8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

General Description

The MAX7401/MAX7405 8th-order, lowpass, Bessel, switched-capacitor filters (SCFs) operate from a single +5 V (MAX7401) or +3 V (MAX7405) supply. These devices draw only 2 mA of supply current and allow corner frequencies from 1 Hz to 5 kHz , making them ideal for low-power post-DAC filtering and anti-aliasing applications. They feature a shutdown mode that reduces supply current to $0.2 \mu \mathrm{~A}$.
Two clocking options are available on these devices: self-clocking (through the use of an external capacitor) or external clocking for tighter corner-frequency control. An offset adjust pin allows for adjustment of the DC output level.
The MAX7401/MAX7405 Bessel filters provide low overshoot and fast settling. Their fixed response simplifies the design task to selecting a clock frequency.

Applications
ADC Anti-Aliasing
Post-DAC Filtering
CT2 Base Stations
Speech Processing
Air-Bag Electronics

Pin Configuration

TOP VIEW com \square in \square GND \square $V_{D D}$ \square		
	MAXIN MAX7401 MAX7405 SO/DIP	8 CLK $7 \overline{\text { SHDN }}$ 6 OS 5 OUT

- 8th-Order, Lowpass Bessel Filters
- Low Noise and Distortion: -82dB THD + Noise
- Clock-Tunable Corner Frequency (1 Hz to 5 kHz)
- 100:1 Clock-to-Corner Ratio
- Single-Supply Operation
+5V (MAX7401)
+3V (MAX7405)
- Low Power

2mA (Operating Mode)
$0.2 \mu \mathrm{~A}$ (Shutdown Mode)

- Available in 8-Pin SO/DIP Packages
- Low Output Offset: $\pm 5 \mathrm{mV}$

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX7401CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX7401CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7401ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX 7401 EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7405CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX 7405 CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX 7405 ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX 7405 EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Typical Operating Circuit

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS
VDD to GND
\qquad
MAX7405 - 0.3 V to +6 V
IN, OUT, COM, OS, CLK.................... -0.3 V to +4 V $\overline{S H D N}$.
\qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
OUT Short-Circuit Duration.......................
\qquad 0.3 V to +6 V 1 sec

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 471 mW	
8 -Pin DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	727 mW
Operating Temperature Ranges	
MAX740 _C_A ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
MAX740 _E_A .. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10sec)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7401

($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
FILTER CHARACTERISTICS					
Corner Frequency	f.	(Note 1)	0.001 to 5		kHz
Clock-to-Corner Ratio	fCLK / fC		100:1		
Clock-to-Corner Tempco			10		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Voltage Range			0.25	VDD - 0.25	V
Output Offset Voltage	VOFFSET	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{DD}} / 2$		$\pm 5 \pm 25$	mV
DC Insertion Gain with Output Offset Removed		$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$ (Note 2)	-0.1	$0.15 \quad 0.3$	dB
Total Harmonic Distortion plus Noise	THD + N	$\mathrm{fin}_{\mathrm{N}}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{Vp}-\mathrm{p}$, measurement bandwidth $=22 \mathrm{kHz}$	-82		dB
OS Voltage Gain to OUT	Aos		1		V/V
Input Voltage Range at OS	Vos		$\mathrm{V}_{\text {COM }} \pm 0.1$		V
COM Voltage Range	$\mathrm{V}_{\text {COM }}$	Input, COM externally driven	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} / 2 \\ -0.5 \end{gathered}$	$\begin{array}{ll} \\ \mathrm{V}_{\mathrm{DD}} / 2 & \mathrm{~V}_{\mathrm{DD}} / 2 \\ +0.5 \end{array}$	V
		Output, COM internally biased	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} / 2 \\ -0.2 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} / 2 \begin{array}{c} \mathrm{V}_{\mathrm{DD}} / 2 \\ +0.2 \end{array}{ }^{2} \end{gathered}$	
Input Resistance at COM	Rcom		75	125	$\mathrm{k} \Omega$
Clock Feedthrough			10		mVp-p
Resistive Output Load Drive	RL		$10 \quad 1$		$\mathrm{k} \Omega$
Maximum Capacitive Load at OUT	CL		50	500	pF
Input Leakage Current at COM		$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{DD}		$\pm 0.1 \pm 10$	$\mu \mathrm{A}$
Input Leakage Current at OS		VOS $=0$ to (VDD - 1V) (Note 3)		$\pm 0.1 \pm 10$	$\mu \mathrm{A}$
CLOCK					
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}$ (Note 4)	29	3848	kHz
Clock Input Current	ICLK	$\mathrm{V}_{\text {CLK }}=0$ or 5 V		$\pm 15 \pm 30$	$\mu \mathrm{A}$
Clock Input High	V_{IH}		$\mathrm{V}_{\mathrm{DD}}-0.5$		V
Clock Input Low	V_{IL}			0.5	V

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7401 (continued)

$(\mathrm{V} D \mathrm{~F}=+5 \mathrm{~V}$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $\overline{S H D N}=V_{D D}, f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
POWER REQUIREMENTS					
Supply Voltage	VDD		4.5	5.5	V
Supply Current	IDD	Operating mode, no load, IN = OS = COM	2	3.5	mA
Shutdown Current	I $\overline{\text { SHDN }}$	$\overline{\text { SHDN }}=$ GND, CLK driven from 0 to VDD	0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC	60		dB
SHUTDOWN					
$\overline{\text { SHDN }}$ Input High	VSDH		VDD-0.5		V
$\overline{\text { SHDN }}$ Input Low	$\mathrm{V}_{\text {SDL }}$			0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V}^{\text {SHDN }}=0$ to V_{DD}	± 0.1	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—MAX7405

$\left(V_{D D}=+3 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $\overline{S H D N}=V_{D D}, f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
FILTER CHARACTERISTICS					
Corner Frequency	f_{C}	(Note 1)		0.001 to 5	kHz
Clock-to-Corner Ratio	fclk/fc			100:1	
Clock-to-Corner Tempco				10	ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range			0.25	VDD 0.25	V
Output Offset Voltage	VofFSET	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{DD}} / 2$		$\pm 5 \pm 25$	mV
DC Insertion Gain with Output Offset Removed		$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{DD}} / 2$ (Note 2)	-0.1	$0.03 \quad 0.3$	dB
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{Vp}-\mathrm{p}, \\ & \text { measurement bandwidth }=22 \mathrm{kHz} \end{aligned}$		-84	dB
OS Voltage Gain to OUT	AOS			1	V/V
Input Voltage Range at OS	Vos			$\mathrm{V}_{\text {COM }} \pm 0.1$	V
COM Voltage Range	$V_{\text {com }}$	COM internally biased or externally driven	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} / 2 \\ -0.1 \end{gathered}$		V
Input Resistance at COM	Rcom		75	125	$\mathrm{k} \Omega$
Clock Feedthrough				10	mVp-p
Resistance Output Load Drive	RL		10	1	$\mathrm{k} \Omega$
Maximum Capacitive Load at OUT	CL		50	500	pF
Input Leakage Current at COM		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$		$\pm 0.1 \pm 10$	$\mu \mathrm{A}$
Input Leakage Current at OS		$\mathrm{V}_{\text {OS }}=0$ to (VDD - V) (Note 3)		$\pm 0.1 \pm 10$	$\mu \mathrm{A}$

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7405 (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $\overline{S H D N}=V_{D D}, f C L K=100 \mathrm{kHz}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

FILTER CHARACTERISTICS—MAX7401/MAX7405

$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7401, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7405; filter output measured at OUT; $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT} ; \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$; $\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}} / 2 ; \mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain Relative to DC Gain	$\mathrm{fiN}_{\mathrm{IN}}=0.5 \mathrm{fc}$	-1.0	-0.8	-0.6	dB
	$\mathrm{fIN}=\mathrm{fC}$	-3.3	-3.0	-2.7	
	$\mathrm{fin}^{\text {I }}=3 \mathrm{f} \mathrm{c}$		-33	-29	
	$\mathrm{fin}^{\text {a }}$ 6f C		-79	-74	

Note 1: The maximum fc_{C} is defined as the clock frequency, $\mathrm{fCLK}=100 \cdot \mathrm{f}_{\mathrm{C}}$, at which the peak SINAD drops to 68 dB with a sinusoidal input at 0.2 fc .
Note 2: DC insertion gain is defined as $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\mathrm{IN}}$.
Note 3: OS voltages above $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$ saturate the input and result in a $75 \mu \mathrm{~A}$ typical input leakage current.
Note 4: For MAX7401, fosc $(k H z) \cong 38 \cdot 10^{3} / \operatorname{Cosc}(p F)$. For MAX7405, fosc $(k H z) \cong 34 \cdot 10^{3} / \operatorname{Cosc}(p F)$.

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

Typical Operating Characteristics
$\left(V_{D D}=+5 V\right.$ for $M A X 7401, V_{D D}=+3 V$ for $M A X 7405 ; f C L K=100 \mathrm{kHz} ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2 ; T_{A}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

SUPPLY CURRENT
vs. TEM PERATURE

INTERNAL OSCILLATOR FREQUENCY
vs. Cosc CAPACITANCE

PHASE RESPONSE

OFFSET VOLTAGE
vs. SUPPLY VOLTAGE

NORM ALIZED OSCILLATOR FREQUENCY
vs. SUPPLY VOLTAGE

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for $M A X 7401, V_{D D}=+3 V$ for $M A X 7405 ; f C L K=100 \mathrm{kHz} ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2 ; T_{A}=+25^{\circ} C$; unless otherwise noted.)

MAX7401
THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE

MAX7401
THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIVE LOAD

MAX7405
THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE

MAX7405
THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIVE LOAD

Table A. THD Plus Noise vs. Input Signal Amplitude Test Conditions

TRACE	$\mathbf{f} \mathbf{N}$ (Hz)	$\mathbf{f c}$ (kHz)	fcLK (kHz)	MEASUREMENT BANDWIDTH (kHz)
A	1000	5	500	80
B	200	1	100	22

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

PIN	NAME	FUNCTION
1	COM	Common Input. Biased internally at mid-supply. Bypass externally to GND with a 0.1μ F capacitor. To over- ride internal biasing, drive with an external supply.
2	IN	Filter Input
3	GND	Ground
4	V DD	Positive Supply Input: +5V for MAX7401, +3V for MAX7405
5	OUT	Filter Output
6	OS	Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is needed. Refer to Offset and Common-Mode Input Adjustment section.
7	$\overline{\text { SHDN }}$	Shutdown Input. Drive low to enable shutdown mode; drive high or connect to VDD for normal operation. 8
CLK	Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external capacitor (Cosc) from CLK to GND to set the internal oscillator frequency.	

Detailed Description

The MAX7401/MAX7405 Bessel filters provide low overshoot and fast settling responses. Both parts operate with a 100:1 clock-to-corner frequency ratio and a 5 kHz maximum corner frequency.
Lowpass Bessel filters such as the MAX7401/MAX7405 delay all frequency components equally, preserving the shape of step inputs (subject to the attenuation of the higher frequencies). Bessel filters settle quickly-an important characteristic in applications that use a multiplexer (mux) to select an input signal for an analog-todigital converter (ADC). An anti-aliasing filter placed between the mux and the ADC must settle quickly after a new channel is selected.
Figure 1 shows the difference between Bessel and Butterworth filters when a 1 kHz square wave is applied to the filter input. With the filter cutoff frequencies set at 5 kHz , trace B shows the Bessel filter response and trace C shows the Butterworth filter response.

Background Information

 Most switched-capacitor filters (SCFs) are designed with biquadratic sections. Each section implements two filtering poles, and the sections are cascaded to produce higher order filters. The advantage to this approach is ease of design. However, this type of design is highly sensitive to component variations if any section's Q is high. An alternative approach is to emulate a passive network using switched-capacitor integrators with summing and scaling. Figure 2 shows a basic 8th-order ladder filter structure.

A: 1kHz INPUT SIGNAL
B: BESSEL FILTER RESPONSE; $f_{C}=5 \mathrm{kHz}$
C: BUTTERWORTH FILTER RESPONSE; $f \mathrm{C}=5 \mathrm{kHz}$
Figure 1. Bessel vs. Butterworth Filter Response

Figure 2. 8th-Order Ladder Filter Network

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

A switched-capacitor filter such as the MAX7401/ MAX7405 emulates a passive ladder filter. The filter's component sensitivity is low when compared to a cascaded biquad design because each component affects the entire filter shape, not just one pole-zero pair. In other words, a mismatched component in a biquad design will have a concentrated error on its respective poles, while the same mismatch in a ladder filter design results in an error distributed over all poles.

Clock Signal

External Clock

The MAX7401/MAX7405 family of SCFs is designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock with these devices, drive CLK with a CMOS gate powered from 0 to $V_{D D}$. Varying the rate of the external clock adjusts the corner frequency of the filter as follows:

$$
\mathrm{fc}=\mathrm{fcLK} / 100
$$

Internal Clock
When using the internal oscillator, connect a capacitor (Cosc) between CLK and ground. The value of the capacitor determines the oscillator frequency as follows:

$$
\left.\mathrm{fosc}^{(k H z}\right)=\frac{\mathrm{K} \cdot 10^{3}}{\operatorname{CosC}} ; \operatorname{Cosc}_{\text {Osc }} \text { in } \mathrm{pF}
$$

where $\mathrm{K}=38$ for MAX7401 and $\mathrm{K}=34$ for MAX7405.
Minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Vary the rate of the internal oscillator to adjust the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 100 kHz produces a nominal corner frequency of 1 kHz .

Input Impedance vs. Clock Frequencies The MAX7401/MAX7405's input impedance is effectively that of a switched-capacitor resistor and is inversely proportional to frequency. The input impedance values determined below represent the average input impedance since the input current is not continuous. As a rule, use a driver with an output impedance less than 10% of the filter's input impedance. Estimate the input impedance of the filter using the following formula:

$$
Z_{I N}=\frac{1}{\left(f_{C L K} \cdot C_{\text {IN }}\right)}
$$

where fcLK $=$ clock frequency and $\mathrm{C}_{\mathrm{IN}}=3.37 \mathrm{pF}$.

Low-Power Shutdown Mode
These devices feature a shutdown mode that is activated by driving SHDN low. In shutdown mode, the filter's supply current reduces to $0.2 \mu \mathrm{~A}$ (typ) and its output becomes high impedance. For normal operation, drive SHDN high or connect to VDD.

Applications Information

Offset and Common-Mode Input Adjustment

 The voltage at COM sets the common-mode input voltage and is biased at mid-supply with an internal resistordivider. Bypass COM with a $0.1 \mu \mathrm{~F}$ capacitor and connect OS to COM. For applications requiring offset adjustment or DC level shifting, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 3. (Note: Do not leave OS unconnected.) The output voltage is represented by this equation:$$
\text { VOUT }=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {COM }}\right)+\mathrm{VOS}^{\prime}
$$

with $\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{DD}} / 2$ (typical), and where $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{COM}}\right)$ is lowpass filtered by the SCF, and Vos is added at the output stage. See the Electrical Characteristics for the voltage range of COM and OS. Changing the voltage on COM or OS significantly from mid-supply reduces the filter's dynamic range.

Power Supplies
The MAX7401 operates from a single +5 V supply, and the MAX7405 operates from a single +3 V supply. Bypass $V_{D D}$ to $G N D$ with a $0.1 \mu \mathrm{~F}$ capacitor. If dual supplies are required ($\pm 2.5 \mathrm{~V}$ for MAX7401, $\pm 1.5 \mathrm{~V}$ for MAX7405), connect COM to system ground and connect

Figure 3. Offset Adjustment Circuit

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

Table 1. Typical Harmonic Distortion

FILTER	$\begin{aligned} & \text { fCLK } \\ & \text { (kHz) } \end{aligned}$	$\begin{gathered} \mathrm{fc} \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} \mathrm{fin} \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} V_{\text {IN }} \\ (\mathrm{Vp-p}) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
					2nd	3rd	4th	5th
MAX7401	100	1	200	4	-91	-83	-90	-93
	500	5	1000		-89	-79	-92	-92
MAX7405	100	1	200	2	-87	-83	-87	-88
	500	5	1000		-83	-82	-88	-88

*DRIVE $\overline{S H D N}$ TO V- FORLOW-POWERSHUTDOWN MODE

Figure 4. Dual-Supply Operation
GND to the negative supply. Figure 4 shows an example of dual-supply operation. Single- and dual-supply performance are equivalent. For either single- or dual-supply operation, drive CLK and SHDN from GND (V- in dualsupply operation) to VDD. For $\pm 5 \mathrm{~V}$ dual-supply applications, use the MAX291-MAX297.

Input Signal Amplitude Range

The optimal input signal range is determined by observing the voltage level at which the total harmonic distortion plus noise (THD +N) is minimized for a given corner frequency. The Typical Operating Characteristics show graphs of the devices' THD+N response as the input signal's peak-to-peak amplitude is varied. These measurements are made with OS and COM biased at midsupply.

Anti-Aliasing and Post-DAC Filtering
When using the MAX7401/MAX7405 for anti-aliasing or post-DAC filtering, synchronize the DAC and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the passband.
The high clock-to-corner frequency ratio (100:1) also eases the requirements of pre- and post-SCF filtering. At the input, a lowpass filter prevents the aliasing of frequencies around the clock frequency into the passband. At the output, a lowpass filter attenuates the clock feedthrough.
A high clock-to-corner frequency ratio allows a simple RC lowpass filter, with the cutoff frequency set above the SCF corner frequency, to provide input anti-aliasing and reasonable output clock attenuation.

Harmonic Distortion
Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists the MAX7401/MAX7405's typical harmonic-distortion values with a $10 \mathrm{k} \Omega$ load at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Chip Information
TRANSISTOR COUNT: 1116

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	N	MS001
D	0.348	0.390	8.84	9.91	8	$A B$
D	0.735	0.765	18.67	19.43	14	$A C$
D	0.745	0.765	18.92	19.43	16	$A A$
D	0.885	0.915	22.48	23.24	18	$A D$
D	1.015	1.045	25.78	26.54	20	$A E$
D	1.14	1.265	28.96	32.13	24	$A F$
D	1.360	1.380	34.54	35.05	28	$* 5$

nates

1. D\&E DU NDT INCLUDE MGLD FLASH
MOLD FLASH GR PROTRUSIUNS NG
TV EXCEED 15 mm (.006")
. CONTRULLING DIMENSIDN: MILLIMETER
2. MEETS JEDEC MS001-XX AS SHDWN
3. SIMILIAR TI JEDEC MD-058AB
4. $N=$ NUMBER $\square F$ PINS

8th-Order, Lowpass, Bessel, Switched-Capacitor Filters

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filters category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
VEMI256A-SD2-G4-08 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR MAX281AEWE+ MAX280EPA+ MAX274AENG+
LTC1064-3CSW\#PBF LTC1060ACN\#PBF LTC1069-1IS8\#PBF LTC1164CSW\#PBF LTC1164-6CSW\#PBF LTC1064-2CSW\#PBF
LTC1064-1CSW\#PBF LTC1569CS8-7\#PBF LTC1164ACSW\#PBF LTC1067-50CS\#PBF LTC1164-6CN\#PBF LTC1059CN\#PBF
LTC1069-1CN8\#PBF LTC1069-7IS8\#PBF LTC1069-6CS8\#PBF LTC1562IG-2\#PBF LTC1164-5CSW\#PBF LTC1566-1CS8\#PBF
LTC1064-7CN\#PBF LTC1063CN8\#PBF LTC1062CN8\#PBF LTC6603IUF\#PBF LTC1565-31CS8\#PBF LTC1061ACN\#PBF
LTC1061CN\#PBF LTC1264CN\#PBF LTC1562AIG\#PBF LTC1164-7CSW\#PBF LTC1064-3CN\#PBF HMC890ALP5E HMC892ALP5E
HMC891ALP5E HMC882ALP5E HMC881ALP5E ADMV8432ACPZ HMC1023LP5E HMC1044LP3E HMC881LP5ETR
HMC882LP5ETR HMC1000LP5ETR HMC900LP5E LTC1068IN\#PBF LTC1566-1IS8\#PBF

