor (TVS) at the input can also prevent damage from voltage surges.
Positive High-Voltage, Hot-Swap Controllers

Figure 10. Overvoltage Detection

Figure 11. Overvoltage Waveforms

GATE Voltage
A curve of Gate Drive vs. VCC is shown in Figure 13. GATE is clamped to a maximum voltage of 18 V above the input voltage. At a minimum input-supply voltage of 33 V , the minimum gate drive voltage is 10 V . When the input supply voltage is higher than 20 V , the gate-drive voltage is at least 10 V and a standard n-channel MOSFET can be used. Using the MAX5947 in applications over a 9V to 20 V range, a logic-level N-FET must be used with a proper protection Zener diode between its gate and source (see D1 in Figure 5).

Thermal Shutdown
If the MAX5933_/MAX5947_ die temperature reaches $+150^{\circ} \mathrm{C}$, an overtemperature fault is generated. As a result, GATE goes low and turns the external MOSFET off. The MAX5933_MAX5947_ die temperature must cool down below $+130^{\circ} \mathrm{C}$ before the overtemperature fault condition is removed.

Positive High-Voltage, Hot-Swap Controllers

Figure 12. Active-Low Enable Module

Figure 13. Gate Drive vs. Supply Voltage

Layout Considerations

To achieve accurate current sensing, a Kelvin connection is recommended. The minimum trace width for $10 z$ copper foil is 0.02in per amplifier to ensure the trace stays at a reasonable temperature. However, 0.03in. per amplifier or wider is recommended. Note that $10 z$ copper exhibits a sheet resistance of approximately $530 \mu \Omega /$ square. Small resistances add up quickly in high-current applications. To improve noise immunity, connect the resistor-divider to ON close to the device, and keep traces to VCC and GND short. A $0.1 \mu \mathrm{~F}$ capacitor from ON to GND also helps reject induced noise. Figure 14 shows a layout that addresses these issues. It is recommended that $2 o z$ copper is used, particularly as the external MOSFET must be thermally coupled to the MAX5933_/MAX5947_ to ensure proper thermal-shutdown operation.

Positive High-Voltage, Hot-Swap Controllers

Figure 14. Recommended Layout for R1, R2, and RSENSE

Chip Information
TRANSISTOR COUNT: 1573
PROCESS: BiCMOS
Pin Configuration

TOP VIEW

() ONLY FOR THE MAX5933C/D/F/MAX5947A/MAX5947C.

Typical Application Circuit

*DIODES, INC.

Positive High-Voltage, Hot-Swap Controllers

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LTC4227CUFD-4\#PBF LTC4212IMS ADM1075-2ARUZ-RL7 LM5067MW-1/NOPB ADM1075-1ARUZ-RL7 MAX5969BETB+T MIC22700YML-TR LTC4223CDHD-1\#PBF MAX40200AUK+T LTC4224IDDB-2\#TRMPBF LT1640LIS8\#PBF LTC4217CDHC-12\#PBF LT1640ALCS8\#PBF LT4294HDD\#PBF LTC4253CGN\#PBF LTC4211CMS8\#PBF LTC4230CGN\#PBF LTC4224IMS-1\#PBF LTC4216IMS\#PBF LTC4212IMS\#PBF LTC4260CGN\#PBF LTC4227CGN-2\#PBF LTC4244IGN\#PBF LTC4212CMS\#PBF LT4250HCN8\#PBF ADM1276-3ACPZ-RL LTC4226IUD-1\#PBF LT1640AHCN8 ADM1075-2ACPZ ADM1075-1ACPZ ADM1073ARUZ ADM1073ARUZ-REEL7 ADM1075-1ARUZ ADM1075-2ARUZ ADM1170-1AUJZ-RL7 ADM1171-2AUJZ-RL7 ADM1172-1AUJZ-RL7 ADM1172-2AUJZ-RL7 ADM1176-1ARMZ-R7 ADM1177-1ARMZ-R7 ADM1177-2ARMZ-R7 ADM1178-1ARMZ-R7 ADM1275-3ARQZ ADM1275-1ARQZ ADM1275-3ARQZ-R7 ADM1276-3ACPZ ADM1278-1BCPZ ADM4210-1AUJZ-RL7 ADM1270ARQZ ADM12752ARQZ

