5-Pin Watchdog Timer Circuit

General Description

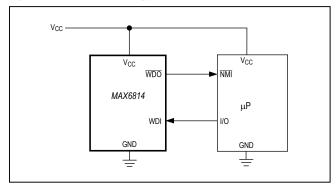
The MAX6814 is a low-power watchdog circuit in a tiny 5-pin SC70 package. This device improves system reliability by monitoring the system for software code execution errors. When the watchdog input detects a transitional edge, the internal watchdog timer clears and restarts, then begins counting again. If the watchdog timer exceeds the watchdog timeout period (1.6s typ), the active-low, push-pull watchdog output asserts for the watchdog pulse period (140ms min) to alert the system of the fault.

The MAX6814 consumes only $4\mu A$ of supply current and is fully specified over the extended temperature range.

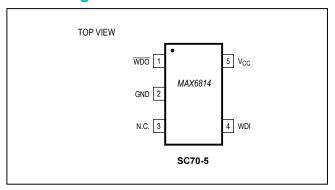
Applications

- Computers and Controllers
- Embedded Controllers
- Intelligent Instruments
- Critical µP Monitoring

Features


- 4µA Operating Current
- Watchdog Timer with 1.6s Timeout
- 140ms (min) WDO Pulse Period
- Push-Pull Active-Low WDO
- Fully Specified Over Extended Temperature Range
- No External Components

Ordering Information


PART	TEMP RANGE	PIN- TOP PACKAGE MAR	
MAX6814XK-T	-40°C to +85°C	5 SC70	AEK

Devices are available in both leaded and lead(Pb)-free/RoHS-compliant packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Typical Operating Circuit

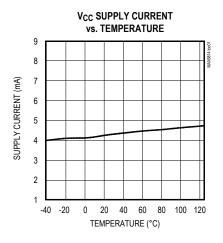
Pin Configuration

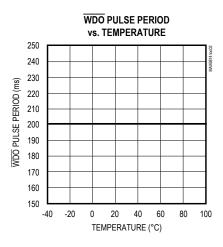
Absolute Maximum Ratings

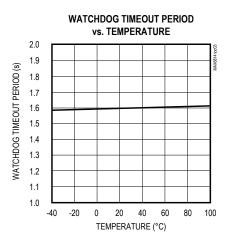
V _{CC}	0.3V to +6.0V	Operating Temperature Range	40°C to +85°C
All Other Pins	0.3V to (V _{CC} + 0.3V)	Storage Temperature Range	65°C to +150°C
Input Current, WDI	20mA	Junction Temperature	+150°C
Output Current, WDO	20mA	Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation (T _A = +7	0°C)	· · · · · · ·	
5-Pin SC70 (derate 3.1mW/°C above	+70°C)247mW		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics


 $(V_{CC} = +2.25V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage Range	V _{CC}	T _A = 0°C to +70°C		2.25		5.5	V
Supply Current	I _{SUPPLY} V	WDI unconnected	V _{CC} = 5.5V		10	24	μА
Supply Current			V _{CC} = 2.5V		4	12	
Undervoltage Lockout Threshold	UVLO	(Note 2)	(Note 2)		2.19		V
Watchdog Pulse Period	t _{PP}	(Note 3)		140	200	280	ms
WDO Output Voltage	V _{OH}	I _{SOURCE} = 30μA, V _{CC} = 2.3V		0.8 × V _{CC}		V	
VVDO Output Voltage	V_{OL}	I _{SINK} = 1.2mA, V _{CC}	; = 2.1V			0.3	V
WDO Output Short-Circuit Current	I _{SOURCE}	V _{CC} = 3.6V (Note 4)				400	μA
Watchdog Timeout Period	t_{WD}			1.12	1.60	2.40	s
WDI Pulse Width	t _{WDI}	$V_{IL} = 0.4V, V_{IH} = 0.8$	3 × V _{CC}	50			ns
WDI Input Voltage (Note 5)	V_{IL}				0.3	3 × V _{CC}	\ \
WDI Input Voltage (Note 5)	V_{IH}			0.7 × V	СС		V
WDI Input Current (Note 6)		WDI = V _{CC} , time av	erage		120	160	
WDI Input Current (Note 6)		WDI = 0, time avera	ige	-20	-15		μA


- Note 1: Overtemperature limits are guaranteed by design, production testing performed at +25°C only.
- Note 2: $\overline{\text{WDO}}$ is low when V_{CC} falls below the undervoltage threshold. When V_{CC} rises above the undervoltage threshold, $\overline{\text{WDO}}$ goes high after the watchdog pulse period.
- Note 3: Watchdog pulse period occurs when the watchdog times out or after V_{CC} rises above the undervoltage threshold.
- Note 4: The WDO short-circuit current is the maximum pullup current when WDO is driven low.
- Note 5: WDI is internally serviced within the watchdog period if WDI is left unconnected.
- Note 6: The WDI input current is specified as the average input current when the WDI input is designed to drive a three-stated output device with a 10µA maximum leakage current and a maximum capacitive load of 200pF. This output device must be able to source and sink at least 200µA when active.

Typical Operating Characteristics

(V_{CC} = +5V, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	WDO	Active-Low Watchdog Output. Pulses low for 140ms (min) when the watchdog timer exceeds the watchdog timeout period. $\overline{\text{WDO}}$ is low when V_{CC} is below the UVLO threshold and remains low for 140ms (min) after V_{CC} exceeds the UVLO threshold.
2	GND	Ground
3	N.C.	No Connection. Leave unconnected or connect to V _{CC} .
4	WDI	Watchdog Input. If WDI remains either high or low for longer than the watchdog timeout period, the internal watchdog timer runs out and a watchdog pulse period is triggered. The internal watchdog timer clears whenever a watchdog pulse period is asserted, or whenever WDI sees a rising or falling edge. If WDI is left unconnected or is connected to a three-stated buffer output, the watchdog is disabled.
5	Vcc	Supply Voltage

www.maximintegrated.com Maxim Integrated | 3

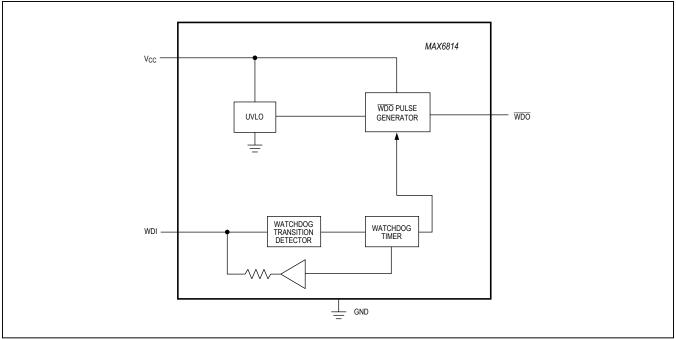


Figure 1. Functional Diagram

Detailed Description

Watchdog Input

In the MAX6814, the watchdog circuit monitors the μP 's activity. If the μP does <u>not</u> toggle the watchdog input (WDI) within t_{WD} (1.6s), \overline{WDO} asserts. The internal 1.6s timer is cleared by either a \overline{WDO} pulse or by toggling \overline{WDI} , which detects pulses as short as 50ns. While \overline{WDO} is asserted, the <u>timer</u> remains cleared and does not count. As soon as \overline{WDO} is released, the timer starts counting (Figure 3).

Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. The watchdog input is internally driven low during the first 7/8 of the watchdog timeout period and high for the last 1/8 of the watchdog timeout period. When WDI is left unconnected, this internal driver clears the 1.6s timer every 1.4s. When WDI is three-stated or unconnected, the maximum allowable leakage current is $10\mu A$ and the maximum allowable load capacitance is 200pF.

Applications Information

Watchdog Input Current

The MAX6814 WDI inputs are internally driven through a buffer and series resistor from the watchdog counter (Figure 1). When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain. For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog timeout period, pulsing it low-high-low once within the first 7/8 of the watchdog timeout period to clear the watchdog timer. If WDI is externally driven high for the majority of the timeout period, up to 160µA can flow into WDI.

Watchdog Software Considerations

One way to help the watchdog timer monitor software execution more closely is to set and clear the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be cleared inside the loop, keeping the watchdog from timing out.

Figure 4 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the program returns to the beginning. If the program should hang in any subroutine, the problem would quickly be corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing an interrupt to be issued. This scheme results in higher time average WDI input current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low (see the *Watchdog Input Current* section).

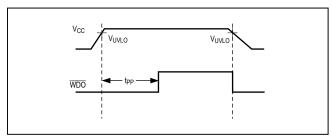


Figure 2. Power-Up Timing Diagram

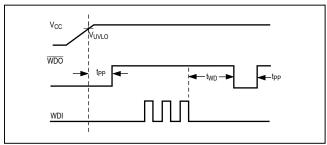


Figure 3. Watchdog Timing Relationship

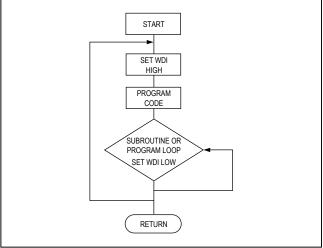


Figure 4. Watchdog Flow Diagram

Chip Information

TRANSISTOR COUNT: 607
PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
5 SC70	X5+1	21-0076	

www.maximintegrated.com Maxim Integrated | 5

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
3	7/14	No /V OPNs; removed Automotive reference from Applications section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060