

MAX7360.

installed.

DESIGNATION

C11, C38, C40

MAX7360 Evaluation Kit Evaluates: MAX7360

General Description

The MAX7360 evaluation kit (EV kit) provides a proven

design to evaluate the MAX7360 I2C-interfaced low-

EMI key-switch controller and 8 LED drivers/GPIO with

integrated ESD protection. The EV kit also includes

Windows® 2000-, Windows XP®-, and Windows Vista®-

compatible software that provides a simple graphical user interface (GUI) for exercising the features of the

The MAX7360 EV kit PCB comes with a MAX7360EWX+

Features

- Wide 1.6V to 3.3V Supply Range
- 36-Bump WLP Package
- Windows 2000-, Windows XP-, and Windows Vista (32-Bit)-Compatible Software
- USB-PC Connection (Cable Included)
- USB Powered
- + Lead(Pb)-Free and RoHS Compliant
- Optional GPO Output LEDs (COL2–COL7)
- ♦ RGB LED Output (PORT1, PORT2, PORT3)
- White LEDs (PORT0) (Requires External VH Supply)
- + LED Output (PORT4)
- Rotary Encoder (PORT6, PORT7)
- ♦ I²C Interface Terminals
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information

PART	ТҮРЕ
MAX7360EVKIT+	EV Kit

+Denotes lead(Pb)-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C15, C16	2	10pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H100J
C30, C31	2	22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J
H1, H2	2	20-pin headers
J1	1	USB type-B right-angle female receptacle
J3	0	Not installed, dual-row (2 x 5) 10-pin header
JU1	1	Dual-row (2 x 4) 8-pin header
JU2, JU9, JU15, JU16	4	3-pin headers
JU10–JU14, JU24, JU25	0	Not installed, headers—short (PC trace)

0.1µF ±10%, 16V X7R ceramic C1, C5–C9, C12, capacitors (0603) 10 C17, C18, C37 Murata GRM188R71C104K Not installed, ceramic capacitor C2 0 (0603) Not installed, ceramic capaci-C3, C13 0 tors (1206) 0.033µF ±10%, 25V X7R C4 1 ceramic capacitor (0603) Murata GRM188R71E333K 1µF ±10%, 16V X5R ceramic C10, C39 2 capacitors (0603) TDK C1608X5R1C105K 10µF ±20%, 16V X5R ceramic

capacitors (1206)

Murata GRM31CR61C106M

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

DESCRIPTION

Windows, WIndows XP, and Windows Vista are registered trademarks of Microsoft Corp.

QTY

3

DECIONATION	OTV	DECODIDITION
DESIGNATION	QTY	DESCRIPTION
JU3–JU8, JU17–JU23	13	2-pin headers
KEY0–KEY63, SW1	65	Momentary, normally open switches
L1	1	Ferrite bead (0603) TDK MMZ1608R301A
LED1, LED6–LED15	11	Red LEDs (0805)
LED2, LED3, LED4	3	White LEDs (PLCC2)
LED5	1	RGB LED (PLCC4)
R1, R2	2	$27\Omega \pm 5\%$ resistors (0603)
R3	1	1.5k Ω ±5% resistor (0603)
R4	1	470Ω ±5% resistor (0603)
R5, R18	2	2.2k Ω ±5% resistors (0603)
R6, R26–R29	5	10k Ω ±5% resistors (0603)
R7, R8	2	4.7k Ω ±5% resistors (0603)
R9, R25	2	33k Ω ±5% resistors (0603)
R10–R17, R24	9	$330\Omega \pm 5\%$ resistors (0603)
R19-R23	0	Not installed, resistors—short (PC trace) (0402)
RE67	1	Rotary encoder
U1	1	I ² C-interfaced low-EMI key- switch controller (36 WLP) Maxim MAX7360EWX+

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
U2	1	2.5V regulator (5 SC70) Maxim MAX8511EXK25+T (Top Mark: ADV)
U3	1	3.3V regulator (5 SC70) Maxim MAX8511EXK33+T (Top Mark: AEI)
U4	1	Low-power microcontroller (68 QFN-EP*) Maxim MAXQ2000-RAX+
U5	1	UART-to-USB converter (32 TQFP)
U6	1	93C46 type 3-wire EEPROM 16-bit architecture (8 SO)
Y2	1	16MHz crystal Hong Kong X'tals SSM16000N1HK188F0-0
Y3	0	Not installed, crystal (CMR200T)
Y4	1	6MHz crystal Hong Kong X'tals SSL60000N1HK188F0-0
	18	Shunts
	1	USB high-speed A-to-B cables, 6ft
	1	PCB: MAX7360 EVALUATION KIT+

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX7360 when contacting these component suppliers.

MAX7360 EV Kit Files

FILE	DESCRIPTION
MAX7360.EXE	Application program
FTD2XX.INF	USB device driver file
USB_Driver_Help.PDF	USB driver installation help file

_Quick Start

Required Equipment

- MAX7360 EV kit (USB cable included)
- User-supplied Windows 2000, Windows XP, or Windows Vista PC with a spare USB port
- External 14V at 250mA DC power supply (required only if driving white LEDs)

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX7360 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit<u>www.maximintegrated.com/evkitsoftware</u> to download the latest version of the EV kit software, 7360Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start I Programs</u> menu.
- 3) Verify that all jumpers (JU1–JU25) are in their default positions, as shown in Table 1.
- 4) Connect the USB cable from the PC to the EV kit board. A <u>New Hardware Found</u> window pops up when installing the USB driver for the first time. If a window is not seen that is similar to the one described above after 30s, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.
- 5) Follow the directions of the <u>Add New Hardware</u> <u>Wizard</u> to install the USB device driver. Choose the <u>Search for the best driver for your device</u> option. Specify the location of the device driver to be <u>C:</u><u>A</u> <u>Program Files\MAX7360</u> (default installation directory) using the <u>Browse</u> button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.
- 6) Verify that the EV kit's LED13 is lit, indicating that the USB is connected and providing power.

- Start the MAX7360 EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window appears, as shown in Figure 1.
- 8) The software automatically connects to the board after a few seconds.
- 9) Press the **Initialize EV kit** button to configure default settings for demonstration.
- 10) *Keyscan Demonstration:* On the EV kit board, press buttons in the KEY0–KEY63 matrix. Verify that the keyscan codes are reported in the software's history window after five to six keypress events are queued, depending on the debounce time and interrupt register settings. The most recent scan code is identified in the **Key Grid**.
- Rotary Encoder Demonstration: Select the software's Port Configuration tab (Figure 2), and then turn the EV kit's rotary encoder (RE67). Interrupt INTI triggers the software to read the shaft encoder delta, which is accumulated and reported by the software. (Note: The mechanical detents on the shaft encoder only approximate the actual encoding positions.)
- 12) Port Input Demonstration: On the EV kit, press and hold SW1, then in the software's Port Configuration tab, under 0x49 GPIO Port Status, press the Read button. Verify that Port5 is unchecked, indicating that the PORT5 pin is logic-low (due to SW1 being closed).
- Release SW1, and interrupt pin INTI triggers the software to read **0x49 GPIO Port Status** again.
 Port5 is now checked, indicating that the PORT5 pin is now logic-high.
- 14) Move JU9 to the 2-3 position, powering the PORT0– PORT4 LEDs from the USB. LED6 (PORT4) should be dimly lit.
- 15) In the software's PWM Intensity tab (Figure 3), set
 0x54 Port P4 PWM Intensity to 100 and press the
 Write button. LED6 should now be brightly lit.
- 16) In the software's PWM Configuration tab (Figure 4), set 0x5C Port P4 Configuration to select Blink Period of 010 512ms, and press the Write button. After a moment, LED6 will blink on and off.
- 17) Port Output RGB Color LED Demonstration: Select the software's PWM Intensity tab and press the Pick RGB Color (P1=Red,P2=Green,P3=Blue) button. The standard Windows color picker dialog box appears. Select a color and press OK. The selected RGB value is written to the PWM intensity registers of PORT1, PORT2, and PORT3.

- 18) Port Output White LED Demonstration (Warning: Use eye protection when working with highbrightness LEDs): Connect an external 14V DC power supply between EXT VH and GND. Move JU9 to the 1-2 position, powering the PORTO–PORT4 LEDs from EXT VH.
- 19) Move JU16 to the 2-3 position, connecting PORT0 to series-connected white LEDs LED2, LED3, and LED4.
- 20) In the software's PWM Intensity tab, set 0x50 Port P0 PWM Intensity to 255 and press the Write button.
- 21) In the software's Port Configuration tab, set 0x43
 GPIO Constant Current value of Constant Current to 11: 20mA. The white LEDs are now blinking brightly at 50% duty cycle.
- 22) In the software's PWM Configuration tab, set 0x58 Port P0 Configuration value of Blink Period to 000 no blinking and press the Write button. The white LEDs are now steady on.

Detailed Description of Software

The main window of the evaluation software (Figure 1) provides direct access to all registers and controls the interrupt response. The software automatically searches for the MAX7360 EV kit hardware when launched. Once the hardware is found and connected, the I²C **Device Address** is shown in the lower-left corner.

The software automatically reads registers every 250ms if the **Auto Read all** checkbox is checked. This rate can be adjusted through the **Options I Polling Rate** menu item.

Each of the MAX7360 registers is represented on the software's main window (Figures 1–4). Each register has its own **Read** and **Write** buttons. Pressing the **Read entire FIFO now** button reads register 0x00 repeatedly until the FIFO indicates that all keypress events have been read.

Key Grid Whenever a keypress event is received, the key location is shown on the Key Grid. This grid shows eight rows and eight columns. Register 0x02 Debounce / Port Enable determines how many of the column pins are taken away from the Key Grid and is used for generalpurpose outputs (GPOs).

Auto Read

Registers

Interrupt Response

Although the PC software cannot respond to interrupts with the speed of a true low-level hardware interrupt, the software does offer flexibility for evaluation. The software polls the status of the INTK and INTI output pins twice every second. The **Periodic Actions** checkboxes determine what action the software takes when an interrupt is active.

History Window

Each register read or write event is recorded in a scrollable text window underneath the interrupt handler actions.

Using LED12–LED7 as GPO Indicators

To configure the COL7 pin as an open-drain GPO, first change the keyscan partition by changing the value of the **0x02 Debounce / Port Enable** register to **Output Ports GPO7 / Scan COL6 - COL0**. Next, press its **Write** button. Finally, connect LED12 to the COL7 pin by installing a shunt at JU8. To drive COL7 low, illuminating the LED, set the value of the **0x04 Ports** register so that the **GPO7** checkbox is unchecked, and press its **Write** button.

To configure additional COL pins as open-drain GPOs, the procedure is similar. Write the **0x02 Debounce / Port Enable** register to select how many of the COL pins will be used for keyscanning and how many for output ports. Keyscanning always uses the lowest numbered COL pins. Set the JU3–JU8 jumpers to enable the LED outputs as needed. Write the port data into the **0x04 Ports** register (unchecked = output low, checked = output undriven). See the MAX7360 IC data sheet for more information about the ports register.

To configure the INTK pin for use as a GPO pin, set both the **FIFO Level** and **Time** combo box of register **0x03 Interrupt** to **Not Used**, then press the **Write** button. When configured for GPO, the INTK pin is controlled from the **0x04 Ports** register (Figure 1).

Advanced User Interface

A serial interface can be used by advanced users by selecting the **Options I Interface (Advanced Users**) menu item.

For I²C, click on the **2-wire interface** tab shown in Figure 5. Press the **Hunt for active listeners** button to obtain the current MAX7360 slave address in the **Target Device Address** combo box. In the **General commands** tab select **1** - **SMBusWriteByte(addr,cmd,data8)** in the **Command** drop-down list. Enter the desired values into the **Command byte** and **Data Out** combo boxes and then press the **Execute** button.

Key Scan Configuration Port Configuration F	WM Intensity PWM Configuration Inter	face History	Key Gr	id					
-0x00 Keys FIFO				C1 C2	С3 С	4 C5	C6	C7	C8
Read_ KEY24-Press FIFO_Empty	Read entire FIFO nov	vWrite	B1	0 8	16 2	4 32	40	48	56
0x01 Configuration			R2	1 9	17 2	5 33	41	49	57
Read Power Up ↓ Clear INT on re- ↓ 0x40 reserved 0 ↓ 0x1	ad 🔽 Key-Release 🔽 Key-Press Wa 0 reserved 0 🖵 0x04 reserved 0 🖵				18 2	6 34	42	50	58
0x02 Debounce / Port Enable			- R4	3 11	19 2	7 35	43	51	59
ReadNo GPO Output Ports / Scan COL	.7 - COLO 📃 💽 40 msec debounce	e 💌 🛛 Write	R5	4 12	20 2	8 36	44	52	60
0x03 Interrupt			R6	5 13	21 2	9 37	45	53	61
Read_ FIFO Level: 2 Tir	ne: 🛛 15 x debounce 🔄 🛛 INTK pin = Ir	nterrupt <u>Write</u>		6 14	22 3	0 38	46	54	62
0x04 Ports Read P	· · · · · · · · · · · · · · · · · · ·	Write		7 15		1 39	47	55	63
	j♥ ♥ ♥ ♥			die Aetie n INTK is		т	NTK	nin	: 1
-0x05 Auto Repeat Read _ P _ Enable Rate: 4 x debo	unce 🔽 Delay: 8 x debounce	✓ Write	, 🔽 Р В	ead FIF	כ			ctiv	
Ox06 Sleep (Idle time to auto-shutdown)				n INTI is	active	т	NTI	nin	. 1
Read P111 256 m	isec 🔽	Write	- 🛛 🔽 R	lead Rot lead GPI	ary Swit	ch	inad	_	
			GUI-I	FIFO[1] = FIFO[2] =	= 0x40 K	EY00-R	Relea:	se Fl	Fo_*
			GUI-I	FIFO[3] : FIFO[4] : FIFO[5] :	= 0x48 k	EY08-F	Relea	se Fl	Fo_
				FIFO[6] = FIFO[7] =					
Device Address: 0x70 🚽 🖵 Auto Rea	d all Initialize EV kit Read All	Write All							! آھا

Figure 1. MAX7360 EV Kit Software Main Window (Keyscan ConfigurationTab)

File Options View Help	,							
	rt Configuration PWM Intensity	PWM Configuration Interfac	ce History	Key Grid	C3 C4	CE C	0 07	. C8
−0x40 GPIO Configuration Read P⊽ Rotary Swite	h 厂 Timeout 🔽 Standby	SoftPOR 000: No Fading	➡ Write	B1 0 8		32 4		
		jobs. No ridang		1				
	ort6 🔽 Port5 🔽 Port4 🔽 Port3	3 🔽 Port2 🔽 Port1 🔽 Port0)		17 25 18 26	33 4 34 4		57
-0x42 GPIO Debounce Confi	guration							
Read _	9 msec debounce	•		R4 3 11	19 27	35 4	3 51	59
-0x43 GPIO Constant Current				R5 4 12	20 28	36 4	4 ¦ 52	60
Read Ҏ 🔽 IREF 🛛 🦻	7 IMIR Constant Curre	ent 00: 5mA 💌		R6 5 13	21 29	37 4	5 53	61
-0x44 GPIO Current Mode ReadPPort7Po	ort6	3 「 Port2 「 Port1 「 Port0)	R7 6 14			5 54	
 -0x45 GPIO Common PWM F	Batio			R8 7 15	23 31	39 4	7 55	63
ReadP	127		Write	Periodic Action		INT	Кріл	n: 1
-0x46 Rotary Switch Configur Read P 「 Int Count/1		0000: No debounce 🔄	·Write	Read FIFC □ Read FIFC			acti	ve
0x48 Timeout Flag				When INTLis	otiva	TNT	[pin	. 1
Read		, ☐ Timeout		Read Rota			acti	
-0x49 GPIO Port Status				🔽 🔽 Read GPI				
Read Pr Port7 V Po	ort6 🔽 Port5 🔽 Port4 🔽 Port3	3 🔽 Port2 🔽 Port1 🔽 Port0)	GUI-FIFO[2] =	0v40 KEN	/00.Bel	ace F	IEO I
-0x4A Rotary Switch Count-				GUI-FIFO(3) =	0x88 KE1	/08-Pre:	s FIFO	о_м ँ
Read 📍 delta: 🛛 OxFD	 cumulative value: 217	complement: 39Rese	t Accumulator	GUI-FIFO(4) = GUI-FIFO(5) =				
,				' 📗 GUI-FIFO(6) =	0x50 KE1	/16-Rek	ease F	FIFO_
				GUI-FIFO[7] = GUI-FIFO[8] =				
Device Address: 0x70	✓ Auto Read all Timitial	ize EV kit Read All	Write All					Ī

Figure 2. MAX7360 EV Kit Software Main Window (Port Configuration Tab)

ile Options View Help		and a laboration	1.	1	Key Grid
Key Scan Configuration Port Co -0x50 Port P0 PWM Intensity	onfiguration PWI	Intensity PWM Co	nfiguration Inte	rface History	
Read	10 -			Write	R1 0 8 16 24 32 40 48 56
-0x51 Port P1 PWM Intensity Read	18				R2 1 9 17 25 33 41 49 57
0x52 Port P2 PWM Intensity Read 🔎				Write	R3 2 10 18 26 34 42 50 58 R4 3 11 19 27 35 43 51 59
Ox53 Port P3 PWM Intensity Read				Write	R5 4 12 20 28 36 44 52 60 R6 5 13 21 29 37 45 53 61
0x54 Port P4 PWM Intensity Read		브 		Write	R7 6 14 22 30 38 46 54 62 R8 7 15 23 31 39 47 55 63
0x55 Port P5 PWM Intensity Read	0			Write	Periodic Actions When INTK is active: INTK pin: 1
0x56 Port P6 PWM Intensity Read	0	•		Write	Image: Figure with the second seco
0x57 Port P7 PWM Intensity Read	0	• •			When INTI is active: INTI pin: 1
EV Kit RGB LED Color	Pick RGB Co	olor (P1=Red,P2=Gree	en,P3=Blue)	\bigcirc	GUI-FIF0[2] = 0x40 KEY00-Release FIF0
					GUI-FIFO[3] = 0x88 KEY08-Press FIFO_M GUI-FIFO[4] = 0x48 KEY08-Press FIFO_ GUI-FIFO[5] = 0x90 KEY16-Press FIFO_M GUI-FIFO[5] = 0x50 KEY16-Release FIFO_ GUI-FIFO[7] = 0x18 KEY24-Press FIFO_Er GUI-FIFO[8] = 0x58 KEY24-Release FIFO_s
Device Address: 0x70 💌	T Auto Read al	I Initialize EV kit	Read All	Write All	

Figure 3. MAX7360 EV Kit Software Main Window (PWM Intensity Tab)

ile Options View Help KeyScanConfiguration Port I	Care and the second second	utania - Pu/M Config	ration Luces			Key Grid
Ox58 Port P0 Configuration	Configuration FWM I	ntensity i wim conlige	and the Interna	ace His		C1 C2 C3 C4 C5 C6 C7 C8
Read IT Int Mask		Blink Period	Blink On		Write	R1 0 8 (16) 24 32 40 48 56
Edge/Level	☐ Common PWM	001 256ms 💽	00 50%	•		
0x59 Port P1 Configuration						R2 1 9 17 25 33 41 49 57
Read 🖣 🗂 Int Mask		Blink Period	Blink On		Write	R3 2 10 18 26 34 42 50 58
⊤ Edge/Level	☐ Common PWM	000 no blinking 💌	00 50%	<u> </u>		R4 3 11 19 27 35 43 51 59
0x5A Port P2 Configuration		Blink Period	Blink On		,	R5, 4, 12, 20, 28, 36, 44, 52, 60
Read _ F_ Int Mask Edge/Level	Common PWM				Write	R6 5 13 21 29 37 45 53 61
	J COMMON PWM	000 no blinking 💌	00 50%	<u> </u>		
0x5B Port P3 Configuration Read PT Int Mask		Blink Period	Blink On		Write	R7 6 14 22 30 38 46 54 62
Edge/Level	Common PWM	000 no blinking 👻	00 50%	•		R8 7 15 23 31 39 47 55 63
0x5C Port P4 Configuration	·		100 00.0			Periodic Actions
Read PT Int Mask		Blink Period	Blink On		Write	When INTK is active: INTK pin: 1
Edge/Level	☐ Common PWM	000 no blinking 💌	00 50%	•		Read FIFO inactive
0x5D Port P5 Configuration						
Read Int Mask		Blink Period	Blink On		Write	When INTI is active: INTI pin: 1
∏ Edge/Level	Common PWM	000 no blinking 💌	00 50%	<u> </u>		✓ Read Rotary Switch inactive ✓ Read GPIO Port Status
0x5E Port P6 Configuration		Blink Period	Blink On		1.15	
Read F_ Int Mask Edge/Level	Common PWM	000 no blinking 👻	00 50%	_		GUI-FIFO[2] = 0x40 KEY00-Release FIFO GUI-FIFO[3] = 0x88 KEY08-Press FIFO M
0x5F Port P7 Configuration	, connorr wh	1000 no blinking 💌	100.00%	<u> </u>		GUI-FIFO(4) = 0x48 KEY08-Release FIFO_
Read IT Int Mask		Blink Period	Blink On		Write	GUI-FIFO[5] = 0x90 KEY16-Press FIFO_M GUI-FIFO[6] = 0x50 KEY16-Release FIFO
Edge/Level	┌─ Common PWM	000 no blinking 💌	00 50%	-		GUI-FIFO[7] = 0x18 KEY24-Press FIFO_Er GUI-FIFO[8] = 0x58 KEY24-Release FIFO
Device Address: 0x70 👻	∫	Initialize EV kit	Read All	<u> </u>		

Figure 4. MAX7360 EV Kit Software Main Window (PWM Configuration Tab)

ptions Help	
Connection 2-wire interface Logging	
Device Address	
Target Device Address: 0x70 💽 0111000r/w Hunt for active listene	as
	<u></u>
General commands SMBus register watch Low Level commands	
Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	
4 - SMBusReadByte(addr,cmd) -> data8	
	- Т
Command byte: 0x49 _ Data Out:	1
Byte count: 1 📩 Data In: 0xFF	
Found a device at 0x70	7
One Device was found at 0x70	
Executing protocol Q - SMBusQuick(addr) -> device present? SMBusQuick(0x70)> Success: Device is Present	
Executing protocol 4 - SMBusReadByte(addr.cmd) -> data8	L.
CmodSMBusReadByte(0x70,0x49)> 0xDF Executing protocol 4 - SMBusReadByte(addr,cmd) -> data8	
CmodSMBusReadByte(0x70,0x49)> 0xFF	
< 1	>

Figure 5. Advanced User Interface Window (2-Wire Interface Tab)

_Detailed Description of Hardware

The MAX7360 EV kit provides a proven layout for the MAX7360. An easy-to-use USB-PC connection is included on the EV kit.

The MAX7360 (U1) scans a matrix of keys (KEY0– KEY63). The EV kit provides an 8 x 8 matrix of keys. To demonstrate GPO capability, LED indicators are jumper selectable for COL2–COL7. The FTDI FT232BL (U5) provides the USB engine. The USB 5V power is regulated down to 2.5V by U2. LED13 indicates that USB 5V power is present. The low-voltage RISC microcontroller, MAXQ2000 (U4), processes commands sent by a program running on the PC. The firmware loaded on this board is identical to the MINIQUSB interface module.

Using an External I²C Bus Instead of USB To disconnect from the on-board I²C bus, cut the links on the back of the PCB at jumper locations JU10 and JU11. If the external I²C bus already has appropriate pullup resistors, cut the links at jumper locations JU12 and JU13. Leave the USB connector (J1) unconnected. Move the JU2 shunt to pins 2-3, and provide 2.5V to 3.6V power to the GND and EXT VCC oval pads. Connect the external I²C bus to the SCL and SDA test points of header H2.

Table 1. MAX7360 EV Kit Jumper Descriptions (JU1–JU25)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
		1-2*	AD0 = GND, selecting I ² C address 0x70
JU1	ADO	3-4	AD0 = SCL, selecting I ² C address 0x74
JUT	ADU	5-6	AD0 = VCC, selecting I ² C address 0x78
		7-8	AD0 = SDA, selecting I ² C address 0x7C
	VCC	1-2*	Power VCC from 3.3V LDO
JU2	VCC	2-3	Power VCC from external user-supplied power supply
JU3	GPO2	1-2	COL2 drives GPO2 LED
303	GPU2	Open*	COL2 connects to key matrix
	GPO3	1-2	COL3 drives GPO3 LED
JU4	GPU3	Open*	COL3 connects to key matrix
11.15	GPO4	1-2	COL4 drives GPO4 LED
JU5	GPU4	Open*	COL4 connects to key matrix
JU6	GPO5	1-2	COL5 drives GPO5 LED
J06	GPU5	Open*	COL5 connects to key matrix
JU7	GPO6	1-2	COL6 drives GPO6 LED
JU7	GPUO	Open*	COL6 connects to key matrix
JU8	GPO7	1-2	COL7 drives GPO7 LED
JU0	GPU/	Open*	COL7 connects to key matrix
JU9	VH	1-2*	Power VH from external user-supplied power supply (VH < 14V)
109	VП	2-3	Power VH from USB+5V supply
JU10	SDA	PCB trace shorted*	SDA connected to on-board I ² C bus
JU 10	SDA	PCB trace cut open	SDA must be connected to an external I ² C bus
JU11	SCL	PCB trace shorted*	SCL connected to on-board I ² C bus
JUTT	JUL	PCB trace cut open	SCL must be connected to an external I ² C bus
JU12	SDA	PCB trace shorted*	SDA connected to on-board pullup resistor
JUIZ	SDA	PCB trace cut open	SDA pullup resistor must be provided externally

Table 1. MAX7360 EV Kit Jumper Descriptions (JU1–JU25) (continued)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU13	SCL	PCB trace shorted*	SCL connected to on-board pullup resistor
		PCB trace cut open	SCL pullup resistor must be provided externally
JU14	TEST	PCB trace shorted*	U1 pin A1 is connected to GND
		PCB trace cut open	U1 pin A1 is not connected
JU15	VLED	1-2*	Power GPO2–GPO7 LEDs from 3.3V LDO
		2-3	Power GPO2–GPO7 LEDs from external user-supplied 3.3V power supply
JU16	PORT0	1-2*	PORT0 drives single red LED
		2-3	PORT0 drives 3 series-connected white LEDs (requires VH = 14V)
		Open	PORT0 unconnected
JU17	PORT5	1-2*	PORT5 is pulled high by 2.2k Ω resistor, and pulled low by momentary switch SW1
		Open	PORT5 not connected unless momentary switch SW1 is pressed
JU18	PORT1	1-2*	PORT1 drives red channel of RGB color LED
		Open	PORT1 unconnected
JU19	PORT2	1-2*	PORT2 drives green channel of RGB color LED
		Open	PORT2 unconnected
JU20	PORT3	1-2*	PORT3 drives blue channel of RGB color LED
		Open	PORT3 unconnected
JU21	PORT4	1-2*	PORT4 drives single red LED
		Open	PORT4 unconnected
JU22	PORT6	1-2*	PORT6 connects to rotary encoder RE67
		Open	PORT6 unconnected
JU23	PORT7	1-2*	PORT7 connects to rotary encoder RE67
		Open	PORT7 unconnected
JU24	INTI	PCB trace shorted*	INTI connected to MINIQUSB GPIO K1 input
		PCB trace cut open	INTI not connected to MINIQUSB
JU25	INTK	PCB trace shorted*	INTK connected to MINIQUSB GPIO K6 input
		PCB trace cut open	INTK not connected to MINIQUSB

*Default position.

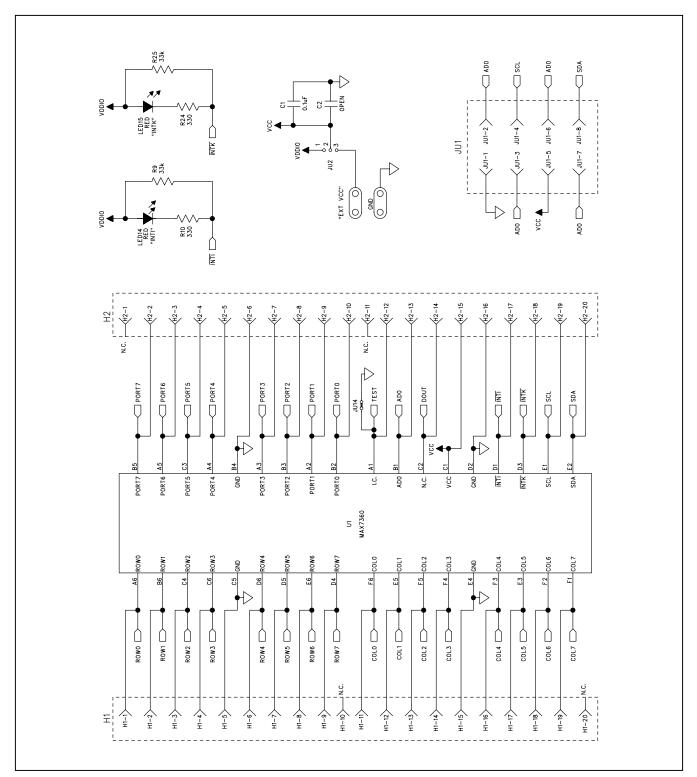


Figure 6a. MAX7360 EV Kit Schematic (Sheet 1 of 5)

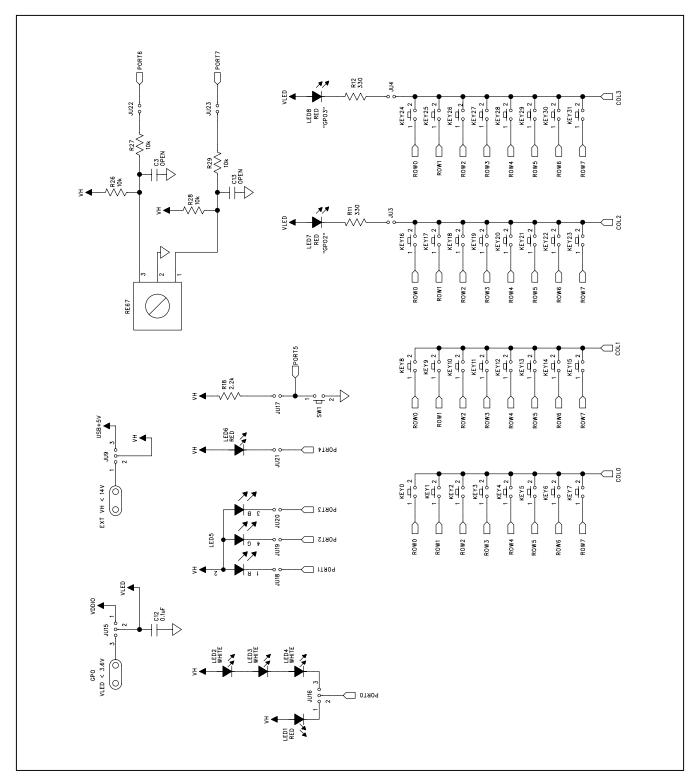


Figure 6b. MAX7360 EV Kit Schematic (Sheet 2 of 5)

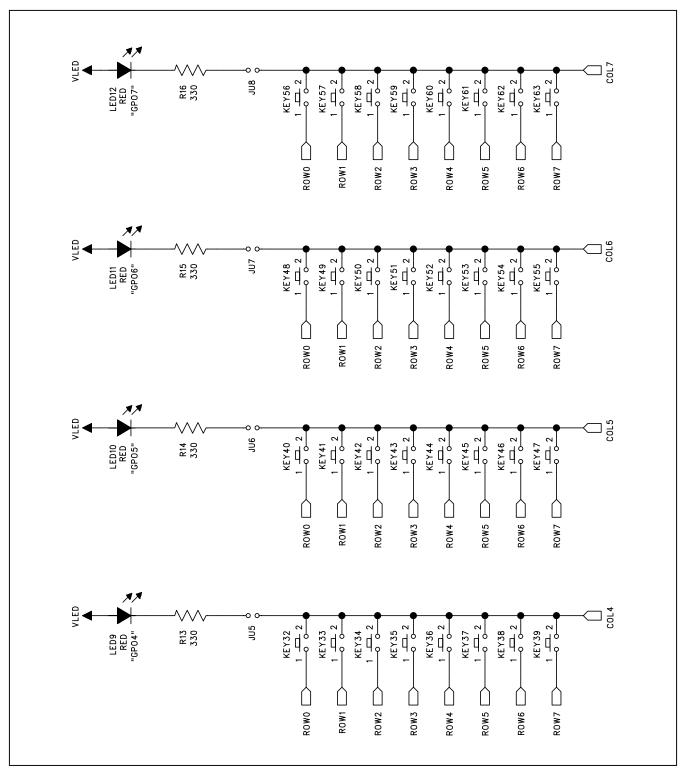


Figure 6c. MAX7360 EV Kit Schematic (Sheet 3 of 5)

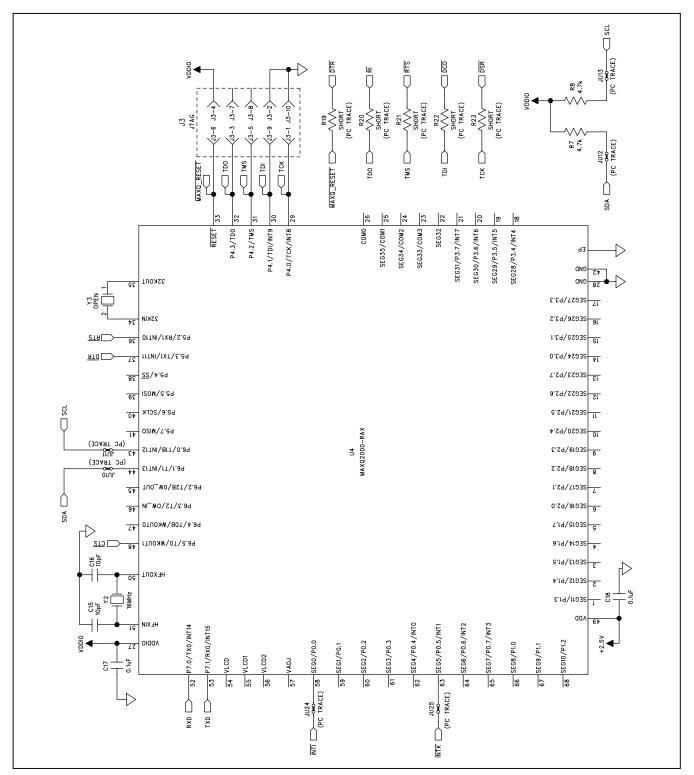


Figure 6d. MAX7360 EV Kit Schematic (Sheet 4 of 5)

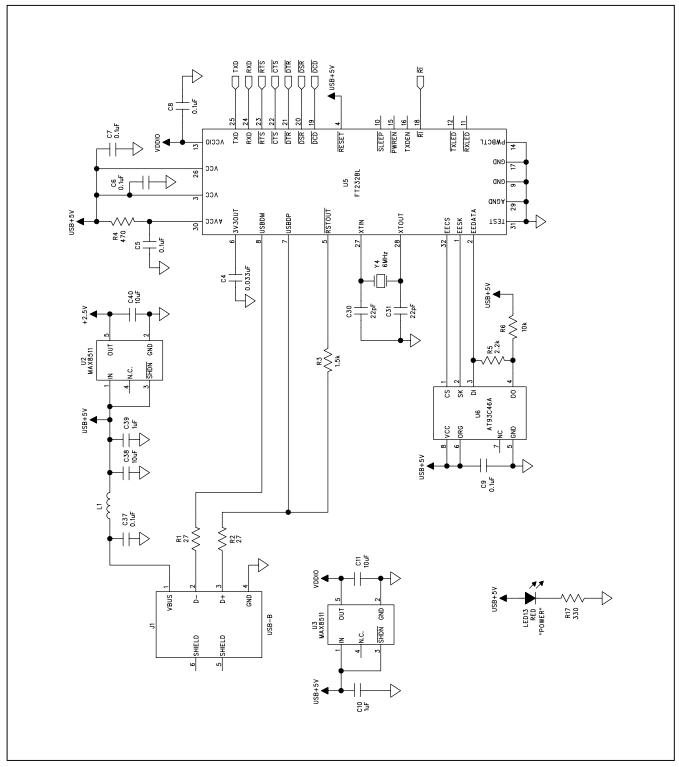


Figure 6e. MAX7360 EV Kit Schematic (Sheet 5 of 5)

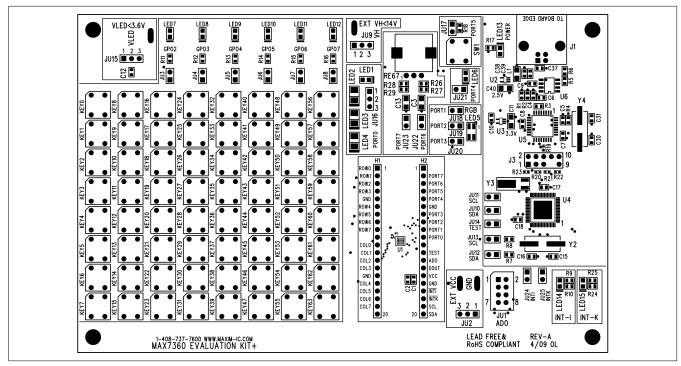


Figure 7. MAX7360 EV Kit Component Placement Guide—Component Side

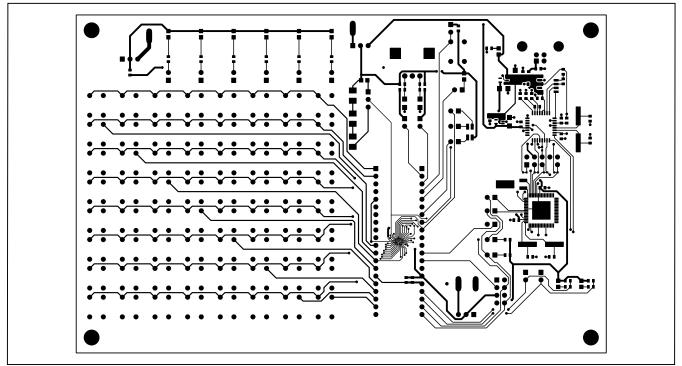


Figure 8. MAX7360 EV Kit PCB Layout—Component Side

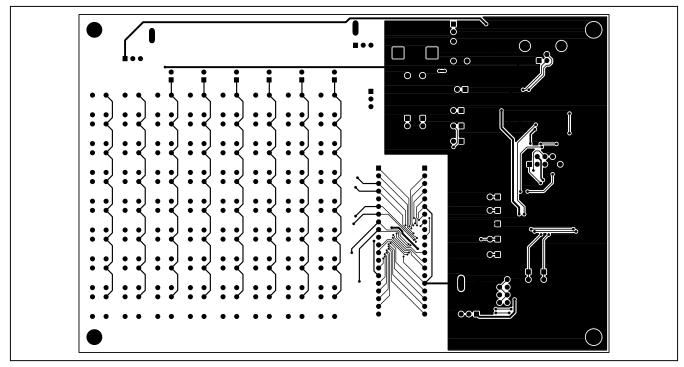


Figure 9. MAX7360 EV Kit PCB Layout—Solder Side

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2009 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switch IC Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

EVAL-8MSOPEBZ ISL54059EVAL1Z TPS2041BEVM TPS2041BEVM-292 TPS2051BEVM BOB-09056 EKIT01-HMC1027BG TPS2561DRCEVM-424 2717 ISL54220IRUEVAL1Z TS3USB221AEVM ASL1101 SIP32102EVB EVAL-14TSSOPEBZ EVAL-16TSSOPEBZ EVAL-ADG5243FEBZ EVAL-ADG5248FEBZ EVAL-ADG5249FEBZ EVAL-ADG5298EB1Z EVAL-ADG5412BFEBZ EVAL-ADG5412FEBZ EVAL-ADG5436FEBZ EVAL-ADG5462FEBZ EVAL-ADG788EBZ EVAL-ADG854EBZ EVAL-ADG884EBZ EVAL-ADG5412FEBZ EVAL-ADG51412SDZ DFR0576 DG1208EVKIT# DG1209EVKIT# MAX20334EVKIT# ADM00393 ADM00795 ADM00825 MIC95410YFL-EV MIKROE-3916 MIKROE-4094 MIKROE-4111 MIKROE-4240 MIKROE-1998 MIKROE-3245 MIKROE-3247 MIKROE-3262 FSUSB242GEVB FUSB252GEVB TPS22932BEVM TPS2511EVM-141 TS3DDR4000-EVM ADM00669