8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

General Description
The MAX7400/MAX7403/MAX7404/MAX7407 8th-order, lowpass, elliptic, switched-capacitor filters (SCFs) operate from a single +5 V (MAX7400/MAX7403) or +3 V (MAX7404/MAX7407) supply. These devices draw $2 m A$ of supply current and allow corner frequencies from 1 Hz to 10 kHz , making them ideal for low-power antialiasing and post-DAC filtering applications. They feature a shutdown mode that reduces the supply current to $0.2 \mu \mathrm{~A}$.
Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff-frequency control. In addition, an offset adjustment pin (OS) allows for the adjustment of the DC output level.
The MAX7400/MAX7404 provide 82dB of stopband rejection and a sharp rolloff with a transition ratio of 1.5 . The MAX7403/MAX7407 provide a sharper rolloff with a transition ratio of 1.2 , while still delivering 60 dB of stopband rejection. The fixed response of these devices simplifies the design task to corner-frequency selection by setting a clock frequency. The MAX7400/ MAX7403/MAX7404/MAX7407 are available in 8-pin SO and DIP packages.

Applications

ADC Anti-Aliasing
Speech Processing
Post-DAC Filtering
Air-Bag Electronics
CT2 Base Stations

Typical Operating Circuit

Features

- 8th-Order Lowpass Elliptic Filter
- Low Noise and Distortion
-82dB THD + Noise (MAX7400)
- Clock-Tunable Corner Frequency (1Hz to 10kHz)
- 100:1 Clock-to-Corner Ratio
- Single-Supply Operation
+5V (MAX7400/MAX7403)
+3V (MAX7404/MAX7407)
- Low Power

2mA (Operating Mode)
$0.2 \mu \mathrm{~A}$ (Shutdown Mode)

- Available in 8-Pin SO and DIP Packages
- Low Output Offset: $\pm 5 \mathrm{mV}$

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX 7400 CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX 7400 CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7400ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX7400EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Ordering Information continued at end of data sheet.
Selector Guide

PART	FILTER RESPONSE	OPERATING VOLTAGE (V)
MAX7400	Elliptic $(r=1.5)$	+5
MAX7403	Elliptic $(r=1.2)$	+5
MAX7404	Elliptic $(r=1.5)$	+3
MAX7407	Elliptic $(r=1.2)$	+3

Pin Configuration

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS

VDD to GND
MAX7400/MAX7403
-0.3 V to +6 V
MAX7404/MAX7407 -0.3 V to +4 V
IN, OUT, COM, OS, CLK. \qquad -0.3 V to (VDD +0.3 V) SHDN. \qquad
\qquad -0.3 V to +6 V
OUT Short-Circuit Duration. \qquad

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	471 mW
DIP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	727 mW
Operating Temperature Ranges	
MAX740_C_A	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX740_E_A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature R	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$+300^{\circ}$

471 mW DIP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW Operating Temperature Ranges MAX740_C_A $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$
functional
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403

$\left(V_{D D}=+5 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER CHARACTERISTICS							
Corner Frequency	f_{C}	(Note 1)		0.001 to 10			kHz
Clock-to-Corner Ratio	fclk/fc			100:1			
Clock-to-Corner Tempco				10			ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range				0.25	VDD - 0.25		V
Output Offset Voltage	VoffSET	$\mathrm{V} / \mathrm{IN}=\mathrm{V}_{\text {com }}=\mathrm{V}_{\text {DD }} / 2$			± 5	± 25	mV
DC Insertion Gain with Output Offset Removed		VCOM $=$ VDD $/ 2$ (Note 2)		-0.1	0.15	0.3	dB
Total Harmonic Distortion plus Noise	THD+N	$\mathrm{fiN}_{\mathrm{I}}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{Vp}-\mathrm{p}$, measurement bandwidth $=22 \mathrm{kHz}$	MAX7400	-82			dB
			MAX7403	-80			
OS Voltage Gain to OUT	Aos			1			V/V
Input Voltage Range at OS	Vos			$\mathrm{V}_{\text {COM }} \pm 0.1$			V
COM Voltage Range	VCOM	Input, COM externally driven		$\begin{array}{ccc} \mathrm{V}_{\mathrm{DD}} / 2 \\ -0.5 & & \mathrm{~V}_{\mathrm{DD}} / 2 \end{array} \begin{aligned} & \mathrm{V} D \mathrm{DD} / 2 \\ & +0.5 \end{aligned}$			V
		Output, COM internally biased		$\begin{gathered} \text { VDD / } 2 \\ -0.2 \end{gathered}$	$\mathrm{V}_{\mathrm{DD}} / 2$	$\begin{aligned} & \text { VDD } / 2 \\ & +0.2 \end{aligned}$	
Input Resistance at COM	Rcom			75	125		$\mathrm{k} \Omega$
Clock Feedthrough					10		mVp-p
Resistive Output Load Drive	RL			10	1		$\mathrm{k} \Omega$
Maximum Capacitive Load at OUT	CL			50	500		pF
Input Leakage Current at COM		$\overline{\text { SHDN }}=$ GND, $\mathrm{V}_{\text {com }}=0$ to VDD			± 0.1	± 10	$\mu \mathrm{A}$
Input Leakage Current at OS		VOS = 0 to (VDD - 1V) (Note 3)			± 0.1	± 10	$\mu \mathrm{A}$
CLOCK							
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}$ (Note 4)		29	38	48	kHz
Clock Input Current	ICLK	V CLK $=0$ or 5 V		± 15		± 30	$\mu \mathrm{A}$
Clock Input High	VIH			VDD - 0.5			V
Clock Input Low	VIL			0.5			V

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403 (continued)

$\left(V_{D D}=+5 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $G N D$ at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $f_{C L K}=100 \mathrm{kHz}, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
POWER REQUIREMENTS					
Supply Voltage	VDD		4.5	5.5	V
Supply Current	IDD	Operating mode, no load, $\mathrm{IN}=\mathrm{OS}=\mathrm{COM}$	2	3.5	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND, CLK driven from 0 to VDD	0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC	60		dB
SHUTDOWN					
SHDN Input High	VSDH		VDD - 0.5		V
$\overline{\text { SHDN }}$ Input Low	VSDL			0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V} \overline{\mathrm{SHDN}}=0$ to V_{DD}	± 0.1	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—MAX7404/MAX7407

($\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$, filter output measured at $\mathrm{OUT}, 10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER CHARACTERISTICS							
Corner Frequency	$\mathrm{fc}^{\text {c }}$	(Note 1)		0.001 to 10			kHz
Clock-to-Corner Ratio	fCLK/fc			100:1			
Clock-to-Corner Tempco				10			ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range				0.25		DD - 0.25	V
Output Offset Voltage	VoffSET	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$			± 5	± 25	mV
DC Insertion Gain with Output Offset Removed		VCOM $=$ VDD $/ 2$ (Note 2)		-0.1	0.1	0.3	dB
Total Harmonic Distortion plus Noise	THD+N	$\mathrm{fIN}=200 \mathrm{~Hz}, \mathrm{~V} \mathrm{IN}=2.5 \mathrm{Vp}-\mathrm{p}$, measurement bandwidth $=22 \mathrm{kHz}$	MAX7404	-79			dB
			MAX7407	-77			
OS Voltage Gain to OUT	Aos			1			V/V
Input Voltage Range at OS	Vos			$\mathrm{V}_{\text {COM }} \pm 0.1$			V
COM Voltage Range	Vcom	COM internally biased or externally driven		$\begin{gathered} \mathrm{V}_{\mathrm{DD} / 2} \\ -0.1 \end{gathered}$	$V_{D D / 2}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD} / 2} \\ +0.1 \end{gathered}$	V
Input Resistance at COM	Rcom			75	125		$\mathrm{k} \Omega$
Clock Feedthrough					10		mVp-p
Resistive Output Load Drive	RL			10	1		$\mathrm{k} \Omega$
Maximum Capacitive Load at OUT	CL			50	500		pF
Input Leakage Current at COM		$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$			± 0.1	± 10	$\mu \mathrm{A}$
Input Leakage Current at OS		VOS $=0$ to (VDD - 1V) (Note 3)			± 0.1	± 10	$\mu \mathrm{A}$

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7404/MAX7407 (continued)

$\left(V_{D D}=+3 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $f_{C L K}=100 \mathrm{kHz}, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
CLOCK					
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}$ (Note 4)	$26 \quad 34$	43	kHz
Clock Input Current	ICLK	V CLK $=0$ or 3 V	± 15	± 30	$\mu \mathrm{A}$
Clock Input High	V_{IH}		VDD - 0.5		V
Clock Input Low	VIL			0.5	V
POWER REQUIREMENTS					
Supply Voltage	VDD		2.7	3.6	V
Supply Current	IDD	Operating mode, no load, $\mathrm{IN}=\mathrm{OS}=\mathrm{COM}$	2	3.5	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND, CLK driven from 0 to VDD	0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC	60		dB
SHUTDOWN					
$\overline{\text { SHDN }}$ Input High	VSDH		VDD -0.5		V
$\overline{\text { SHDN }}$ Input Low	VSDL			0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		V $\overline{S H D N}=0$ to V_{DD}	± 0.1	± 10	$\mu \mathrm{A}$

ELLIPTIC (r = 1.5) FILTER CHARACTERISTICS—MAX7400/MAX7404

$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7400, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7404; filter output measured at OUT; $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT} ; \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$; $V_{C O M}=V_{O S}=V_{D D} / 2 ;$ fCLK $=100 \mathrm{kHz} ; T_{A}=T_{\text {MIN }}$ to $T_{M A X}$; unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain Relative to DC Gain (Note 5)	$\mathrm{fIN}=0.371 \mathrm{fc}$	-0.20	-0.10	0.20	dB
	$\mathrm{fiN}=0.587 \mathrm{f} \mathrm{C}$	-0.20	0.02	0.20	
	$\mathrm{fIN}=0.737 \mathrm{fc}$	-0.20	-0.08	0.20	
	$\mathrm{fIN}=0.868 \mathrm{f} \mathrm{C}$	-0.20	0.06	0.20	
	$\mathrm{fIN}=0.940 \mathrm{fc}$	-0.20	-0.03	0.20	
	$\mathrm{fIN}=0.988 \mathrm{fC}$	-0.20	0.09	0.25	
	$\mathrm{fIN}=1.000 \mathrm{fc}$	-0.20	0.02	0.25	
	$\mathrm{fIN}=1.500 \mathrm{fc}$		-82	-75	
	$\mathrm{fIN}=1.601 \mathrm{fc}$		-84	-78	
	$\mathrm{fIN}=2.020 \mathrm{fc}$		-83	-78	
	$\mathrm{fIN}=4.020 \mathrm{fc}$		-85	-78	

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELLIPTIC (r = 1.2) FILTER CHARACTERISTICS—MAX7403/MAX7407
$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7403, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7407; filter output measured at OUT; $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT} ; \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$; $V_{C O M}=V_{O S}=V_{D D} / 2 ;$ fCLK $=100 \mathrm{kHz} ; T_{A}=T_{\text {MIN }}$ to $T_{M A X}$; unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain Relative to DC Gain (Note 5)	$\mathrm{fiN}_{\mathrm{IN}}=0.408 \mathrm{f} \mathrm{C}$	-0.20	-0.11	0.20	dB
	$\mathrm{fIN}=0.640 \mathrm{fc}$	-0.20	0.02	0.20	
	$\mathrm{fIN}=0.784 \mathrm{fc}$	-0.20	-0.06	0.20	
	$\mathrm{fIN}=0.902 \mathrm{fc}$	-0.20	0.10	0.20	
	$\mathrm{fiN}^{\text {l }}=0.956 \mathrm{f} \mathrm{C}$	-0.20	0.02	0.20	
	$\mathrm{fIN}=0.992 \mathrm{fc}$	-0.20	0.14	0.30	
	$\mathrm{fIN}=1.000 \mathrm{fc}$	-0.20	0.09	0.30	
	$\mathrm{fIN}=1.200 \mathrm{fc}$		-58	-50	
	$\mathrm{fIN}=1.261 \mathrm{fc}$		-59	-54	
	$\mathrm{fin}^{\text {l }}$ 1.533f C		-60	-54	
	$\mathrm{fIN}=2.875 \mathrm{fc}$		-60	-54	

Note 1: The maximum fc is defined as the clock frequency, $\mathrm{fcLK}=100 \cdot \mathrm{fc}$, at which the peak SINAD drops to 68dB with a sinusoidal input at 0.2 fc .
Note 2: $D C$ insertion gain is defined as $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$.
Note 3: OS voltages above $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$ saturate the input and result in a $75 \mu \mathrm{~A}$ typical input leakage current.
Note 4: For MAX7400/MAX7403, fosc $(\mathrm{kHz}) \cong 38 \cdot 10^{3} / \operatorname{Cosc}(\mathrm{pF})$. For MAX7404/MAX7407, fosc $(\mathrm{kHz}) \cong 34 \cdot 10^{3} / \operatorname{Cosc}(\mathrm{pF})$.
Note 5: The input frequencies, f_{I}, are selected at the peaks and troughs of the frequency responses.

Typical Operating Characteristics

($V_{D D}=+5 \mathrm{~V}$ for MAX7400/MAX7403, $V_{D D}=+3 V$ for MAX7404/MAX7407; $V_{C O M}=V_{O S}=V_{D D} / 2 ; \overline{S H D N}=V_{D D} ; f C L K=100 \mathrm{kHz}$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for MAX7400/MAX7403, $V_{D D}=+3 V$ for MAX7404/MAX7407; $V_{C O M}=V_{O S}=V_{D D} / 2 ; \overline{S H D N}=V_{D D}$; fCLK $=100 \mathrm{kHz}$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
(VDD $=+5 \mathrm{~V}$ for MAX7400/MAX7403, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7404/MAX7407; $\mathrm{V}_{C O M}=\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}} / 2$; $\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$; fCLK $=100 \mathrm{kHz}$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIVE LOAD (MAX7403)

TABLE A. THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE TEST CONDITIONS

TRACE	fin (Hz)	fc (kHz)	fcLK (kHz)	MEASUREMENT BANDWIDTH (kHz)
A	2800	14	1400	80
B	2000	10	1000	80
C	1000	5	500	80
D	200	1	100	22

THD PLUS NOISE vs. INPUT SIGNAL AMPLTUDE (MAX7407)

THD PLUS NOISE vs. INPUT SIGNAL

THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIVE LOAD (M AX7407)

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7400/MAX7403, VDD $=+3 \mathrm{~V}$ for MAX7404/MAX7407; $\mathrm{V}_{C O M}=V_{O S}=V_{D D} / 2 ; \overline{S H D N}=V_{D D} ; f C L K=100 \mathrm{kHz}$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	COM	Common Input. Biased internally at midsupply. Bypass externally to GND with a 0.1μ F capacitor. To over- ride internal biasing, drive with an external supply.
2	IN	Filter Input
3	GND	Ground
4	VDD	Positive Supply Input: +5V for MAX7400/MAX7403, +3V for MAX7404/MAX7407
5	OUT	Filter Output
6	OS	Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is needed. Refer to Offset and Common-Mode Input Adjustment section.
7	$\overline{\text { SHDN }}$	Shutdown Input. Drive low to enable shutdown mode; drive high or connect to VDD for normal operation.
8	CLK	Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external capacitor (Cosc) from CLK to GND to set the internal oscillator frequency.

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Detailed Description

The MAX7400/MAX7403/MAX7404/MAX7407 family of 8th-order, lowpass filters provides sharp rolloff with good stopband rejection. All parts operate with a 100:1 clock-to-corner frequency ratio and a 10 kHz maximum corner frequency. These devices accept a single +5 V (MAX7400/MAX7403) or +3V (MAX7404/ MAX7407) supply. Figure 1 shows the functional diagram.
Most switched-capacitor filters (SFCs) are designed with biquadratic sections. Each section implements two filtering poles, and the sections can be cascaded to produce higher-order filters. The advantage of this approach is ease of design. However, this type of design is highly sensitive to component variations if any section's Q is high. The MAX7400 family uses an alternative approach, which is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network can be synthesized using CAD programs or can be found in many filter books. Figure 2 shows a basic 8th-order ladder elliptic filter structure.

A switched-capacitor filter that emulates a passive ladder filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design, because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics

Lowpass, elliptic filters such as the MAX7400/MAX7403/ MAX7404/MAX7407 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and Elliptic). Figure 3 shows the 8th-order elliptic filter response. The high Q value of the poles near the passband edge combined with the stopband zeros allows for the sharp attenuation characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see the Anti-Aliasing and PostDAC Filtering section).
In the frequency domain, the first transmission zero causes the filter's amplitude to drop to a minimum level. Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, fs. At frequencies above fs, the filter's gain does not exceed the gain at fs.

Figure 1. Functional Diagram

Figure 2. 8th-Order Ladder Filter Network

The corner frequency, fc , is defined as the point where the filter output attenuation falls just below the passband ripple. The transition ratio is defined as the ratio of the stopband frequency to the corner frequency:

$$
r=\mathrm{fs} / \mathrm{fc}
$$

The MAX7400/MAX7404 have a transition ratio of 1.5 and a typical stopband rejection of $82 d B$. The MAX7403/MAX7407 have a transition ratio of 1.2 (providing the steepest rolloff) and a typical stopband rejection of 60 dB .

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Figure 3. Elliptic Filter Response

Clock Signal

External Clock
The MAX7400/MAX7403/MAX7404/MAX7407 SCFs were designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock, drive CLK with a CMOS gate powered from 0 to VDD. Varying the rate of the external clock adjusts the filter corner frequency:

$$
\text { fC = fCLK / } 100
$$

Internal Clock
When using the internal oscillator, the capacitance (COSC) on the CLK pin determines the oscillator frequency:

$$
\text { fosc }(k H z)=\frac{\mathrm{K} \cdot 10^{3}}{\operatorname{CosC}_{\mathrm{OSC}}} ; \operatorname{CosC} \text { in } \mathrm{pF}
$$

where $K=38$ for the MAX7400/MAX7403, and $K=34$ for the MAX7404/MAX7407. Since the capacitor value is in picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the rate of the internal oscillator adjusts the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 100 kHz produces a nominal corner frequency of 1 kHz .

Input Impedance
vs. Clock Frequencies
The MAX7400/MAX7403/MAX7404/MAX7407's input impedance is effectively that of a switched-capacitor resistor and is inversely proportional to frequency. The

Figure 4. Offset Adjustment Circuit
input impedance determined by the following equation represents the average input impedance, since the input current is not continuous. As a rule, use a driver with an output source impedance less than 10% of the filter's input impedance. Estimate the input impedance of the filter using the following formula:

$$
\mathrm{Z}_{\mathrm{IN}}(\Omega)=\frac{1}{\left(\mathrm{f}_{\mathrm{CLK}} \cdot \mathrm{C}_{\mathrm{IN}}\right)}
$$

where fCLK $=$ clock frequency and $\mathrm{C}_{\mathrm{IN}}=0.85 \mathrm{pF}$.

Low-Power Shutdown Mode

These devices feature a shutdown mode that is activated by driving SHDN low. Placing the filter in shutdown mode reduces the supply current to $0.2 \mu \mathrm{~A}$ (typ) and places the output of the filter into a high-impedance state. For normal operation, drive SHDN high or connect to VDD.

Applications Information

Offset and Common-Mode Input Adjustment

The voltage at COM sets the common-mode input voltage and is internally biased at midsupply by a resistordivider. Bypass COM with a $0.1 \mu \mathrm{~F}$ capacitor and connect OS to COM. For applications requiring offset adjustment or DC level shifting, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 4. (Note: Do not leave OS unconnected.) The output voltage is represented by the following equation:

$$
\text { VOUT = (VIN - VCOM })+ \text { VOS }
$$

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

with VCOM = VDD $/ 2$ (typical), and where (VIN - VCOM) is lowpass filtered by the SCF, and Vos is added at the output stage. See the Electrical Characteristics for COM and OS input voltage ranges. Changing the voltage on COM or OS significantly from midsupply reduces the filter's dynamic range.

Power Supplies
The MAX7400/MAX7403 operate from a single +5 V supply. The MAX7404/MAX7407 operate from a single +3 V supply. Bypass V_{DD} to GND with a $0.1 \mu \mathrm{~F}$ capacitor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 5 shows an example of dual-supply operation. Singlesupply and dual-supply performance are equivalent. For single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual-supply operation) to $V_{D D}$. For a $\pm 2.5 \mathrm{~V}$ supply, use the MAX7400 or MAX7403; for a $\pm 1.5 \mathrm{~V}$ supply, use MAX7404 or MAX7407. For $\pm 5 \mathrm{~V}$ dual-supply applications, use the MAX291-MAX297.

Input Signal Amplitude Range

The ideal input signal range is determined by observing the voltage level at which the total harmonic distortion plus noise (THD +N) is minimized for a given corner frequency. The Typical Operating Characteristics show THD +N response as the input signal's peak-to-peak amplitude is varied. These measurements are made with OS and COM biased at midsupply.

*DRIVE $\overline{\text { SHDN }}$ TO V- FOR LOW-POWER SHUTDOWN MODE

Anti-Aliasing and Post-DAC Filtering

When using the MAX7400/MAX7403/MAX7404/ MAX7407 for anti-aliasing or post-DAC filtering, synchronize the DAC and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the passband.
The high clock-to-corner frequency ratio (100:1) also eases the requirements of pre- and post-SCF filtering. At the input, a lowpass filter prevents the aliasing of frequencies around the clock frequency into the passband. At the output, a lowpass filter attenuates the clock feedthrough.
A high clock-to-corner frequency ratio allows a simple RC lowpass filter, with the cutoff frequency set above the SCF corner frequency, to provide input anti-aliasing and reasonable output clock attenuation.

Harmonic Distortion

Harmonic distortion arises from nonlinearities within the filter. Such nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists typical harmonic distortion values with a $10 \mathrm{k} \Omega$ load and an input signal of 4 Vp -p (MAX7400/MAX7403) or 2Vp-p (MAX7404/MAX7407), at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Table 1. Typical Harmonic Distortion

FILTER	$\begin{aligned} & \text { fCLK } \\ & \text { (kHz) } \end{aligned}$	$\begin{gathered} \mathrm{fc} \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} \mathrm{fin} \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}} \\ (\mathrm{Vp}-\mathrm{p}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TYPICAL } \\ \text { HARMONIC } \\ \text { DISTORTION (dB) } \\ \hline \end{array}$			
					2nd	3rd	4th	5th
MAX7400	100	1	200	4	-89	-82	-89	-86
	500	5	1000		-89	-77	-93	-88
MAX7403	100	1	200	4	-88	-81	-91	-87
	500	5	1000		-84	-80	-90	-91
MAX7404	100	1	200	2	-85	-82	-85	-86
	500	5	1000		-85	-81	-86	-84
MAX7407	100	1	200	2	-85	-82	-85	-86
	500	5	1000		-86	-84	-85	-86

Figure 5. Dual-Supply Operation

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX7403CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX7403CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7403ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX7403EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7404CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX7404CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7404ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX7404EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7407CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX7407CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7407ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX7407EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Chip Information

TRANSISTOR COUNT: 1116

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
MイXINI is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filters category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
VEMI256A-SD2-G4-08 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR MAX281AEWE+ MAX280EPA+ MAX274AENG+
LTC1064-3CSW\#PBF LTC1060ACN\#PBF LTC1069-1IS8\#PBF LTC1164CSW\#PBF LTC1164-6CSW\#PBF LTC1064-2CSW\#PBF
LTC1064-1CSW\#PBF LTC1569CS8-7\#PBF LTC1164ACSW\#PBF LTC1067-50CS\#PBF LTC1164-6CN\#PBF LTC1059CN\#PBF
LTC1069-1CN8\#PBF LTC1069-7IS8\#PBF LTC1069-6CS8\#PBF LTC1562IG-2\#PBF LTC1164-5CSW\#PBF LTC1566-1CS8\#PBF
LTC1064-7CN\#PBF LTC1063CN8\#PBF LTC1062CN8\#PBF LTC6603IUF\#PBF LTC1565-31CS8\#PBF LTC1061ACN\#PBF
LTC1061CN\#PBF LTC1264CN\#PBF LTC1562AIG\#PBF LTC1164-7CSW\#PBF LTC1064-3CN\#PBF HMC890ALP5E HMC892ALP5E
HMC891ALP5E HMC882ALP5E HMC881ALP5E ADMV8432ACPZ HMC1023LP5E HMC1044LP3E HMC881LP5ETR
HMC882LP5ETR HMC1000LP5ETR HMC900LP5E LTC1068IN\#PBF LTC1566-1IS8\#PBF

