6-Pin μ P Reset Circuit with Power-Fail Comparator

General Description

The MAX6342-MAX6345 family of microprocessor ($\mu \mathrm{P}$) supervisory circuits monitors power supplies in digital systems. These devices significantly improve system reliability and accuracy compared to separate ICs or discrete components.
The MAX6342-MAX6345 provide factory-trimmed VCC reset threshold voltages from 2.33 V to 4.63 V and operate with supply voltages between +1 V and +5.5 V . $\mathrm{A}+1.25 \mathrm{~V}$ threshold detector allows for a power-fail warning, for low-battery detection, or for monitoring another power supply. The MAX6342 contains an $\overline{\mathrm{MR}}$ input and an active-low push-pull reset. The MAX6343 and MAX6344 are identical to the MAX6342 except they provide an active-low, open-drain reset and an active-high, pushpull reset, respectively. The MAX6345 provides a second reset output in place of the $\overline{\mathrm{MR}}$ input to give it an activehigh push-pull reset and an active-low push-pull reset.
All of the devices are packaged in a miniature 6-pin SOT23.

Applications	
Portable Computers	
Telecom Equipment	
Networking Equipment	
Portable/Battery-Powered Equipment	
Multivoltage Systems	
Embedded Control Systems	
Typical Operating Circuit appears at end of data sheet.	
Selector Guide 1	
SUFFIX	RESET THRESHOLD (V)
L	4.63
M	4.38
T	3.08
S	2.93
R	2.63
Z	2.33

Features		
- Small 6-Pin SOT23 Package		
- Precision Factory-Set Vcc Reset Thresholds Between 2.33V and 4.63V		
- Guaranteed $\overline{\text { RESET }}$ Valid to Vcc $=+1 \mathrm{~V}$		
- 100ms min Reset Pulse Width		
- Debounced CMOS-Compatible Manual-Reset Input		
- Voltage Monitor for Power-Fail or Low-Battery Warning		
Ordering Information		
PART	TEMP RANGE	PIN-PACKAGE
MAX6342_UT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX6343_UT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX6344_UT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX6345_UT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6

Note: The MAX6342-MAX6345 are available with factory-set reset thresholds from 2.33V to 4.63V (see Selector Guides 1, 2). Insert the letter corresponding to the desired nominal reset threshold into the blank following the part number. There is a 2500 piece order increment required for the SOT package. SOT Top Marks table appears at end of data sheet.
Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with " $+T$ " when ordering.

Pin Configurations

Selector Guide 2

PART	PUSH-PULL RESET OUTPUT	OPEN-DRAIN RESET OUTPUT	PUSH-PULL RESET OUTPUT	MANUAL-RESET INPUT
	$\boldsymbol{\nu}$	-	-	$\boldsymbol{\checkmark}$
MAX6343	-	$\boldsymbol{\nu}$	-	$\boldsymbol{\checkmark}$
MAX6344	-	-	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$
MAX6345	$\boldsymbol{\checkmark}$	-	$\boldsymbol{\checkmark}$	-

6-Pin μ P Reset Circuit with Power-Fail Comparator

ABSOLUTE MAXIMUM RATINGS

$V_{C c}$ to GND SET RESET, RESET
(MAX6342/MAX6344/MAX6345) -0.3V to (VCC + 0.3V) RESET (MAX6343).
(1) -0.3 V to +6 V $\overline{\mathrm{MR}}, \mathrm{PFI}, \overline{\mathrm{PFO}}$. -0.3V to (VCC +0.3 V) Input Current, V_{CC} CC50 mA Output Current, RESET, RESET \qquad .50 mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 6-Pin SOT23 (derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad 320 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature Range (soldering, 10s)..................... $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+1.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$.) (Note 1)

6－Pin μ P Reset Circuit with Power－Fail Comparator

ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{C C}=+1.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，unless otherwise noted．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$ ．）（Note 1）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reset Timeout Period	trP	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	100	180	280	ms
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	80		360	
Open－Drain $\overline{\text { RESET Output }}$ Leakage Current（Note 3）	ILKG	MAX6343 only， $\mathrm{V}_{\text {CC }}>\mathrm{V}_{\text {TH（MAX }}$			1	$\mu \mathrm{A}$
$\overline{\mathrm{MR}}$ Input Low	VIL		$0.3 \times \mathrm{VCC}$			V
$\overline{\mathrm{MR}}$ Input High	V_{IH}		$0.7 \times \mathrm{VCC}$			V
$\overline{\mathrm{MR}}$ Pull－Up Resistance			60			k Ω
$\overline{\mathrm{MR}}$ Minimum Pulse Width			1			$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ Glitch Rejection			0.1			$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ to Reset Delay			0.2			$\mu \mathrm{s}$
PFI Input Threshold		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.2	1.25	1.3	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.15		1.35	
PFI Leakage Current（Note 3）		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.01	± 25	nA
		$\mathrm{T}_{\mathrm{A}}=-85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 100	
$\overline{\text { PFO Output Voltage }}$	VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{ISINK}=3.2 \mathrm{~mA}$			0.4	V
$\overline{\text { PFO Output Voltage }}$	V OH	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ ，ISOURCE $=800 \mu \mathrm{~A}$	$0.8 \times \mathrm{VCC}$			V
$\overline{\text { PFO Output Short－Circuit }}$ Current		Output sink current		20		mA
		Output source current	5			
PFI to $\overline{\text { PFO }}$ Delay		VOVERDRIVE $=15 \mathrm{mV}$	3			$\mu \mathrm{s}$

Note 1：Overtemperature limits are guaranteed by design and not production tested．
Note 2：Apply to each part in accordance with threshold voltage，output configuration，and manual reset status selected．
Note 3：Leakage parameters are guaranteed by design and not production tested．
Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{PFI}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．$)$

6-Pin μ P Reset Circuit with Power-Fail Comparator

Typical Operating Characteristics (continued)

(VPFI $=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN				NAME	
MAX6342	MAX6343	MAX6344	MAX6345		
1	1	1	1	VCC	Supply Voltage
2	2	2	2	GND	Ground
3	3	3	3	PFI	Power-Fail Voltage Monitor Input. When PFI is $<1.25 \mathrm{~V}, \overline{\text { PFO }}$ goes low. Connect PFI to GND or VCC when not used.
4	4	4	4	$\overline{\text { PFO }}$	Power-Fail Voltage Monitor Output

6-Pin μ P Reset Circuit with Power-Fail Comparator

Pin Description (continued)

PIN				NAME	FUNCTION
MAX6342	MAX6343	MAX6344	MAX6345		
5	5	5	-	$\overline{M R}$	Manual-Reset Input. Pull low to force a reset. $\overline{\text { RESET }}$ or RESET remains active as long as $\overline{\mathrm{MR}}$ is low and for the reset timeout period after $\overline{\mathrm{MR}}$ goes high. Leave unconnected or connect to Vcc if unused.
6	6	-	5	$\overline{\text { RESET }}$	Active-Low Reset Output. Push-pull for MAX6342/MAX6345. Open-drain for MAX6343. It remains low for 180ms after VCC rises above the reset threshold or $\overline{\mathrm{MR}}$ goes from low to high.
-	-	6	6	RESET	Active-High Push-Pull Reset Output. It remains high for 180 ms after V_{CC} rises above the reset threshold or $\overline{\mathrm{MR}}$ goes from low to high.

Figure 1. MAX6342/MAX6343/MAX6344 Functional Diagram

Detailed Description

Reset Output

A μ P's reset input starts the $\mu \mathrm{P}$ in a known state. These $\mu \mathrm{P}$ supervisory circuits assert reset to prevent codeexecution errors during power-up, power-down, or brownout conditions.
$\overline{\text { RESET }}$ and RESET are guaranteed to be asserted at a valid logic level for VCC > +1V (see the Electrical Characteristics table). Once RESET asserts, it remains asserted for at least 100ms (tRP) after VCC rises above its threshold value or after MR returns high (Figures 1 and 2).

Open-Drain RESET Output
The MAX6343 has an active-low, open-drain reset output. This output sinks current when RESET is asserted. Connect a pull-up resistor from $\overline{\text { RESET }}$ to any positive supply voltage up to +5.5 V (Figure 3). Select a resistor value large enough to register a logic low (see the Electrical Characteristics table), and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A $10 \mathrm{k} \Omega$ pull-up is sufficient in most applications.

Manual Reset
The MAX6342/MAX6343/MAX6344s' manual-reset input ($\overline{\mathrm{MR}}$) allows reset to be triggered by a pushbutton switch. The switch is effectively debounced by the $1 \mu \mathrm{~s}$ min reset pulse width. $\overline{\mathrm{MR}}$ is CMOS-logic compatible.

6-Pin μ P Reset Circuit with Power-Fail Comparator

Figure 3. Open-Drain $\overline{R E S E T}$ Output Allows Use with Multiple Supplies

Figure 5. Ensuring $\overline{R E S E T}$ Valid to VCC $=0$ on Active-Low Push-Pull Outputs

Power-Fail Comparator
The power-fail comparator is useful for various purposes because the power-fail output ($\overline{\mathrm{PFO}}$) is independent of the reset output. The inverting input is internally connected to $\mathrm{a}+1.25 \mathrm{~V}$ reference.
To build an early-warning circuit for power failure, connect the PFI pin to a voltage divider (see the Typical Oper-ating Circuit). Choose the voltage-divider ratio so that the voltage at PFI falls below +1.25 V just before the +5 V regulator drops out. Use $\overline{\mathrm{PFO}}$ to interrupt the $\mu \mathrm{P}$ to prepare for an orderly shutdown.

Applications Information

Negative-Going Vcc Transients

The MAX6342-MAX6345 supervisors are immune to short-duration, negative-going VCC transients (glitches) that usually do not require the entire system to shut down. Figure 4 shows typical transient duration vs. reset comparator overdrive, for which the MAX6342-MAX6345 do not generate a reset pulse. The graph was generated using a negative-going pulse applied to VCC, starting

Figure 4. Maximum Transient Duration Magnitude Rejection

Figure 6. Ensuring $\overline{R E S E T}$ Valid to VCC $=0$ on Active-High Push-Pull Outputs
0.5 V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative-going VCC transient can have without causing a reset pulse. As the magnitude of the transient increases (goes further below the reset threshold), the maximum allowable pulse width decreases.
Typically, a Vcc transient that goes 100 mV below the reset threshold and lasts 12μ s or less will not cause a reset pulse. A $1 \mu \mathrm{~F}$ bypass capacitor mounted as close as possible to the VCC pin provides additional transient immunity.

Ensuring a Valid Reset Output Down to VCC = 0

The MAX6342-MAX6345 are guaranteed to operate properly down to $\mathrm{V}_{\mathrm{CC}}=+1 \mathrm{~V}$. In applications that require valid reset levels down to $\mathrm{V}_{C C}=0$, a pulldown resistor to active-low outputs (MAX6342/MAX6345) and a pullup resistor to active-high outputs (MAX6344/MAX6345) ensure that the reset line is valid when the reset output is no longer sinking or sourcing current (Figures 5 and 6).

6-Pin μ P Reset Circuit with Power-Fail Comparator

() ARE FOR MAX6344 ONLY.
Figure 7. Monitoring Two Supplies

Figure 8. Monitoring a Negative Voltage
Note that this method does not work with the open-drain output of the MAX6343. The resistor value used is not critical, but it must be large enough not to load the reset output when V_{CC} is above the reset threshold. For most applications, $100 \mathrm{k} \Omega$ is adequate.

Monitoring Two Supplies

Monitor another voltage by connecting a resistor-divider to PFI as shown in Figure 7. The threshold voltage will then be given by:

$$
V_{T H}(\mathrm{PFI})=1.25[(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2]
$$

where $\mathrm{V}_{\mathrm{TH}}(\mathrm{PFI})$ is the threshold at which the monitored voltage will trip $\overline{\mathrm{PFO}}$.
A good rule of thumb for selecting the resistors is to choose R2 between $250 \mathrm{k} \Omega$ and $500 \mathrm{k} \Omega$ and solve for R1. Connect $\overline{\mathrm{PFO}}$ to $\overline{\mathrm{MR}}$ in applications that require reset to assert when the second voltage falls below its threshold.

Figure 9. Interfacing to μ Ps with Bidirectional Reset I/O
Monitoring a Negative Voltage Connect the circuit as shown in Figure 8 to use the power-fail comparator to monitor a negative supply rail. $\overline{\text { PFO }}$ stays low when V - is good. When V- rises to cause PFI to be above $+1.25 \mathrm{~V}, \overline{\mathrm{PFO}}$ goes high. By adding the resistors and transistor as shown, a high $\overline{\text { PFO }}$ triggers reset. As long as PFO remains high, the MAX6342/ MAX6343/MAX6344 will keep reset asserted. Note that the accuracy of this circuit depends on the PFI threshold tolerance, the VCC line voltage, and the resistors. Also, ensure that the voltage at PFI remains above GND.

Interfacing to μ Ps with
Bidirectional Reset Pins Bidirectional Reset Pins

SOT Top Marks

PART	SOT TOP MARK	PART	SOT TOP MARK
MAX6342LUT-T	AACP	MAX6344LUT-T	AADQ
MAX6342MUT-T	AACQ	MAX6344MUT-T	AADR
MAX6342TUT-T	AACR	MAX6344TUT-T	AADS
MAX6342SUT-T	AACS	MAX6344SUT-T	AADT
MAX6342RUT-T	AACT	MAX6344RUT-T	AADU
MAX6342ZUT-T	AACU	MAX6344ZUT-T	AADV
MAX6343LUT-T	AACV	MAX6345LUT-T	AADW
MAX6343MUT-T	AACW	MAX6345MUT-T	AADX
MAX6343TUT-T	AACX	MAX6345TUT-T	AADY
MAX6343SUT-T	AACY	MAX6345SUT-T	AADZ
MAX6343RUT-T	AACZ	MAX6345RUT-T	AAEA
MAX6343ZUT-T	AADA	MAX6345ZUT-T	AAEB

6-Pin μ P Reset Circuit with Power-Fail Comparator

Pin Configurations (continued)

Chip Information
TRANSISTOR COUNT: 403

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Supervisory Circuits category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 $\underline{\text { MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060 }}$

