2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

General Description

The MAX6953 is a compact cathode-row display driver that interfaces microprocessors to 5×7 dot-matrix LED displays through an $\mathrm{I}^{2} \mathrm{C}^{\top} \mathrm{M}$-compatible serial interface. The MAX6953 drives up to four digits (140 LEDs).
Included on-chip are an ASCII 104-character font, multiplex scan circuitry, column and row drivers, and static RAM that stores each digit, as well as font data for 24 user-definable characters. The segment current for the LEDs is set by an internal digit-by-digit digital brightness control.
The device includes a low-power shutdown mode, segment blinking (synchronized across multiple drivers, if desired), and a test mode that forces all LEDs on. The LED drivers are slew-rate limited to reduce EMI.
For an SPITM-compatible version, refer to the MAX6952 data sheet. An EV kit is available for the MAX6952.

Applications
Message Boards
Medical Equipment
Industrial Displays
Audio/Video Equipment
Gaming Machines

Features

- 400kbps 2-Wire Interface Compatible with I2C
- 2.7 V to 5.5 V Operation
- Drives 4 Monocolor or 2 Bicolor Cathode-Row 5×7 Matrix Displays
- Built-In ASCII 104-Character Font
- 24 User-Definable Characters Available
- Automatic Blinking Control for Each Segment
- 70رA Low-Power Shutdown (Data Retained)
- 16-Step Digital Brightness Control
- Display Blanked on Power-Up
- Slew-Rate-Limited Segment Drivers for Lower EMI
- 36-Pin SSOP and 40-Pin DIP Packages
- Extended Temperature Range as Standard

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6953EAX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 SSOP
MAX6953EPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 PDIP

Pin Configurations appear at end of data sheet.

Typical Application Circuit

${ }^{1}{ }^{2} \mathrm{C}$ is a trademark of Philips Corp.
SPI is a trademark of Motorola, Inc.

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range
MAX6953E.. $60^{\circ} \mathrm{C}$
Junction Temperature.................................... $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS
(Typical operating circuit, $\mathrm{V}_{+}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+			2.7		5.5	V
Shutdown Supply Current	ISHDN	Shutdown mode, all digital inputs at V_{+} or GND	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			130	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		70	100	
Operating Supply Current	$1+$	All segments on, intensity set to full, internal oscillator, no display load connected, BLINK open circuit			12	15	mA
Master Clock Frequency (OSC Internal Oscillator)	fosc	$\begin{aligned} & \text { OSC }=\text { RC oscillator, } \mathrm{RSET}=53.6 \mathrm{k} \Omega, \\ & \text { CSET }=26 \mathrm{pF} \end{aligned}$			4		MHz
Master Clock Frequency (OSC External Clock)	fosc	OSC overdriven externally		1		8	MHz
Dead Clock Protection Frequency	fosc			90			kHz
OSC Internal/External Detection Threshold	Vosc			1.7			V
OSC High Time	tch			50			ns
OSC Low Time	tCL			50			ns
Slow Segment Blink Period (OSC Internal Oscillator)	fSLOWBLINK	$\begin{aligned} & \text { OSC }=\text { RC oscillator, } \text { RSET }=53.6 \mathrm{k} \Omega, \\ & \text { CSET }=26 \mathrm{pF} \end{aligned}$			1		S
Fast Segment Blink Period (OSC Internal Oscillator)	fFASTBLINK	$\begin{aligned} & \text { OSC }=\text { RC oscillator, } \text { RSET }=53.6 \mathrm{k} \Omega, \\ & \text { CSET }=26 \mathrm{pF} \end{aligned}$			0.5		S
Fast or Slow Segment Blink Duty Cycle (Note 2)				49.5		50.5	\%
Column Drive Source Current	ICOLUMN	$\mathrm{V}_{\text {LED }}=2.4 \mathrm{~V}, \mathrm{~V}+=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-32		-58	mA

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

DC ELECTRICAL CHARACTERISTICS (continued)
(Typical operating circuit, $\mathrm{V}_{+}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Segment Current Slew Rate	$\Delta \mathrm{ISEG} / \Delta \mathrm{t}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12.5		$\mathrm{mA} / \mu \mathrm{s}$
Segment Drive Current Matching (Within IC)	$\Delta \mathrm{I}$ SEG	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4		\%
LOGIC INPUTS						
Input High Voltage SDA, SCL, AD0, AD1	V_{IH}		$\begin{gathered} 0.7 x \\ V_{+} \end{gathered}$			V
Input Low Voltage SDA, SCL, ADO, AD1	VIL				$\begin{gathered} 0.3 \times \\ V_{+} \end{gathered}$	V
Input Hysteresis SDA, SCL, AD0, AD1	VHYST			$\begin{gathered} 0.05 \times \\ V_{+} \end{gathered}$		V
Input Leakage Current	$\mathrm{IIL}^{\text {, }}$ IH		-2		2	$\mu \mathrm{A}$
Input Capacitance	Cl_{1}			10		pF
DIGITAL OUTPUT						
SDA Output Low Voltage	Volsda	ISINK $=4 \mathrm{~mA}$			0.4	V
BLINK Output Low Voltage	Volbk	ISINK $=1.6 \mathrm{~mA}$			0.4	V

MAX6953 TIMING CHARACTERISTICS

($\mathrm{V}+=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial Clock Frequency	fSCL				400	kHz
Bus Free Time Between a STOP and a START Condition	tBuF		1.3			$\mu \mathrm{S}$
Hold Time (Repeated) START Condition	thD, STA		0.6			$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU, STA		0.6			$\mu \mathrm{s}$
STOP Condition Setup Time	tSu, STO		0.6			$\mu \mathrm{s}$
Data Hold Time	thd, DAT	(Note 3)			0.9	$\mu \mathrm{s}$
Data Setup Time	tSU, DAT		100			ns
SCL Clock Low Period	tLow		1.3			$\mu \mathrm{s}$
SCL Clock High Period	thigh		0.6			$\mu \mathrm{s}$
Rise Time of Both SDA and SCL Signals, Receiving	t_{R}	(Notes 2, 4)		$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	$\mathrm{tF}_{\text {F }}$	(Notes 2, 4)		$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$	300	ns

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

MAX6953 TIMING CHARACTERISTICS (continued)

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fall Time of SDA Transmitting	$\mathrm{tF}_{\text {F }}$	(Notes 2, 5)		$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$	250	ns
Pulse Width of Spike Suppressed	tsp	(Note 6)	0	50		ns
Capacitive Load for Each Bus Line	CB	(Note 2)		400		pF

Note 1: All parameters tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V_{IL} of the SCL signal) in order to bridge the undefined region of SCL's falling edge.
Note 4: $\mathrm{C}_{\mathrm{B}}=$ total capacitance of one bus line in pF . t_{R} and t_{F} measured between $0.3 \mathrm{~V}+$ and $0.7 \mathrm{~V}_{+}$.
Note 5: $I_{S I N K} \leq 6 \mathrm{~mA}$. $\mathrm{C}_{\mathrm{B}}=$ total capacitance of one bus line in pF . t_{R} and t_{F} measured between $0.3 \mathrm{~V}_{+}$and $0.7 \mathrm{~V}_{+}$.
Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.

Typical Operating Characteristics

(Typical application circuit, $\mathrm{V}_{+}=3.3 \mathrm{~V}$, LED forward voltage $=2.4 \mathrm{~V}$, scan limit set to 4 digits, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE

INTERNAL OSCILLATOR FREQUENCY
vs. SUPPLY VOLTAGE

INTERNAL OSCILLATOR WAVEFORM AT OSC (PIN 19 OR 21)

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Typical Operating Characteristics (continued)
(Typical application circuit, $\mathrm{V}+=3.3 \mathrm{~V}$, LED forward voltage $=2.4 \mathrm{~V}$, scan limit set to 4 digits, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
SSOP	PDIP		
1, 2, 3, 6-14, 23, 24	1, 2, 3, 7-15, 26, 27	O 0 to O 13	LED Cathode Drivers. O 0 to O 13 outputs sink current from the display's cathode rows.
4, 5, 17	4, 5, 6, 19	GND	Ground
15	17	ISET	Segment Current Setting. Connect ISET to GND through series resistor RSET to set the peak current.
16	18	AD1	Address Input 1. Sets device slave address. Connect to either GND, V_{+}, SCL, SDA to give four logic combinations. See Table 3.
-	16, 25	N.C.	Not Connected
18	20	BLINK	Blink Output. Output is open drain.
19	21	OSC	Multiplex Clock Input. To use internal oscillator, connect capacitor CSET from OSC to GND. To use external clock, drive OSC with a 1 MHz to 8 MHz CMOS clock.
20	22	ADO	Address Input 0. Sets device slave address. Connect to either GND, V_{+}, SCL, SDA to give four logic combinations. See Table 3.
21	23	SDA	$\mathrm{I}^{2} \mathrm{C}$-Compatible Serial Data I/O
22	24	SCL	$\mathrm{I}^{2} \mathrm{C}$-Compatible Serial Clock Input
25-31, 34, 35, 36	28-34, 38, 39, 40	O14 to O23	LED Anode Drivers. O14 to O23 outputs source current to the display's anode columns.
32, 33	35, 36, 37	V+	Positive Supply Voltage. Bypass V+ to GND with a $47 \mu \mathrm{~F}$ bulk capacitor and a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Figure 1. MAX6953 Functional Diagram

Detailed Description

The MAX6953 is a serially interfaced display driver that can drive four digits of 5×7 cathode-row dot-matrix displays. The MAX6953 can drive either four monocolor digits (Table 1) or two bicolor digits (Table 2). The MAX6953 includes a 128-character font map comprising 104 predefined characters and 24 user-definable characters. The predefined characters follow the Arial font, with the addition of the following common symbols: $£,<, \neq{ }^{\circ}, \mu, \pm, \uparrow$, and \downarrow. The 24 user-definable charac-
ters are uploaded by the user into on-chip RAM through the serial interface and are lost when the device is powered down. Figure 1 is the MAX6953 functional diagram.

Serial Interface

Serial Addressing
The MAX6953 operates as a slave that sends and receives data through an $I^{2} \mathrm{C}$-compatible 2 -wire interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master (typically a microcontroller) initiates all data transfers to and from the MAX6953, and generates the SCL clock that synchronizes the data transfer (Figure 2).
The MAX6953 SDA line operates as both an input and an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on the SDA. The MAX6953 SCL line operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL if there are multiple masters on the 2-wire interface, or if the master in a single-master system has an open-drain SCL output.
Each transmission consists of a START condition (Figure 3) sent by a master, followed by the MAX6953 7-bit slave address plus R/W bit (Figure 6), a register address byte, 1 or more data bytes, and finally a STOP condition (Figure 3).

Start and Stop Conditions
Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning the SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 3).

Table 1. Connection Scheme for Four Monocolor Digits

DIGIT	O0-O6	O7-O13	O14-018	O19-O23
1	Digit 0 rows (cathodes) R1 to R7 Digit 1 rows (cathodes) R1 to R7	-	Digit 0 columns (anodes) C1 to C5	Digit 1 columns (anodes) C6 to C10
2	-	Digit 2 rows (cathodes) R1 to R7 Digit 3 rows (cathodes) R1 to R7	Digit 2 columns (anodes) C1 to C5	Digit 3 columns (anodes) C6 to C10

Table 2. Connection Scheme for Two Bicolor Digits

DIGIT	00-06	07-013	014-023	
1	Digit 0 rows (cathodes) R1 to R14	-	Digit 0 columns (anodes) C 1 to C 10	
1			- the 5 green anodes -	- the 5 red anodes -
2	-	Digit 1 rows (cathodes) R1 to R14	Digit 1 columns (anodes) C1 to C10	
			- the 5 green columns -	- the 5 red anodes -

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Abstract

Bit Transfer One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high (Figure 4).

Acknowledge

The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each byte of data (Figure 5). Thus, each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX6953, the MAX6953 generates the acknowledge bit because the MAX6953 is the recipient. When the MAX6953 is transmitting to the master, the master generates the acknowledge bit because the master is the recipient.

Slave Address
The MAX6953 has a 7 -bit-long slave address (Figure 6). The eighth bit following the 7 -bit slave address is the $R \bar{W}$ bit. It is low for a write command, high for a read command.
The first 3 bits (MSBs) of the MAX6953 slave address are always 101. Slave address bits A3, A2, A1, and A0 are selected by the address input pins AD1 and ADO. These two input pins may be connected to GND, V_{+}, SDA, or SCL. The MAX6953 has 16 possible slave addresses (Table 3) and therefore a maximum of 16 MAX6953 devices may share the same interface.

Message Format for Writing
A write to the MAX6953 comprises the transmission of the MAX6953's slave address with the $\mathrm{R} / \overline{\mathrm{W}}$ bit set to zero, followed by at least 1 byte of information. The first byte of information is the command byte, which determines which register of the MAX6953 is to be written by the next byte, if received. If a STOP condition is detected after the command byte is received, then the MAX6953 takes no further action (Figure 7) beyond storing the command byte.
Any bytes received after the command byte are data bytes. The first data byte goes into the internal register of the MAX6953 selected by the command byte (Figure 8).
If multiple data bytes are transmitted before a STOP condition is detected, these bytes are generally stored in subsequent MAX6953 internal registers because the command byte address generally autoincrements (Table 4) (Figure 9).

Message Format for Reading
The MAX6953 is read using the MAX6953's internally stored command byte as address pointer, the same way the stored command byte is used as address pointer for a write. The pointer generally autoincrements after each data byte is read using the same rules as for a write (Table 4). Thus, a read is initiated by first configuring the MAX6953's command byte by performing a write (Figure 7). The master can now read n consecutive bytes from the MAX6953, with the first data byte being read from the register addressed by the initialized command byte (Figure 9). When performing

Figure 2. 2-Wire Serial Interface Timing Details

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Figure 3. Start and Stop Conditions

Figure 4. Bit Transfer

Figure 5. Acknowledge

Figure 6. Slave Address

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Figure 7. Command Byte Received

Figure 8. Command and Single Data Byte Received
read-after-write verification, reset the command byte's address because the stored byte address generally is autoincremented after the write (Table 4).

Operation with Multiple Masters

 If the MAX6953 is operated on a 2-wire interface with multiple masters, a master reading the MAX6953 should use a repeated start between the write, which sets the MAX6953's address pointer, and the read(s) that takes the data from the location(s). This is because it is possible for master 2 to take over the bus after master 1 has set up the MAX6953's address pointer but before master 1 has read the data. If master 2 subsequently changes the MAX6953's address pointer, then master 1's delayed read may be from an unexpected location.
Command Address Autoincrementing

Address autoincrementing allows the MAX6953 to be configured with the shortest number of transmissions by minimizing the number of times the command byte needs to be sent. The command address or the font pointer address stored in the MAX6953 generally increments after each data byte is written or read (Table 4).

Digit Registers

The MAX6953 uses eight digit registers to store the characters that the user wishes to display on the four 5×7 LED digits. These digit registers are implemented with two planes of 4 bytes, called P0 and P1. Each LED digit is represented by 2 bytes of memory, 1 byte in plane P0
and the other in plane P1. The digit registers are mapped so that a digit's data can be updated in plane P0, or plane P1, or both planes at the same time (Table 5).
If the blink function is disabled through the Blink Enable Bit E (Table 10) in the configuration register, then the digit register data in plane PO is used to multiplex the display. The digit register data in P1 is not used. If the blink function is enabled, then the digit register data in both plane P0 and plane P1 are alternately used to multiplex the display. Blinking is achieved by multiplexing the LED display using data planes P0 and P1 on alternate phases of the blink clock (Table 11).
The data in the digit registers does not control the digit segments directly. Instead, the register data is used to address a character generator, which stores the data of a 128-character font (Table 15). The lower 7 bits of the digit data (D6 to D0) select the character from the font. The most-significant bit of the register data (D7) selects whether the font data is used directly ($D 7=0$) or whether the font data is inverted ($D 7=1$). The inversion feature can be used to enhance the appearance of bicolor displays by displaying, for example, a red character on a green background.

Display Blink Mode

The display blinking facility, when enabled, makes the driver flip automatically between displaying the digit register data in planes P 0 and P 1 . If the digit register data for any digit is different in the two planes, then that

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Figure 9. n Data Bytes Received
digit appears to flip between two characters. To make a character appear to blink on or off, write the character to one plane, and use the blank character (0x20) for the other plane. Once blinking has been configured, it continues automatically without further intervention.

Blink Speed

The blink speed is determined by frequency of the multiplex clock, OSC, and by setting the Blink Rate Selection Bit B (Table 9) in the configuration register. The Blink Rate Selection Bit B sets either fast or slow blink speed for the whole display.

Initial Power-Up
On initial power-up, all control registers are reset, the display is blanked, intensities are set to minimum, and shutdown is enabled (Table 6).

Configuration Register

The configuration register is used to enter and exit shutdown, select the blink rate, globally enable and disable the blink function, globally clear the digit data, and reset the blink timing (Table 7).

Shutdown Mode (S Data Bit D0) Format

 The S bit in the configuration register selects shutdown or normal operation. The display driver can be programmed while in shutdown mode, and shutdown mode is overridden when in the display test mode. For normal operation, the S bit should be set to 1 (Table 8).
Blink Rate Selection (B Data Bit D2) Format

The B bit in the configuration register selects the blink rate. This is the speed that the segments alternate between plane P0 and plane P1 refresh data. The blink rate is determined by the frequency of the multiplex clock OSC, in addition to the setting of the B bit (Table 9).

Table 3. MAX6953 Address Map

PIN			DEVICE ADDRESS						
AD1	AD0	A6	A5	A4	A3	A2	A1	A0	
GND	GND	1	0	1	0	0	0	0	
GND	V $_{+}$	1	0	1	0	0	0	1	
GND	SDA	1	0	1	0	0	1	0	
GND	SCL	1	0	1	0	0	1	1	
V $_{+}$	GND	1	0	1	0	1	0	0	
V $_{+}$	V+	1	0	1	0	1	0	1	
V+ $_{+}$	SDA	1	0	1	0	1	1	0	
V $_{+}$	SCL	1	0	1	0	1	1	1	
SDA	GND	1	0	1	1	0	0	0	
SDA	V+	1	0	1	1	0	0	1	
SDA	SDA	1	0	1	1	0	1	0	
SDA	SCL	1	0	1	1	0	1	1	
SCL	GND	1	0	1	1	1	0	0	
SCL	V+	1	0	1	1	1	0	1	
SCL	SDA	1	0	1	1	1	1	0	
SCL	SCL	1	0	1	1	1	1	1	

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 4. Command Address Autoincrement Rules

COMMAND BYTE ADDRESS RANGE	AUTOINCREMENT BEHAVIOR
$\times 0000000$ to $\times 0000100$	Command byte address autoincrements after byte read or written.
$\times 0000101$	Command byte address remains at $\times 0000101$ after byte read or written, but the font address pointer autoincrements.
$\times 0000110$	Factory reserved; do not write to this register.
$\times 000111$ to $\times 1111110$	Command byte address autoincrements after byte read or written.
$\times 111111$	Command byte address remains at $\times 1111111$ after byte read or written.

Table 5. Register Address Map

REGISTER	COMMAND ADDRESS								HEX CODE CODE
	D15	D14	D13	D12	D11	D10	D9	D8	
No-Op	X	0	0	0	0	0	0	0	0×00
Intensity 10	X	0	0	0	0	0	0	1	0×01
Intensity32	X	0	0	0	0	0	1	0	0x02
Scan Limit	X	0	0	0	0	0	1	1	0×03
Configuration	X	0	0	0	0	1	0	0	0×04
User-Defined Fonts	X	0	0	0	0	1	0	1	0×05
Factory Reserved. Do not write to this.	X	0	0	0	0	1	1	0	0×06
Display Test	X	0	0	0	0	1	1	1	0x07
Digit 0 Plane P0	X	0	1	0	0	0	0	0	0x20
Digit 1 Plane P0	X	0	1	0	0	0	0	1	0×21
Digit 2 Plane P0	X	0	1	0	0	0	1	0	0x22
Digit 3 Plane P0	X	0	1	0	0	0	1	1	0x23
Digit 0 Plane P1	X	1	0	0	0	0	0	0	0x40
Digit 1 Plane P1	X	1	0	0	0	0	0	1	0x41
Digit 2 Plane P1	X	1	0	0	0	0	1	0	0x42
Digit 3 Plane P1	X	1	0	0	0	0	1	1	0x43
Write Digit 0 Planes P0 and P1 with Same Data (Reads as 0x00)	X	1	1	0	0	0	0	0	0x60
Write Digit 1 Planes P0 and P1 with Same Data (Reads as 0x00)	X	1	1	0	0	0	0	1	0x61
Write Digit 2 Planes P0 and P1 with Same Data (Reads as 0x00)	X	1	1	0	0	0	1	0	0x62
Write Digit 3 Planes P0 and P1 with Same Data (Reads as 0x00)	X	1	1	0	0	0	1	1	0x63

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

MAX6953

Table 6. Initial Power-Up Register Status

REGISTER	POWER-UP CONDITION	ADDRESS CODE (HEX)	REGISTER DATA							
			D7	D6	D5	D4	D3	D2	D1	D0
Intensity 10	1/16 (min on)	0×01	0	0	0	0	0	0	0	0
Intensity32	1/16 (min on)	0×02	0	0	0	0	0	0	0	0
Scan Limit	Display 4 digits: 0123	0×03	X	X	X	X	X	X	X	1
Configuration	Shutdown enabled, blink speed is slow, blink disabled	0x04	0	X	0	0	0	0	X	0
User-Defined Font Address Pointer	Address 0x80; pointing to the first user-defined font location	0×05	1	0	0	0	0	0	0	0
Display Test	Normal operation	0x07	X	X	X	X	X	X	X	0
Digit 0 Plane P0	Blank digit (0x20)	0×20	0	0	1	0	0	0	0	0
Digit 1 Plane P0	Blank digit (0x20)	0×21	0	0	1	0	0	0	0	0
Digit 2 Plane P0	Blank digit (0x20)	0×22	0	0	1	0	0	0	0	0
Digit 3 Plane P0	Blank digit (0x20)	0×23	0	0	1	0	0	0	0	0
Digit 0 Plane P1	Blank digit (0x20)	0x40	0	0	1	0	0	0	0	0
Digit 1 Plane P1	Blank digit (0x20)	0×41	0	0	1	0	0	0	0	0
Digit 2 Plane P1	Blank digit (0x20)	0×42	0	0	1	0	0	0	0	0
Digit 3 Plane P1	Blank digit (0x20)	0×43	0	0	1	0	0	0	0	0

Table 7. Configuration Register Format

	REGISTER DATA								
	D7	D6	D5	D4	D3	D2	D1	D0	
	P	X	R	T	E	B	X	S	

Table 8. Shutdown Control (S Data Bit D0) Format

MODE		REGISTER DATA								
		D6	D5	D4	D3	D2	D1	D0		
Shutdown Mode	P	X	R	T	E	B	X	0		
Normal Operation	P	X	R	T	E	B	X	1		

Table 9. Blink Rate Selection (B Data Bit D2) Format

MODE	REGISTER DATA							
	D7	D6	D5	D4	D3	D2	D1	D0
Slow blinking (segments are refreshed using plane P0 for 1s, plane P1 for 1 s , for OSC $=4 \mathrm{MHz}$).	P	X	R	T	E	0	X	S
Fast blinking (segments are refreshed using plane P0 for 0.5 s , plane P 1 for 0.5 s , for $\mathrm{OSC}=4 \mathrm{MHz}$).	P	X	R	T	E	1	X	S

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 10. Global Blink Enable/Disable (E Data Bit D3) Format

MODE		REGISTER DATA								
		D6	D5	$\mathbf{D 4}$	$\mathbf{D 3}$	D2	D1	D0		
Blink function is disabled.	P	X	R	T	0	B	X	S		
Blink function is enabled.	P	X	R	T	1	B	X	S		

Table 11. Digit Register Mapping with Blink Globally Enabled

SEGMENT'S BIT SETTING IN PLANE P1	SEGMENT'S BIT SETTING IN PLANE P0	SEGMENT BEHAVIOR
0	0	Segment off
0	1	Segment on only during the 1st half of each blink period
1	0	Segment on only during the 2nd half of each blink period
1	1	Segment on

Global Blink Enable/Disable (E Data Bit D3) Format The E bit globally enables or disables the blink feature of the device (Table 10). When blink is globally enabled, then the digit data in both planes P0 and P1 are used to control the display (Table 11).
When blink is globally disabled, then only the digit data in plane P0 is used to control the display. The digit data in plane P1 is ignored.
Global Blink Timing Synchronization (T Data Bit D4) Format
By setting the T bit in multiple MAX6953s at the same time (or in quick succession), the blink timing can be synchronized across all the devices (Table 12). Note that the display multiplexing sequence is also reset, which might give rise to a one-time display flicker when the register is written.

Table 12. Global Blink Timing Synchronization (T Data Bit D4) Format

MODE	REGISTER DATA							
	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D0
Blink timing counters are unaffected.	P	X	R	0	E	B	X	S
Blink timing counters are reset during the $\mathrm{I}^{2} \mathrm{C}$ acknowledge.	P	X	R	1	E	B	X	S

Table 13. Global Clear Digit Data (R Data Bit D5) Format

MODE	REGISTER DATA							
	D7	D6	D5	D4	D3	D2	D1	D0
Digit data for both planes P0 and P1 are unaffected.	P	X	0	T	E	B	X	S
Digit data for both planes P0 and P1 are cleared during $I^{2} \mathrm{C}$ acknowledge.	P	X	1	T	E	B	X	S

Table 14. Blink Phase Readback (P Data Bit D7) Format

MODE	REGISTER DATA								
	D7	D6	D5	D4	D3	D2	D1	D0	
P1 blink phase	0	X	R	T	E	B	X	S	
P0 blink phase	1	X	R	T	E	B	X	S	

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 15. Character Map

Global Clear Digit Data (R Data Bit D5) Format
When global digit data clear is set, the digit data for both planes P0 and P1 for all digits are cleared during the acknowledge (Table 13).

Blink Phase Readback (P Data Bit D7) Format
When the configuration register is read, the P bit reflects the state of the blink output pin at that time (Table 14).

Character Generator Font Mapping
The font is a 5×7 matrix comprising 104 characters in ROM, and 24 user-definable characters. The selection from the total of 128 characters is represented by the lower 7 bits of the 8 -bit digit registers. The most-significant bit, shown as x in the ROM map, is zero to light LEDs as shown by the black segments in Table 15, and 1 to display the inverse.
The character map follows the Arial font for 96 characters in the range 0×0101000 through $\times 1111111$. The first 32 characters map the 24 user-definable positions (RAM00 to RAM23), plus eight extra common characters in ROM.

User-Defined Fonts
The 24 user-definable characters are represented by 120 entries of 7 -bit data, five entries per character, and are stored in MAX6953's internal RAM.
The 120 user-definable font data entries are written and read through a single register, address 0×05. An autoincrementing font address pointer in the MAX6953 indirectly accesses the font data. The font address pointer can be written, setting one of 120 addresses between 0×00 and $0 \times F 7$, but cannot be read back. The font data is written to and read from MAX6953 indirectly, using this font address pointer. Unused font locations can be used as general-purpose scratch RAM, bearing in mind that the font registers are only 7 bits wide, not 8 .
Table 16 shows how the single user-defined font register 0×05 is used to set the font address pointer, write font data, and read font data. A read action always returns font data from the font address pointer position. A write action sets the 7 -bit font address pointer if the MSB is set, or writes 7-bit font data to the font address pointer position if the MSB is clear.
The font address pointer autoincrements after a valid access to the user-definable font data. Autoincrementing allows the 120 font data entries to be written and read back very quickly because the font pointer address need only be set once. When the last data location 0xF7 is written, the font address pointer autoincrements to address 0×80. If the font address pointer is

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 16. Memory Mapping of User-Defined Font Register 0x05

ADDRESS CODE (HEX)	REGISTER DATA	I2C READ OR WRITE	FUNCTION
0×05	$0 \times 00-0 \times 7 F$	Read	Read 7-bit user-definable font data entry from current font address. MSB of the register data is clear. Font address pointer is incremented after the read.
0×05	$0 \times 00-0 \times 7 F$	Write	Write 7-bit user-definable font data entry to current font address. Font address pointer is incremented after the write.
0×05	$0 \times 80-0 \times F F$	Write	Write font address pointer with the register data.

Table 17. Font Pointer Address Behavior

FONT POINTER ADDRESS	ACTION
0×80 to 0xF6	Valid range to set the font address pointer. Pointer autoincrements after a font data read or write, while pointer address remains in this range.
0xF7	Font address resets to 0x80 after a font data read or write to this pointer address.
0xF8 to 0xFF	Invalid range to set the font address pointer. Pointer is set to 0x80 if address.

set to an out-of-range address by writing data in the 0xF8 to $0 \times F F$ range, then address 0×80 is set instead (Table 17).

Table 18 shows the user-definable font pointer base addresses.
Table 19 shows an example of data (characters 0,1 , and 2) being stored in the first three user-defined font locations, illustrating the orientation of the data bits.
Table 20 shows the six sequential write commands required to set a MAX6953's font character RAM02 with the data to display character 2 given in the font RAM illustration above.

Multiplex Clock and Blink Timing

The OSC pin can be fitted with capacitor CSET to GND (to use the internal RC multiplex oscillator), or driven by an external clock. The multiplex clock frequency determines the multiplex scan rate and the blink timing. The display scan rate (the frequency that the complete fourdigit display is updated) is calculated by dividing the frequency at OSC by 5600 . With OSC at 4 MHz , each digit row is enabled for $100 \mu \mathrm{~s}$, and the display scan rate is 714.29 Hz .
The on-chip oscillator may be accurate enough for applications using a single device. If an exact blink rate is required, use an external clock ranging between 1 MHz and 8 MHz to drive OSC. The OSC inputs of multiple MAX6953s can be tied together to a common
external clock to make the devices blink at the same rate. The relative blink phasing of multiple MAX6953s can be synchronized by setting the T bit in the configuration register for all the devices in quick succession (Table 12).

Blink Output

The blink output pin indicates the blink phase, and is high during the P0 period and low during the P1 period. Blink phase status can also be read back as the P bit in the configuration register (Table 14). Typical uses for this output are:

- To provide an interrupt to the processor so that segment data can be changed synchronous to the blinking. For example, a clock application may have colon segments blinking every second between hours and minute digits, and the minute display is best changed in step with the colon segments. Also, if the rising edge of blink is detected, there is half a blink period to change the P1 digit data. Similarly, if the falling edge of blink is detected, the user has half a blink period to change the P0 digit data.
- If OSC is driven with an accurate frequency, blink can be used as a seconds counter or similar.

Scan-Limit Register

The scan-limit register sets how many monocolor digits are displayed, either two or four. A bicolor digit is connected as two monocolor digits (Table 21).

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Figure 10. Multiplex Timing Diagram (OSC $=4 \mathrm{MHz}$)

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 18. User-Definable Font Pointer Base Address Table

FONT CHARACTER	ADDRESS CODE (HEX)	REGISTER DATA (HEX)	REGISTER DATA							
			D7	D6	D5	D4	D3	D2	D1	D0
RAM00	0×05	0×80	1	0	0	0	0	0	0	0
RAM01	0×05	0×85	1	0	0	0	0	1	0	1
RAM02	0×05	$0 \times 8 \mathrm{~A}$	1	0	0	0	1	0	1	0
RAM03	0×05	$0 \times 8 \mathrm{~F}$	1	0	0	0	1	1	1	1
RAM04	0×05	0×94	1	0	0	1	0	1	0	0
RAM05	0×05	0×99	1	0	0	1	1	0	0	1
RAM06	0×05	$0 \times 9 \mathrm{E}$	1	0	0	1	1	1	1	0
RAM07	0×05	$0 \times \mathrm{A} 3$	1	0	1	0	0	0	1	1
RAM08	0×05	0×48	1	0	1	0	1	0	0	0
RAM09	0×05	0xAD	1	0	1	0	1	1	0	1
RAM10	0×05	0xB2	1	0	1	1	0	0	1	0
RAM11	0×05	0xB7	1	0	1	1	0	1	1	1
RAM12	0×05	0xBC	1	0	1	1	1	1	0	0
RAM13	0×05	$0 \times C 1$	1	1	0	0	0	0	0	1
RAM14	0×05	0xC6	1	1	0	0	0	1	1	0
RAM15	0×05	$0 \times C B$	1	1	0	0	1	0	1	1
RAM16	0×05	0xD0	1	1	0	1	0	0	0	0
RAM17	0×05	0xD5	1	1	0	1	0	1	0	1
RAM18	0×05	0xDA	1	1	0	1	1	0	1	0
RAM19	0×05	0xDF	1	1	0	1	1	1	1	1
RAM20	0×05	0xE4	1	1	1	0	0	1	0	0
RAM21	0×05	0xE9	1	1	1	0	1	0	0	1
RAM22	0×05	0xEE	1	1	1	0	1	1	1	0
RAM23	0x05	0xF3	1	1	1	1	0	0	1	1

The multiplexing scheme drives digits 0 and 1 at the same time, then digits 2 and 3 at the same time. To increase the effective brightness of the displays, drive only two digits instead of four. By doing this, the average segment current doubles, but also doubles the number of MAX6953s required to drive a given number of digits.
Because digit 1 is driven at the same time as digit 0 (and digit 3 is driven at the same time as digit 2), only 1 bit is used to set the scan limit. The bit is clear if one or two digits are to be driven, and set if three or four digits are to be driven (Table 21).

Intensity Registers Display brightness is controlled digitally by four pulsewidth modulators, one for each display digit. Each digit is controlled by a nibble of one of the two intensity reg-
isters, Intensity10 and Intensity32. The modulator scales the average segment current in 16 steps from a maximum of $15 / 16$ down to $1 / 16$ of the peak current. The minimum interdigit blanking time is therefore $1 / 16$ of a cycle. The maximum duty cycle is $15 / 16$ (Tables 23 and 24).

No-Op Register

A write to the No-Op register is ignored.

Selecting External Components Rset and CSET to Set Oscillator Frequency and Segment Current

The RC oscillator uses an external resistor RSET and an external capacitor CSET to set the oscillator frequency, fosc. The allowed range of fosc is 1 MHz to 8 MHz . RSET also sets the peak segment current. The recommended values of RSET and CSET set the oscillator to

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 19. User-Definable Character Storage Example

FONT CHARACTER	FONT ADDRESS POINTER	ADDRESS CODE (HEX)	FONT POINTER ADDRESS (HEX)	REGISTER DATA							
				D7	D6	D5	D4	D3	D2	D1	D0
RAM00	0×00	0×05	0x80	0	0	1	1	1	1	1	0
RAM00	0×01	0×05	0×81	0	1	0	1	0	0	0	1
RAM00	0×02	0×05	0×82	0	1	0	0	1	0	0	1
RAM00	0×03	0×05	0×83	0	1	0	0	0	1	0	1
RAM00	0×04	0×05	0x84	0	0	1	1	1	1	1	0
RAM01	0×05	0×05	0×85	0	0	0	0	0	0	0	0
RAM01	0×06	0×05	0×86	0	1	0	0	0	0	1	0
RAM01	0×07	0×05	0×87	0	1	1	1	1	1	1	1
RAM01	0×08	0×05	0×88	0	1	0	0	0	0	0	0
RAM01	0×09	0×05	0x89	0	0	0	0	0	0	0	0
RAM02	$0 \times 0 \mathrm{~A}$	0×05	$0 \times 8 \mathrm{~A}$	0	1	0	0	0	0	1	0
RAM02	$0 \times 0 \mathrm{~B}$	0×05	$0 \times 8 \mathrm{~B}$	0	1	1	0	0	0	0	1
RAM02	0x0C	0×05	0x8C	0	1	0	1	0	0	0	1
RAM02	$0 \times 0 \mathrm{D}$	0×05	0x8D	0	1	0	0	1	0	0	1
RAM02	0x0E	0×05	$0 \times 8 \mathrm{E}$	0	1	0	0	0	1	1	0

Table 20. Setting a Font Character to RAM Example

ADDRESS CODE (HEX)	REGISTER DATA (HEX)	ACTION BEING PERFORMED
0×05	$0 \times 8 \mathrm{~A}$	Set font address pointer to the base address of font character RAM02.
0×05	0×42	1 st 7 bits of data: 1000010 goes to font address $0 \times 8 \mathrm{~A} ;$ pointer then autoincrements to address $0 \times 8 \mathrm{~B}$.
0×05	0×61	2nd 7 bits of data: 1100001 goes to font address $0 \times 8 \mathrm{~B} ;$ pointer then autoincrements to address $0 \times 8 \mathrm{C}$.
0×05	0×51	3rd 7 bits of data: 1010001 goes to font address $0 \times 8 \mathrm{C} ;$ pointer then autoincrements to address $0 \times 8 \mathrm{D}$.
0×05	0×49	4th 7 bits of data: 1001001 goes to font address $0 \times 8 \mathrm{D} ;$ pointer then autoincrements to address $0 \times 8 \mathrm{E}$.
0×05	0×46	5 th 7 bits of data: 1000110 goes to font address $0 \times 8 \mathrm{E} ;$ pointer then autoincrements to address $0 \times 8 \mathrm{~F}$.

Table 21. Scan-Limit Register Format

SCAN LIMIT	ADDRESS CODE (HEX)	REGISTER DATA								$\begin{aligned} & \text { HEX } \\ & \text { CODE } \end{aligned}$
		D7	D6	D5	D4	D3	D2	D1	D0	
Display Digits 0 and 1 Only	0×03	X	X	X	X	X	X	X	0	0xX0
Display Digits 0, 1, 2, and 3	0×03	X	X	X	X	X	X	X	1	0xX1

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

4 MHz , which makes the blink frequencies 0.5 Hz selectable between 1 Hz . The recommended value of RSET also sets the peak current to 40 mA , which makes the segment current adjustable from 2.5 mA to 37.5 mA in 2.5 mA steps:

```
ISEG = KI / RSET mA
fOSC = KF / (RSET × (CSET + CSTRAY)) MHz
```

where:
$\mathrm{K} I=2144$
$K_{F}=6003$
RSET = external resistor in $\mathrm{k} \Omega$
CSET = external capacitor in pF
CSTRAY = stray capacitance from OSC pin to GND in pF, typically $2 p F$
The recommended value of RSET is $53.6 \mathrm{k} \Omega$ and the recommended value of CSET is 26 pF .
The recommended value of RSET is the minimum allowed value since it sets the display driver to the maximum allowed segment current. RSET can be set to a higher value to set the segment current to a lower peak value where desired. The user must also ensure that the peak current specifications of the LEDs connected to the driver are not exceeded.
The effective value of CSET includes not only the actual external capacitor used, but also the stray capacitance from OSC to GND. This capacitance is usually in the 1 pF to 5 pF range, depending on the layout used.

Display-Test Register
The display-test register switches the drivers between one of two modes: normal and display test. Display-test mode turns all LEDs on by overriding, but not altering, all control and digit registers (including the shutdown register). In display-test mode, eight digits are scanned and the duty cycle is $7 / 16$ (half power). Table 22 lists the display-test register format.

Applications Information

Choosing Supply Voltage to Minimize Power Dissipation

The MAX6953 drives a peak current of 40 mA into LEDs with a 2.4 V forward-voltage drop when operated from a supply voltage of at least 3.0V. The minimum voltage drop across the internal LED drivers is therefore (3.0V $2.4 \mathrm{~V})=0.6 \mathrm{~V}$. If a higher supply voltage is used, the driver absorbs a higher voltage, and the driver's power dissipation increases accordingly. However, if the LEDs used have a higher forward voltage drop than 2.4 V , the supply voltage must be raised accordingly to ensure that the driver always has at least 0.6 V headroom.
The voltage drop across the drivers with a nominal 5 V supply ($5.0 \mathrm{~V}-2.4 \mathrm{~V}$) $=2.6 \mathrm{~V}$ is nearly 3 times the drop across the drivers with a nominal 3.3 V supply (3.3V $2.4 \mathrm{~V})=0.9 \mathrm{~V}$. In most systems, consumption is an important design criterion, and the MAX6953 should be operated from the system's 3.3 V nominal supply. In other designs, the lowest supply voltage may be 5 V . The issue now is to ensure that the dissipation limit for the MAX6953 is not exceeded. This can be achieved by inserting a series resistor in the supply to the MAX6953, ensuring that the supply decoupling capacitors are still on the MAX6953 side of the resistor. For example, consider the requirement that the minimum supply voltage to a MAX6953 must be 3.0 V , and the input supply range is $5 \mathrm{~V} \pm 5 \%$. Maximum supply current is:

$$
15 \mathrm{~mA}+(40 \mathrm{~mA} \times 10)=415 \mathrm{~mA}
$$

Minimum input supply voltage is 4.75 V . Maximum series resistor value is:

$$
(4.75 \mathrm{~V}-3.0 \mathrm{~V}) / 0.415 \mathrm{~A}=4.22 \Omega
$$

We choose $3.3 \Omega \pm 5 \%$. Worst-case resistor dissipation is at maximum toleranced resistance, i.e., $(0.415 A)^{2} \times$ $(3.3 \Omega \times 1.05)=0.577 \mathrm{~W}$. We choose a 1 W resistor rating. The maximum MAX6953 supply voltage is at maximum input supply voltage and minimum toleranced resistance, i.e., $5.25 \mathrm{~V}-(0.415 \mathrm{~A} \times 3.3 \Omega \times 0.95)=3.95 \mathrm{~V}$.

Table 22. Display-Test Register Format

MODE	ADDRESS CODE (HEX)	REGISTER DATA							
		D7	D6	D5	D4	D3	D2	D1	D0
Normal operation	0×07	X	X	X	X	X	X	X	0
Display test	0×07	X	X	X	X	X	X	X	1

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Table 23. Intensity Register Format for Digit 0 (Address 0x01) and Digit 2 (Address 0x02)

DUTY CYCLE	TYPICAL SEGMENT CURRENT (mA)	ADDRESS CODE (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	$\begin{aligned} & \text { HEX } \\ & \text { CODE } \end{aligned}$
1/16 (min on)	2.5	0x01, 0×02		See Table 24.			0	0	0	0	0xX0
2/16	5	0x01, 0×02					0	0	0	1	0xX1
3/16	7.5	0x01, 0x02					0	0	1	0	0xX2
4/16	10	0x01, 0x02					0	0	1	1	0xX3
5/16	12.5	0x01, 0×02					0	1	0	0	0xX4
6/16	15	0x01, 0x02					0	1	0	1	0xX5
7/16	17.5	0x01, 0x02					0	1	1	0	0xX6
8/16	20	0x01, 0x02					0	1	1	1	0xX7
9/16	22.5	0x01, 0x02					1	0	0	0	0xX8
10/16	25	0x01, 0x02					1	0	0	1	0xX9
11/16	27.5	0x01, 0×02					1	0	1	0	0xXA
12/16	30	0x01, 0x02					1	0	1	1	0xXB
13/16	32.5	0x01, 0x02					1	1	0	0	0xXC
14/16	35	0x01, 0x02					1	1	0	1	0xXD
15/16	37.5	0x01, 0x02					1	1	1	0	0xXE
15/16 (max on)	37.5	0x01, 0x02					1	1	1	1	0xXF

Table 24. Intensity Register Format for Digit 1 (Address 0x01) and Digit 3 (Address 0x02)

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Low-Voltage Operation
The MAX6953 works over the 2.7 V to 5.5 V supply range. The minimum useful supply voltage is determined by the forward-voltage drop of the LEDs at the peak current ISEG, plus the 0.6 V headroom required by the driver output stages. The MAX6953 correctly regulates ISEG with a supply voltage above this minimum voltage. If the supply drops below this minimum voltage, the driver output stages may brown out, and be unable to regulate the current correctly. As the supply voltage drops further, the LED segment drive current becomes effectively limited by the output driver's onresistance, and the LED drive current drops. The characteristics of each individual LED in a 5×7 matrix digit are well matched, so the result is that the display intensity dims uniformly as supply voltage drops out of regulation and beyond. The MAX6953 operates down to 2 V supply voltage (although most displays are very dim at this voltage), providing that the MAX6953 is powered up initially to at least 2.7 V to trigger the device's internal reset, and also that the $1^{2} \mathrm{C}$ interface is constrained to 100kbps.

Computing Power Dissipation

The upper limit for power dissipation (PD) for the MAX6953 is determined from the following equation:

$$
\mathrm{PD}_{\mathrm{D}}=\left(\mathrm{V}_{+} \times 15 \mathrm{~mA}\right)+\left(\mathrm{V}_{+}-\mathrm{V}_{\text {LED }}\right)(\mathrm{DUTY} \times \mathrm{ISEG} \times \mathrm{N})
$$

where:
$\mathrm{V}_{+}=$supply voltage
Duty = duty cycle set by intensity register
$\mathrm{N}=$ number of segments driven (worst case is 10)
VLED = LED forward voltage
ISEG = segment current set by RSET
$\mathrm{PD}=$ power dissipation, in mW if currents are in mA
Dissipation example:

$$
\begin{aligned}
\text { ISEG }= & 40 \mathrm{~mA}, \mathrm{~N}=10, \text { Duty }=15 / 16, \mathrm{~V} \text { LED } \\
= & 2.4 \mathrm{~V} \text { at } 40 \mathrm{~mA}, \mathrm{~V}+=3.6 \mathrm{~V} \\
& P_{\mathrm{D}}=3.6 \mathrm{~V}(15 \mathrm{~mA})+(3.6 \mathrm{~V}-2.4 \mathrm{~V}) \\
& (15 / 16 \times 40 \mathrm{~mA} \times 10)=0.504 \mathrm{~W}
\end{aligned}
$$

Thus, for a 36 -pin SSOP package ($\mathrm{T}_{\mathrm{JA}}=1 / 0.0118=$ $+85^{\circ} \mathrm{C} / \mathrm{W}$ from operating ratings), the maximum allowed ambient temperature T_{A} is given by:

$$
\begin{aligned}
& T_{J(\text { MAX })}=T_{A}+\left(P D \times T_{J A}\right)=+150^{\circ} \mathrm{C}= \\
& T_{A}+\left(0.504 \times+85^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

So $T_{A}=+107^{\circ} \mathrm{C}$. Thus, the part can be operated safely at a maximum package temperature of $+85^{\circ} \mathrm{C}$.

Power Supplies
The MAX6953 operates from a single 2.7 V to 5.5 V power supply. Bypass the power supply to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close to the device as possible. Add a $47 \mu \mathrm{~F}$ capacitor if the MAX6953 is not close to the board's input bulk decoupling capacitor.

Board Layout When designing a board, use the following guidelines:

1) The RSET connection to the ISET pin is a highimpedance node, and sensitive to layout. Place RSET right next to the ISET pin and route RSET directly to these pins with very short tracks.
2) Ensure that the track from the ground end of RSET routes directly to GND pin 19 (PDIP package) or GND pin 17 (SSOP package), and that this track is not used as part of any other ground connection.

Chip Information
TRANSISTOR COUNT: 44,078
PROCESS: CMOS

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5×7 Matrix LED Display Driver

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Display Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MAP9000QNRH AS3693B-ZTQT SCT2027CSSG ME2206AM6G WS3130S8P WS3132S7P WS3136D7P WS3256D8P WS3418AD7P WS9012S8P WS9620BDP FM6126QC TC7559C FM6565QB LYT3315D SCT2001ASIG SCT2024CSSG SCT2167CSSG AL8400QSE-7 PR4401 PR4403 WS2821B PR4402 RT8471GJ5 RT9284A-20GJ6E LP5562TMX TC7117ACLW DLD101Q-7 WS2818B BCR401U BCR402U SCT2004CSOG SCT2026CSOG SCT2026CSSG SCT2110CSSG SCT2932J PR4101A PR4404 CP2155DN10-A1 BCT3220ELA-TR AW2013DNR AW3641EDNR WD3153D-10/TR AW36404DNR AL8400SE-7 CD4511BE XD3914 MAX7219N XD7221 SD6603D

