MAX6006-MAX6009

1μA SOT23 Precision Shunt Voltage Reference

General Description

The MAX6006–MAX6009 ultra-low-power shunt references are ideal for space-critical and low-power applications. They are offered in 3-pin SOT23 packages, and the minimum operating current is guaranteed to be $<1\mu$ A. The devices feature low temperature coefficients of <30ppm/°C and initial accuracy of better than 0.2%.

Available in +1.25V, +2.048V, +2.5V, and 3V output voltages, the MAX6006–MAX6009 have references of +1.25V, +2.048V, +2.5V, and +3.0V, respectively. The devices can be used as lower-power, higher-precision upgrades to the ICL8069, LM385, LT1004, and LM4040 references. The MAX6006–MAX6009 are available in two grades: A and B. The A grade features a temperature coefficient of 30ppm/°C over the extended temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. Grade B features a temperature coefficient of 75ppm/°C with an initial accuracy of 0.5%. MAX6006 in +1.25V and MAX6008 in +2.5V are offered in 8-pin SO packages, as plug in upgrades for LT1004 and LM285.

Features

Ultra-Low Operating Current: Guaranteed < 1µA

Small 3-Pin SOT23 PackageInitial Voltage Accuracy: 0.2%

Temperature Coefficient: 30ppm/°C max

• Temperature Range: -40°C to +85°C

Factory-Trimmed Output Voltages: +1.25V, +2.048V,

+2.5V, +3.0V

Wide Operating Range: 1µA to 2mA
 AEC-Q100 (MAX6008AEUR/V+ Only)

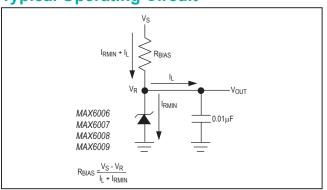
Applications

• Battery-Powered Equipment

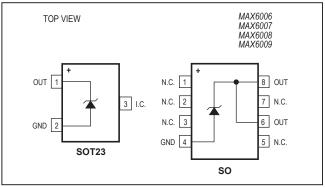
Portable Meters

Precision Regulators

A/D and D/A Converters


Ordering Information

PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (%)	TEMP COEFFICIENT (ppm/°C)	PIN-PACKAGE	TOP MARK
MAX6006AEUR+T	1.25	0.2	30	3 SOT23	+FZGH
MAX6006AESA+	1.25	0.2	30	8 SO	_
MAX6006BEUR+T	1.25	0.5	75	3 SOT23	+FZGI
MAX6006BESA+	1.25	0.5	75	8 SO	_
MAX6007AEUR+T	2.048	0.2	30	3 SOT23	+FZGK
MAX6007AESA+	2.048	0.2	30	8 SO	_


⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Ordering Information continued at end of data sheet.

Typical Operating Circuit

Pin Configurations

T = Tape and reel.

1µA SOT23 Precision Shunt Voltage Reference

Absolute Maximum Ratings

Operating Current (OUT to GND)20mA	Operating Temperature Range40°C to +85°C
Forward Current (GND to OUT)20mA	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (T _A = +70°C)	Lead Temperature (soldering, 10s)+300°C
3-Pin SOT23 (derate 3.65mW/°C above +70°C)291.73mW	Soldering Temperature (reflow)+260°C
8-Pin SO (derate 7.4mW/°C above +70°C)588.2mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

3 SOT23

PACKAGE CODE	U3+1
Outline Number	<u>21-0051</u>
Land Pattern Number	90-0179
Thermal Resistance, Multilayer Board:	
Junction to Ambient (θ _{JA})	274.23°C/W
Junction to Case (θ _{JC})	86.19°C/W

8 SO

PACKAGE CODE	S8+2					
Outline Number	21-0041					
Land Pattern Number	90-0096					
Thermal Resistance, Multilayer Board:						
Junction to Ambient (θ _{JA})	136°C/W					
Junction to Case (θ _{JC})	38°/W					

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics—MAX6006

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CONE	MIN	TYP	MAX	UNITS	
Reverse Breakdown Voltage	\/_	T _A = +25°C,	MAX6006A (0.2%)	1.2475	1.2500	1.2525	V
The verse breakdown voltage	V _R	I _R = 1.2μA	MAX6006B (0.5%)	1.2438	1.2500	1.2563	V
Minimum Operating Current	I _{RMIN}	V_R change < 0.2% from V_R at I_R = 1.2 μ A			0.5	1.0	μA
Reverse Breakdown Change		I _R = 1.2μA to 200μA	I _R = 1.2μA to 200μA			1.0	mV
with Current		I _R = 200μA to 2mA				2.0	IIIV
Reverse Dynamic Impedance		I _R = 1.2μA to 2mA (Note 2)				1.5	Ω
Low-Frequency Noise		$I_R = 1.2\mu A, f = 0.1Hz$	$I_R = 1.2\mu A$, $f = 0.1Hz$ to $10Hz$		30		μV _{P-P}
Temperature Coefficient	TC	L = 1 2uA	MAX6006A			30	nnm/°C
(Note 3)	10	I _R = 1.2μA	MAX6006B			75	ppm/°C
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

www.maximintegrated.com Maxim Integrated | 2

Electrical Characteristics—MAX6007

(T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	\/_	T _A = +25°C,	MAX6007A (0.2%)	2.0439	2.048	2.0521	V
	V _R	I _R = 1.2μA	MAX6007B (0.5%)	2.0378	2.048	2.0582	V
Minimum Operating Current	I _{RMIN}	V_R change < 0.2% from V_R at I_R = 1.2 μ A			0.5	1.0	μA
Reverse Breakdown Change		$I_R = 1.2 \mu A \text{ to } 200 \mu A$	I _R = 1.2μA to 200μA			1.3	mV
with Current		I _R = 200μA to 2mA				2.3	IIIV
Reverse Dynamic Impedance		I _R = 1.2μA to 2mA (Note 2)				1.8	Ω
Low-Frequency Noise		$I_R = 1.2\mu A, f = 0.1Hz$	to 10Hz		50		μV _{P-P}
Temperature Coefficient	TC	I_ = 1 2u A	MAX6007A			30	ppm/°C
(Note 3)	10	I _R = 1.2μΑ	MAX6007B			75	ppili/*C
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

Electrical Characteristics—MAX6008

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

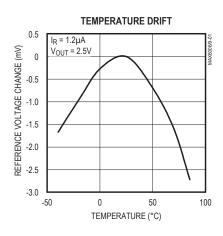
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	\/_	$T_A = +25^{\circ}C$,	MAX6008A (0.2%)	2.4950	2.5000	2.5050	V
Treverse Breakdown Voltage	V _R	I _R = 1.2μA	MAX6008B (0.5%)	2.4875	2.5000	2.5125	V
Minimum Operating Current	I _{RMIN}	V _R change < 0.2% from	V _R change < 0.2% from V _R at I _R = 1.2μA		0.5	1.0	μΑ
Reverse Breakdown Change		I _R = 1.2μA to 200μA				1.5	mV
with Current		I _R = 200μA to 2mA				2.5	IIIV
Reverse Dynamic Impedance		$I_R = 1.2 \mu A \text{ to } 2 \text{mA (N)}$	I _R = 1.2μA to 2mA (Note 2)			2	Ω
Low-Frequency Noise		$I_R = 1.2\mu A, f = 0.1Hz$	to 10Hz		60		μV_{P-P}
Temperature Coefficient	тс	I_ = 1 2uA	MAX6008A			30	ppm/°C
(Note 3)	10	I _R = 1.2μΑ	MAX6008B			75	ррпі/ С
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

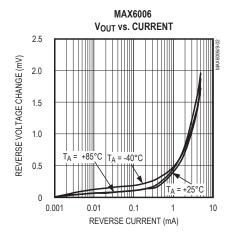
www.maximintegrated.com Maxim Integrated | 3

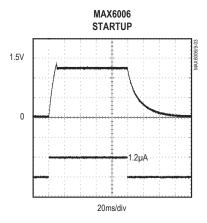
Electrical Characteristics—MAX6009

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS	
Reverse Breakdown Voltage	\	T _A = +25°C,	MAX6009A (0.2%)	2.9940	3.000	3.0060	V
	V _R	I _R = 1.2μA	MAX6009B (0.5%)	2.9850	3.000	3.0150	V
Minimum Operating Current	I _{RMIN}	V _R change < 0.2% f	V_R change < 0.2% from V_R at I_R = 1.2 μ A		0.5	1.0	μA
Reverse Breakdown Change		I _R = 1.2μA to 200μA	I _R = 1.2μA to 200μA			1.7	mV
with Current		I _R = 200μA to 2mA				2.7	IIIV
Reverse Dynamic Impedance		$I_R = 1.2 \mu A \text{ to } 2 \text{mA} \text{ (}$	I _R = 1.2μA to 2mA (Note 2)			2.2	Ω
Low-Frequency Noise		$I_R = 1.2\mu A, f = 0.1H$	z to 10Hz		75		µV _{P-P}
Temperature Coefficient	TC	L = 1 2uA	MAX6009A			30	nnm/°C
(Note 3)	10	l _R = 1.2μA	MAX6009B			75	ppm/°C
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

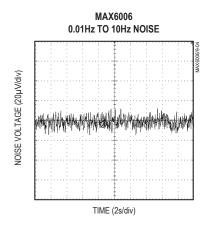

Note 1: All devices are 100% production tested at $T_A = +25$ °C and are guaranteed by design for $T_A = T_{MIN}$ to T_{MAX} , as specified.

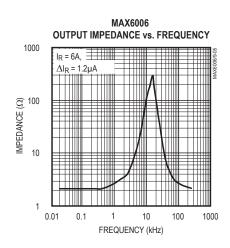

Note 2: This parameter is guaranteed by the "reverse breakdown change with current" test.

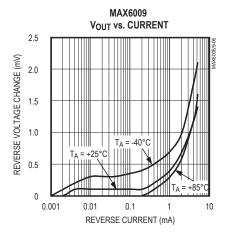

Note 3: TC is measured by the "box" method; i.e., $(V_{MAX} - V_{MIN})/(T_{MAX} - T_{MIN})$. Note 4: Thermal hysteresis is defined as the change in the +25°C output voltage after cycling the device from T_{MIN} to T_{MAX} .

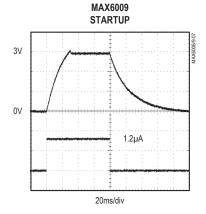
Typical Operating Characteristics

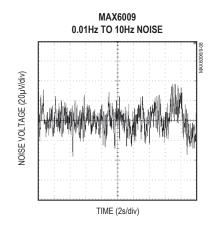
 $(C_L = 0.01 \mu F, T_A = +25 ^{\circ}C, unless otherwise noted.)$

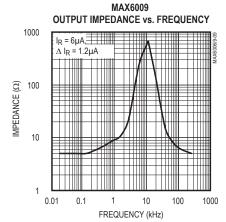







Typical Operating Characteristics (continued)


 $(C_L = 0.01 \mu F, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



Pin [Descri	ption
		P

Р	IN	NAME	FUNCTION		
SOT23	so	INAIVIE	FUNCTION		
1	6, 8	OUT	Output Voltage. Bias OUT with a pullup resistor to a potential greater than OUT. Bypass OUT to GND with a 0.01µF or larger capacitor.		
2	4	GND	Ground		
3	_	IC	Internally connected test point. Leave this pin unconnected, or connect to GND.		
_	1, 2, 3, 5, 7	N.C.	No connection. Not internally connected.		

Detailed Description

The MAX6006–MAX6009 are precision, two-terminal, series bandgap voltage references. On-chip thin-film resistors are laser trimmed to provide 0.2% output voltage accuracies. Voltages of +1.25V, +2.048V, +2.5V, and +3.0V are available in the space-saving SOT23 package (2.1mm 5 2.7mm).

Applications Information

Output/Load Capacitance

For devices in this family, OUT needs to be bypassed to GND with a $0.01\mu F$ or larger capacitor. In applications where the load or the supply can experience step changes, additional capacitance will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at T_A = +25°C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The temperature hysteresis value is typically less than 200ppm.

Turn-On Time

The output capacitance and bias current of the MAX6006–MAX6009 greatly affects turn-on settling time. In the *Typical Operating Characteristics*, turn-on time is shown with a 10nF output capacitor and a 1.2µA bias current. Under these conditions, the MAX6006–MAX6009 settle in 40ms. Settling time will linearly decrease in proportion to the circuit's bias current.

Typical Applications

In the typical shunt regulator application shown in Figure 1, R_{BIAS} is used to set the current through the load (I_L) and the current through the shunt regulator (I_{RMIN}). There are two worst-case situations that R_{BIAS} needs to be sized for:

- R_{BIAS} must be small enough that when V_S (supply voltage) is at its minimum and I_L is at its maximum, I_{RMIN} is equal to at least the minimum operating current of the shunt regulator.
- R_{BIAS} must be large enough that when V_S is at its maximum and I_L is at its minimum, I_{RMIN} is < 2mA.

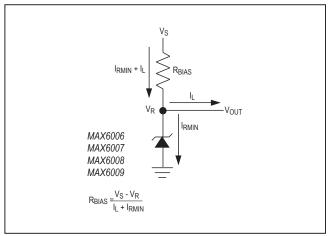


Figure 1. Typical Application Circuit

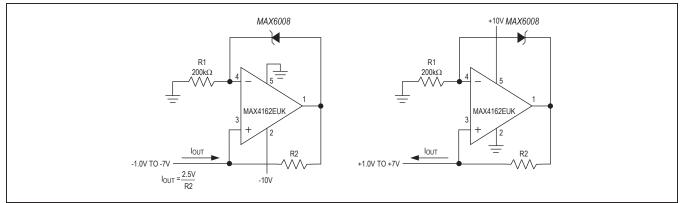


Figure 2. Precision 1µA to 1mA Current Sources

Ordering Information (continued)

PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (%)	TEMP COEFFICIENT (ppm/°C)	PIN-PACKAGE	TOP MARK
MAX6007BEUR+T	2.048	0.5	75	3 SOT23	+FZGL
MAX6007BESA+	2.048	0.5	75	8 SO	_
MAX6008AEUR+T	2.50	0.2	30	3 SOT23	+FZGN
MAX6008AEUR/V+T	2.50	0.2	30	3 SOT23	+FZWO
MAX6008AESA+	2.50	0.2	30	8 SO	_
MAX6008BEUR+T	2.50	0.5	75	3 SOT23	+FZGO
MAX6008BESA+	2.50	0.5	75	8 SO	_
MAX6009AEUR+T	3.00	0.2	30	3 SOT23	+FZGQ
MAX6009AESA+	3.00	0.2	30	8 SO	_
MAX6009BEUR+T	3.00	0.5	75	3 SOT23	+FZGR
MAX6009BESA+	3.00	0.5	75	8 SO	_

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

[/]V denotes an automotive qualified part.
T = Tape and reel.

MAX6006-MAX6009

1µA SOT23 Precision Shunt Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/00	Initial release	_
1	7/12	Added /V to MAX6008 and updated Ordering Information.	7
2	9/17	Added AEC statement to Features section	1
3	8/19	Updated Typical Operating Characteristics	4, 5
4	11/19	Updated Absolute Maximum Ratings and added new Package Information section	2

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage References category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

REF01J/883 5962-8686103XC NCV431BVDMR2G LT6654AMPS6-2.048#TRMPBF SCV431AIDMR2G LT1019AIS8-2.5

LT6654AMPS6-3.3#TRM SC431ILPRAG AP432AQG-7 LM4040B25QFTA NJM2823F-TE1 TL431-A MCP1502T-18E/CHY MCP1502T-40E/CHY TL4050B25QDBZR TL431ACZ KA431SLMF2TF KA431SMF2TF KA431SMFTF LM4041C12ILPR LM4120AIM5-2.5/NOP LM431SCCMFX TS3330AQPR REF5040MDREP LM285BXMX-1.2/NOPB LM385BM-2.5/NOPB LM4040AIM3-10.0 LM4040BIM3-4.1

LM4040CIM3-10.0 LM4040CIM3X-2.0/NOPB LM4041BSD-122GT3 LM4041QDIM3-ADJ/NO LM4050QAEM3X4.1/NOPB

LM4051BIM3-ADJ/NOPB LM4051CIM3X-1.2/NOPB LM4128CMF-1.8/NOPB LM4132DMF-1.8/NOPB LM4132EMF-1.8/NOPB

LM4132EMF-2.0/NOPB LM4140CCMX-1.2/NOPB LM431CIM LM385BD-2.5R2G LM385M-2.5/NOPB LM4030AMF-4.096/NOPB

LM4040D30ILPR LM4051CIM3X-ADJ/NOPB AP432YG-13 AS431ANTR-G1 AS431BZTR-E1 AN431AN-ATRG1