MAX6332/MAX6333/ MAX6334

3-Pin, Ultra-Low-Voltage, Low-Power µP Reset Circuits

General Description

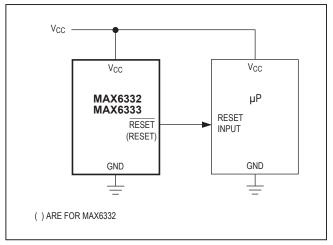
The MAX6332/MAX6333/MAX6334 microprocessor (μP) supervisory circuits monitor the power supplies in 1.8V to 3.3V μP and digital systems. They increase circuit reliability and reduce cost by eliminating external components and adjustments.

These devices perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for a preset timeout period after V_{CC} has risen above the reset threshold. The only difference among the three devices is their output. The MAX6333 (push/pull) and MAX6334 (open-drain) have an active-low $\overline{\text{RESET}}$ output, while the MAX6332 (push/pull) has an active-high RESET output. The MAX6332/MAX6333 are guaranteed to be in the correct state for V_{CC} down to 0.7V. The MAX6334 is guaranteed to be in the correct state for V_{CC} down to 1.0V.

The reset comparator in these ICs is designed to ignore fast transients on V_{CC} . Reset thresholds are factory-trimmable between 1.6V and 2.5V, in approximately 100mV increments. There are 15 standard versions available (2,500 piece minimum-order quantity); contact the factory for availability of nonstandard versions (10,000 piece minimum-order quantity). For space-critical applications, the MAX6332/MAX6333/MAX6334 come packaged in a 3-pin SOT23.

Applications

- Pentium[®] II Computers
- Computers
- Controllers
- Intelligent Instruments
- Critical µP/µC Power Monitoring
- Portable/Battery-Powered Equipment


Pentium is a registered trademark of Intel Corp.

Benefits and Features

- Ultra-Low 0.7V Operating Supply Voltage
- Low 3.3µA Supply Current
- Precision Monitoring of 1.8V and 2.5V Power- Supply Voltages
- Reset Thresholds Available from 1.6V to 2.5V, in Approximately 100mV Increments
- Fully Specified Over Temperature
- Three Power-On Reset Pulse Widths Available (1ms min, 20ms min, 100ms min)
- Low Cost
- Three Available Output Structures: Push/Pull RESET, Push/Pull RESET, Open-Drain RESET
- Guaranteed RESET/RESET Valid to V_{CC} = 0.7V (MAX6332/MAX6333)
- Power-Supply Transient Immunity
- No External Components
- 3-Pin SOT23 Package
- Pin-Compatible with MAX809/MAX810 and MAX6326/MAX6327/MAX6328

Selector Guide (Standard Versions*) appears at end of data sheet.

Typical Operating Circuit

MAX6332/MAX6333/ MAX6334

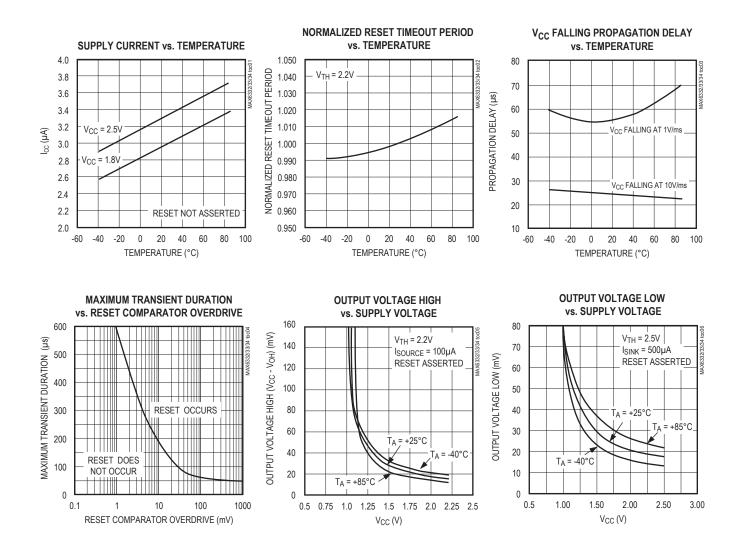
3-Pin, Ultra-Low-Voltage, Low-Power µP Reset Circuits

Absolute Maximum Ratings

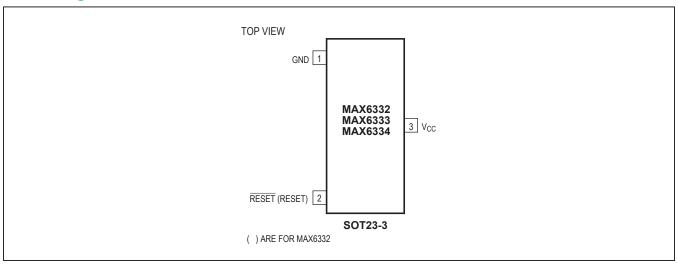
Terminal Voltage (with respect to GND)	Operating Temperature Range4	10°C to +125°C
V _{CC} 0.3V to +6V	Storage Temperature Range6	35°C to +160°C
Push/Pull RESET, RESET0.3V to (V _{CC} + 0.3V)	Lead Temperature (soldering, 10s)	+300°C
Open-Drain RESET0.3V to +6V	Soldering Temperature (reflow)	
Input Current (V _{CC})20mA	Lead(Pb)-free packages	+260°C
Output Current (RESET, RESET)20mA	Packages containing lead (Pb)	+240°C
Continuous Power Dissipation (T _A = +70°C)		
SOT23-3 (derate 4mW/°C above +70°C)320mW		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics


 $(V_{CC} = \text{full range}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $T_A = +25^{\circ}\text{C}$ and $V_{CC} = 3V$, reset not asserted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS		
		T _A = 0°C to +85°C		MAX6332/MAX6333	0.7		5.5	V	
				MAX6334	1.0		5.5		
Supply Voltage Range	V _{CC}	T _A = -40°C to +85°C		MAX6332/MAX6333	0.78		5.5		
ouppry voltage range	*****			MAX6334	1.2		5.5		
		T _A = 0°C to +125°C		MAX6332/MAX6333 MAX6334	1.2		5.5		
Supply Current	l	No load		V _{CC} = 1.8V		3.0	6.0		
Supply Current	Icc	INO IOAU		V _{CC} = 2.5V		3.3	7.0	μA	
		MAX633_UF	RDT,	T _A = +25°C	V _{TH} - 1.8%	V_{TH}	V _{TH} + 1.8%	3% H	
Reset Threshold	V _{TH}	Table 1		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _{TH} - 3%	V _{TH}	V _{TH} + 3%		
V _{CC} Falling Reset Delay		V _{CC} falling a	at 10V/ms			24		μs	
		MAX633_URD1-T			1	1.5	2	ms	
Reset Active Timeout Period	t _{RP}	MAX633_URD2-T		20	30	40			
		MAX633_UF	RD3-T		100	150	200		
RESET Output Low Voltage	V _{OL}	Reset	I _{SINK} = 5	0μA, V _{CC} ≥ 1.0V			0.4	V	
(MAX6333/MAX6334)	VOL	asserted	asserted I _{SINK} = 500µA, V _{CC} ≥ 1.8V				0.3	V	
RESET Output High Voltage	V _{OH}	Reset not	ISOURCE	= 200 μ A, V _{CC} ≥ 1.8V	0.8 x V _{CC}	;		V	
(MAX6333)	VOH	asserted	ISOURCE	= 500 μ A, V _{CC} ≥ 2.7V	0.8 x V _{CC}	;		v	
	V _{OH}	Reset	ISOURCE	= $1\mu A$, $V_{CC} \ge 1.0V$	0.8 x V _{CC}	;			
RESET Output Voltage (MAX6332)		asserted I _{SOURCE}		= 200 μ A, $V_{CC} \ge 1.8V$	0.8 x V _{CC}	;		V	
	V _{OL}			00μA, V _{CC} ≥ 1.8V			0.3	_	
				2mA, V _{CC} ≥ 2.7V			0.3		
RESET Output Leakage Current (MAX6334)		V _{CC} > V _{TH} , RESET not asserted				0.5	μA		


www.maximintegrated.com Maxim Integrated | 2

Typical Operating Characteristics

(Reset not asserted, T_A = +25°C, unless otherwise noted.)

Pin Configuration

Pin Description

PIN					
MAX6332	MAX6333 MAX6334	NAME	FUNCTION		
1	1	GND	Ground		
_	2	RESET	Active-Low Reset Output. $\overline{\text{RESET}}$ remains low while V_{CC} is below the reset threshold and for a reset timeout period (t_{RP}) after V_{CC} rises above the reset threshold. $\overline{\text{RESET}}$ on the MAX6334 is open-drain.		
2	_	RESET	Active-High Reset Output. RESET remains high while V_{CC} is below the reset threshold and for a reset timeout period (t_{RP}) after V_{CC} rises above the reset threshold.		
3	3	V _{CC}	Supply Voltage (0.7V to 5.5V)		

www.maximintegrated.com Maxim Integrated | 4

Applications Information

Interfacing to µPs with Bidirectional Reset Pins

Since the $\overline{\text{RESET}}$ output on the MAX6334 is opendrain, this device interfaces easily with μPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μP supervisor's $\overline{\text{RESET}}$ output directly to the microcontroller's (μC 's) $\overline{\text{RESET}}$ pin with a single pullup resistor allows either device to assert reset (Figure 1).

Negative-Going Vcc Transients

In addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V_{CC} transients (glitches). The <u>Typical Operating Characteristics</u> show the Maximum Transient Duration vs. Reset Comparator Overdrive graph. The graph shows the maximum pulse width that a negative-going V_{CC} transient may typically have without issuing a reset signal. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

Ensuring a Valid Reset Output Down to VCC = 0

When V_{CC} falls below 1V and approaches the minimum operating voltage of 0.7V, push/pull-structured reset sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to the RESET pin can drift to indeterminate voltages. This does not present a problem in most cases, since most µPs and circuitry do not operate at V_{CC} below 1V. For the MAX6333, where RESET must be valid down to 0, adding a pull-down resistor between RESET and GND removes stray leakage currents, holding RESET low (Figure 2a). The pull-down resistor value is not critical; $100k\Omega$ is large enough not to load RESET and small enough to pull it low. For the MAX6332, where RESET must be valid to V_{CC} = 0, a $100k\Omega$ pull-up resistor between RESET and V_{CC} will hold RESET high when V_{CC} falls below 0.7V (Figure 2b). Since the MAX6334 has an open-drain, active-low output, it typically uses a pull-up resistor. With this device, RESET will most likely not maintain an active condition, but will drift to a non-active level due to the pull-up resistor and the reduced sinking capability of the open-drain device. Therefore, this device is not recommended for applications where the \overline{RESET} pin is required to be valid down to $V_{CC} = 0$.

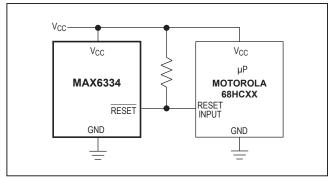


Figure 1. Interfacing to µPs with Bidirectional Reset Pins

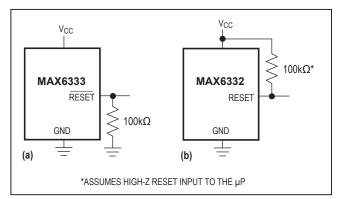


Figure 2. Ensuring Reset Valid Down to $V_{CC} = 0$

Table 1. Factory-Trimmed Reset Thresholds*

RESET- THRESHOLD	T _A = +25°C			T _A = -40°C to +125°C BIT 4	
SUFFIX	MIN	TYP	MAX	MIN	MAX
MAX633_UR25D_	2.46	2.50	2.55	2.43	2.58
MAX633_UR24D_	2.36	2.40	2.44	2.33	2.47
MAX633_UR23D_	2.26	2.30	2.34	2.23	2.37
MAX633_UR22D_	2.16	2.20	2.24	2.13	2.27
MAX633_UR21D_	2.06	2.10	2.14	2.04	2.16
MAX633_UR20D_	1.96	2.00	2.04	1.94	2.06
MAX633_UR19D_	1.87	1.90	1.93	1.84	1.96
MAX633_UR18D_	1.77	1.80	1.83	1.75	1.85
MAX633_UR17D_	1.67	1.70	1.73	1.65	1.75
MAX633_UR16D_	1.57	1.60	1.63	1.55	1.65

^{*}Factory-trimmed reset thresholds are available in approximately 100mV increments, with a ±1.8% room-temperature variance.

Selector Guide (Standard Versions*)

PART	OUTPUT STAGE	NOMINAL V _{TH} (V)	MINIMUM RESET TIMEOUT (ms)	SOT TOP MARK
MAX6332UR23D3-T	Push/Pull RESET	2.30	100	FZDM
MAX6332UR22D3-T	Push/Pull RESET	2.20	100	FZCN
MAX6332UR20D3-T	Push/Pull RESET	2.00	100	FZDL
MAX6332UR18D3-T	Push/Pull RESET	1.80	100	FZCM
MAX6332UR16D3-T	Push/Pull RESET	1.60	100	FZCL
MAX6333UR23D3-T	Push/Pull RESET	2.30	100	FZCS
MAX6333UR22D3-T	Push/Pull RESET	2.20	100	FZCR
MAX6333UR20D3-T	Push/Pull RESET	2.00	100	FZCQ
MAX6333UR18D3-T	Push/Pull RESET	1.80	100	FZCP
MAX6333UR16D3-T	Push/Pull RESET	1.60	100	FZCO
MAX6334UR23D3-T	Open-Drain RESET	2.30	100	FZDO
MAX6334UR22D3-T	Open-Drain RESET	2.20	100	FZCV
MAX6334UR20D3-T	Open-Drain RESET	2.00	100	FZDN
MAX6334UR18D3-T	Open-Drain RESET	1.80	100	FZCU
MAX6334UR16D3-T	Open-Drain RESET	1.60	100	FZCT

^{*}Sample stock is generally held on all standard versions.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	
MAX6332 URDT	-40°C to +125°C	3 SOT23	
MAX6333URDT	-40°C to +125°C	3 SOT23	
MAX6334URDT	-40°C to +125°C	3 SOT23	

*These devices are available in factory-set $V_{\rm CC}$ reset thresholds from 1.6V to 2.5V, in approximately 0.1V increments. Choose the desired reset threshold suffix from Table 1 and insert it in the blanks following "UR" in the part number. Factory-programmed reset timeout periods are also available. Insert the number corresponding to the desired nominal reset timeout period (1 = 1ms min, 2 = 20ms min, 3 = 100ms min) in the blank following "D" in the part number. There are 15 standard versions with a required order increment of 2500 pieces. Sample stock is generally held on the standard versions only (see Selector Guide). Contact the factory for availability of nonstandard versions (required order increment is 10,000 pieces). All devices available in tape-and-reel only.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
3 SOT23	U3+1	21-0051	

MAX6332/MAX6333/ MAX6334

3-Pin, Ultra-Low-Voltage, Low-Power μP Reset Circuits

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/98	Initial release	_
1	6/00	Revised Ordering Information, Absolute Maximum Ratings, Electrical Characteristics, and Table 1.	1, 2, 4
2	12/05	Revised Ordering Information to add lead-free information.	1
3	6/12	Update Ordering Information with automotive part.	1
4	2/16	Updated Ordering Information table and Applications section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX VDA2510NTA AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047