5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

General Description

The MAX7426/MAX7427 5th-order, lowpass, elliptic, switched-capacitor filters (SCFs) operate from a single +5 V (MAX7426) or +3 V (MAX7427) supply. The devices draw only 0.8 mA of supply current and allow corner frequencies from 1 Hz to 12 kHz , making them ideal for low-power post-DAC filtering and anti-aliasing applications. They can be put into a low-power mode, reducing supply current to $0.2 \mu \mathrm{~A}$.
Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff-frequency control. An offset-adjust pin allows for adjustment of the DC output level.
The MAX7426/MAX7427 deliver 37 dB of stopband rejection and a sharp rolloff with a transition ratio of 1.25. Their fixed response limits the design task to selecting a clock frequency.

Applications

ADC Anti-Aliasing
Post-DAC Filtering

CT2 Base Stations
Speech Processing

Selector Guide

PART	TRANSITION RATIO	OPERATING VOLTAGE (V)
MAX7426	$\mathrm{r}=1.25$	+5
MAX7427	$\mathrm{r}=1.25$	+3

Typical Operating Circuit

\qquad Features

- 5th-Order, Elliptic Lowpass Filters
- Low Noise and Distortion: -80dB THD + Noise
- Clock-Tunable Corner Frequency (1Hz to 12kHz)
- Single-Supply Operation
+5V (MAX7426)
+3V (MAX7427)
- Low Power
0.8mA (Operating Mode)
$0.2 \mu \mathrm{~A}$ (Shutdown Mode)
- Available in 8-Pin μ MAX/PDIP Packages
- Low Output Offset: $\pm 4 \mathrm{mV}$

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX7426CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7426CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX 7426 EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX 7426 EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7427CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7427CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7427EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8μ MAX
MAX7427EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Pin Configuration

TOP VIEW

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND ..3V to +6V 	
OUT Short-Circuit Duration	.1s
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8-Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$)............ 330 mW
8 -Pin PDIP (derate $6.90 \mathrm{~mW} /{ }^{\circ}$	$\left.70^{\circ} \mathrm{C}\right)552 m W$

Operating Temperature Ranges
MAX742_C_A... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX742_E_A $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range.................................. $+30^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7426

$\left(V_{D D}=+5 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $f_{C L K}=100 \mathrm{kHz}, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FILTER						
Corner-Frequency Range	f_{C}	(Note 1)	0.001 to 9			kHz
Clock-to-Corner Ratio	fCLK/fC		100:1			
Clock-to-Corner Tempco			10			ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range			0.25	VDD 0.25		V
Output Offset Voltage	VoffSET	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$		± 4	± 25	mV
DC Insertion Gain with Output Offset Removed		$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$ (Note 2)	0	0.2	0.4	dB
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & f_{I N}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{Vp}-\mathrm{p} \\ & \text { measurement bandwidth }=22 \mathrm{kHz} \end{aligned}$	-81			dB
Offset Voltage Gain	Aos	OS to OUT	+1			V/V
COM Voltage Range	VCOM	Input, COM externally driven	$\frac{V_{D D}}{2}-0.5$	$\frac{V_{D D}}{2}$	$\frac{V_{D D}}{2}+0.5$	V
		Output, COM internally driven	$\frac{V_{D D}}{2}-0.2$	$\frac{V_{D D}}{2}$	$\frac{V_{D D}}{2}+0.2$	
Input Voltage Range at OS	VOS	Measured with respect to COM	± 0.1			V
Input Resistance at COM	Rcom		$90 \quad 130$			k Ω
Clock Feedthrough		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5			mVp-p
Resistive Output Load Drive	RL		$10 \quad 1$			k Ω
Maximum Capacitive Load at OUT	CL		50500			pF
Input Leakage Current at COM		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$		± 0.2	± 10	$\mu \mathrm{A}$
Input Leakage Current at OS		$\mathrm{V}_{\mathrm{OS}}=0$ to V_{DD}		± 0.2	± 10	$\mu \mathrm{A}$
CLOCK						
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}$ (Note 3)	13.5	17.5	21.5	kHz
Clock Output Current (internal oscillator mode)	ICLK			± 8	± 12.5	$\mu \mathrm{A}$
Clock Input High	V_{IH}		4.5			V
Clock Input Low	VIL				0.5	V

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7426 (continued)

$\left(V_{D D}=+5 V\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $G N D$ at $O U T, \overline{S H D N}=V_{D D}, O S=C O M, 0.1 \mu F$ from $C O M$ to GND, $f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS						
Supply Voltage	VDD		4.5		5.5	V
Supply Current	IDD	Operating mode, no load		0.8	1.0	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND		0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC		70		dB
SHUTDOWN						
SHDN Input High	VSDH		4.5			V
$\overline{\text { SHDN }}$ Input Low	VSDL				0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V}_{\overline{\text { SHDN }}}=0$ to $\mathrm{V}_{\text {DD }}$		± 0.2	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—MAX7427

($V_{D D}=+3 \mathrm{~V}$, filter output measured at OUT pin, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, fCLK $=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
FILTER CHARACTERISTICS					
Corner-Frequency Range	f.	(Note 1)	0.001 to 12		kHz
Clock-to-Corner Ratio	fclk/fc		100:1		
Clock-to-Corner Tempco			10		ppm/ ${ }^{\circ} \mathrm{C}$
Output Voltage Range			0.25	VDD - 0.25	V
Output Offset Voltage	VOFFSET	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\text {DD }} / 2$		$\pm 4 \pm 25$	mV
DC Insertion Gain with Output Offset Removed		$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$ (Note 2)	0	$\begin{array}{ll}0.2 & 0.4\end{array}$	dB
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & f_{I N}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{Vp}-\mathrm{p}, \\ & \text { measurement bandwidth }=22 \mathrm{kHz} \end{aligned}$	-79		dB
Offset Voltage Gain	AOS	OS to OUT	+1		V/V
COM Voltage Range	$\mathrm{V}_{\text {COM }}$		$\frac{V_{D D}}{2}-0.1$	$\frac{V_{D D}}{2} \quad \frac{V_{D D}}{2}+0.1$	V
Input Voltage Range at OS	Vos	Measured with respect to COM		± 0.1	V
Input Resistance at COM	RCOM		90	130	k Ω
Clock Feedthrough		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	mVp-p
Resistance Output Load Drive	RL		10	1	k Ω
Maximum Capacitive Load at OUT	CL		50	500	pF
Input Leakage Current at COM		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$		$\pm 0.2 \pm 10$	$\mu \mathrm{A}$
Input Leakage Current at OS		$\mathrm{V}_{\text {OS }}=0$ to V_{DD}		$\pm 0.2 \pm 10$	$\mu \mathrm{A}$

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7427 (continued)

$\left(V_{D D}=+3 V\right.$, filter output measured at OUT pin, $10 k \Omega \| 50 \mathrm{pF}$ load to $G N D$ at $O U T, \overline{S H D N}=V_{D D}, O S=C O M, 0.1 \mu F$ from $C O M$ to GND, fCLK $=100 \mathrm{kHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK						
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}($ Note 3)	13.5	17.5	21.5	kHz
Clock Output Current (internal oscillator mode)	ICLK	$V_{\text {CLK }}=0$ or 3 V		± 7.5	± 12.5	$\mu \mathrm{A}$
Clock Input High	V_{IH}		2.5			V
Clock Input Low	$\mathrm{V}_{\text {IL }}$				0.5	V
POWER REQUIREMENTS						
Supply Voltage	$V_{\text {DD }}$		2.7		3.6	V
Supply Current	IDD	Operating mode, no load		0.75	1.0	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND		0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC		70		dB
SHUTDOWN						
$\overline{\text { SHDN }}$ Input High	VSDH		2.5			V
$\overline{\text { SHDN }}$ Input Low	$\mathrm{V}_{\text {SDL }}$				0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V} \overline{\mathrm{SHDN}}=0$ to V_{DD}		± 0.2	± 10	$\mu \mathrm{A}$

ELLIPTIC FILTER CHARACTERISTICS ($r=1.25$)

$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7426, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7427, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$, $V_{C O M}=V_{O S}=V_{D D} / 2, f C L K=100 \mathrm{kHz}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain with DC Gain Error Removed (Note 4)	$\mathrm{fin}=0.38 \mathrm{fc}$	-0.4	-0.2	0.4	dB
	$\mathrm{fin}^{\text {l }}=0.68 \mathrm{ff}_{\mathrm{C}}$	-0.4	0.2	0.4	
	$\mathrm{fin}^{\mathrm{N}}=0.87 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	
	$\mathrm{fin}^{\mathrm{L}}=0.97 \mathrm{f} \mathrm{C}$	-0.4	0.2	0.4	
	$\mathrm{fiN}=\mathrm{fC}$	-0.7	-0.2	0.2	
	$\mathrm{fin}^{\mathrm{L}}=1.25 \mathrm{f} \mathrm{C}$		-38.5	-34	
	$\mathrm{fin}^{\mathrm{I}}=1.43 \mathrm{f} \mathrm{C}$		-37.2	-35	
	$\mathrm{fin}=3.25 \mathrm{f} \mathrm{C}$		-37.2	-35	

Note 1: The maximum f_{C} is defined as the clock frequency $\mathrm{f}_{\mathrm{CLK}}=100 \times \mathrm{f}_{\mathrm{c}}$ at which the peak SINAD drops to 68 dB with a sinusoidal input at 0.2 fc .
Note 2: DC insertion gain is defined as $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\mathrm{IN}}$.
Note 3: $\operatorname{fosc}(\mathrm{kHz}) \approx 17.5 \times 10^{3} / \operatorname{Cosc}(\operatorname{Cosc}$ in pF$)$.
Note 4: The input frequencies, f_{IN}, are selected at the peaks and troughs of the ideal elliptic frequency responses.

5th－Order，Lowpass，Elliptic， Switched－Capacitor Filters

Typical Operating Characteristics
$\left(V_{D D}=+5 V\right.$ for MAX7426，$V_{D D}=+3 V$ for MAX7427，fCLK $=100 \mathrm{kHz}, \overline{S H D N}=V_{D D}, V_{C O M}=V_{O S}=V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$ ，unless other－ wise noted．）

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Typical Operating Characteristics (continued)

$\left(V_{D D}=+5 V\right.$ for $M A X 7426, V_{D D}=+3 V$ for MAX7427, fCLK $=100 \mathrm{kHz}, \overline{S H D N}=V_{D D}, V_{C O M}=V_{O S}=V_{D D} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX7426
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT SIGNAL AMPLITUDE

MAX7427
TOTAL HARMONIC DISTORTION PLUS NOISE vs. INPUT SIGNAL AMPLITUDE

Table 1. THD + Noise Test Conditions

LABEL	$\mathbf{f}_{\mathbf{N}}$ $\mathbf{(H z)}$	$\mathbf{f} \mathbf{C}$ $\mathbf{(k H z)}$	$\mathbf{f} \mathbf{c L K}$ $\mathbf{(k H z)}$	MEASUREMENT BANDWIDTH (kHz)
A	200	1	100	22
B	1 k	5	500	80

5th-Order, Lowpass, Elliptic, Switched-Capacitor

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for $M A X 7426, V_{D D}=+3 V$ for $M A X 7427, f C L K=100 \mathrm{kHz}, \overline{S H D N}=V_{D D}, V_{C O M}=V_{O S}=V_{D D} / 2, T_{A}=+25^{\circ} C$, unless otherwise noted.)

INTERNAL OSCILLATOR FREQUENCY
vs. SUPPLY VOLTAGE

DC OFFSET VOLTAGE vs. TEMPERATURE

INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE

DC OFFSET VOLTAGE
vs. SUPPLY VOLTAGE

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

PIN	NAME	FUNCTION
1	COM	Common Input Pin. Biased internally at midsupply. Bypass externally to GND with a 0.1 μ F capacitor. To override internal biasing, drive with an external supply.
2	IN	Filter Input
3	GND	Ground
4	VDD	Positive Supply Input, +5V for MAX7426 or +3V for MAX7427
5	OUT	Filter Output
6	OS	Offset Adjust Input. To adjust output offset, bias OS with a resistive voltage-divider between an external supply and ground. Connect OS to COM if no offset adjustment is needed.
7	$\overline{S H D N}$	Shutdown Input. Drive low to enable shutdown mode; drive high or connect to VDD for normal operation. 8
CLK	Clock Input. Connect an external capacitor (CosC) from CLK to GND to set the internal oscillator frequency. To override the internal oscillator, connect to an external clock.	

Detailed Description

The MAX7426/MAX7427 family of 5th-order, elliptic, lowpass filters provides sharp rolloff with good stopband rejection. All parts operate with a 100:1 clock-tocorner frequency ratio.
Most SCFs are designed with biquadratic sections. Each section implements two pole-zero pairs, and the sections can be cascaded to produce higher-order filters. The advantage to this approach is ease of design. However, this type of design is highly sensitive to component variations if any section's Q is high. The MAX7426/MAX7427 use an alternative approach, which is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network may be synthesized using CAD programs or may be found in many filter books. Figure 1 shows a basic 5th-order ladder elliptic filter structure.
A switched-capacitor filter that emulates a passive ladder filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design, because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a

Figure 1. 5th-Order Ladder Elliptic Filter Network
mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics

Lowpass elliptic filters such as the MAX7426/MAX7427 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and elliptic). The high Q value of the poles near the passband edge combined with the stopband zeros allow for the sharp attenuation characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see the Anti-Aliasing and Post-DAC Filtering section).
In the frequency domain (Figure 2), the first transmission zero causes the filter's amplitude to drop to a minimum level. Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, fs. At frequencies above fs, the filter's gain does not exceed the gain at f . The corner frequency, f_{C}, is defined as the point where the filter output attenuation falls just below the passband ripple. The transition ratio (r) is defined as the ratio of the stopband frequency to the corner frequency:

$$
r=\mathrm{fs} / \mathrm{fc}
$$

The MAX7426/MAX7427 have a transition ratio of 1.25 and typically 37 dB of stopband rejection.

Clock Signal

External Clock
These SCFs are designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock, drive the CLK pin with a CMOS gate

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Figure 2. Elliptic Filter Response
powered from 0 to VDD. Varying the rate of the external clock adjusts the corner frequency of the filter:

$$
\mathrm{f}_{\mathrm{C}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}
$$

Internal Clock
When using the internal oscillator, the capacitance (COSC) on CLK determines the oscillator frequency:

$$
\mathrm{f}_{\mathrm{OSC}}(\mathrm{kHz})=\frac{17.5 \times 10^{3}}{\operatorname{Cosc}_{\mathrm{OSC}}(\mathrm{pF})}
$$

Since Cosc is in the low picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the rate of the internal oscillator adjusts the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 100 kHz produces a nominal corner frequency of 1 kHz .

Input Impedance vs. Clock Frequencies

The MAX7426/MAX7427's input impedance is effectively that of a switched-capacitor resistor (see the following equation), and is inversely proportional to frequency. The input impedance values determined by the equation represent the average input impedance, since the input current is not continuous. As a rule, use a driver with an output resistance less than 10\% of the filter's input impedance.

Figure 3. Offset Adjustment Circuit
Estimate the input impedance of the filter by using the following formula:

$$
Z_{\mathrm{IN}}=\frac{1}{\mathrm{f}_{\mathrm{CLK}} \times \mathrm{C}_{\mathrm{IN}}}
$$

where $\mathrm{f}_{\mathrm{CLK}}=$ clock frequency and $\mathrm{CIN}=1 \mathrm{pF}$.

Low-Power Shutdown Mode

 The MAX7426/MAX7427 have a shutdown mode that is activated by driving SHDN low. In shutdown mode, the filter supply current reduces to $0.2 \mu \mathrm{~A}$, and the output of the filter becomes high impedance. For normal operation, drive $\overline{S H D N}$ high or connect to $V_{D D}$.
Applications Information

Offset (OS) and Common-Mode (COM) Input Adjustment
COM sets the common-mode input voltage and is biased at midsupply with an internal resistor-divider. If the application does not require offset adjustment, connect OS to COM. For applications where offset adjustment is required, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 3. For applications that require DC level shifting, adjust OS with respect to COM. (Note: Do not leave OS unconnected.) The output voltage is represented by these equations:

$$
\begin{aligned}
& V_{\text {OUT }}=\left(V_{\text {IN }}-V_{\text {COM }}\right)+V_{\text {OS }} \\
& V_{\text {COM }}=\frac{V_{D D}}{2} \text { (typical) }
\end{aligned}
$$

where ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{COM}}$) is lowpass filtered by the SCF and OS is added at the output stage. See the Electrical

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

*CONNECT SHDN TO V-FOR LOW-POWER SHUTDOWN MODE.
Figure 4. Dual-Supply Operation
Characteristics table for the input voltage range of COM and OS. Changing the voltage on COM or OS significantly from midsupply reduces the dynamic range.

Power Supplies

The MAX7426 operates from a single +5 V supply, and the MAX7427 operates from a single +3 V supply. Bypass $V_{D D}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 4 shows an example of dual-supply operation. Singlesupply and dual-supply performance are equivalent.

For either single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual-supply operation) to VDD. Use the MAX7427 for ± 2.5, and use the MAX7426 for $\pm 1.5 \mathrm{~V}$. For $\pm 5 \mathrm{~V}$ dual-supply applications, refer to the MAX291/MAX292/MAX295/MAX296 and MAX293/MAX294/MAX297 data sheets.

Input Signal Amplitude Range

The optimal input signal range is determined by observing the voltage level at which the signal-to-noise plus distortion (SINAD) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the THD + Noise response as the input signal's peak-topeak amplitude is varied.

Anti-Aliasing and Post-DAC Filtering
When using the MAX7426/MAX7427 for anti-aliasing or post-DAC filtering, synchronize the DAC (or ADC) and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the desired passband.

Harmonic Distortion
Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 2 lists typical harmonic distortion values with a $10 \mathrm{k} \Omega$ load at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Chip Information

TRANSISTOR COUNT: 1457
PROCESS: BiCMOS

Table 2. Typical Harmonic Distortion

FILTER	fCLK (kHz)	$\begin{gathered} \mathrm{fin} \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} V_{I N} \\ (V p-p) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
				2nd	3rd	4th	5th
MAX7426	500	1 k	4	-71	-73	-90	-82
	100	200		-88	-86	-92	-88
MAX7427	500	1k	2	-87	-86	-90	-90
	100	200		-90	-87	-90	-90

5th－Order，Lowpass，Elliptic， Switched－Capacitor Filters

Package Information

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filters category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
VEMI256A-SD2-G4-08 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR MAX281AEWE+ MAX280EPA+ MAX274AENG+
LTC1064-3CSW\#PBF LTC1060ACN\#PBF LTC1069-1IS8\#PBF LTC1164CSW\#PBF LTC1164-6CSW\#PBF LTC1064-2CSW\#PBF
LTC1064-1CSW\#PBF LTC1569CS8-7\#PBF LTC1164ACSW\#PBF LTC1067-50CS\#PBF LTC1164-6CN\#PBF LTC1059CN\#PBF
LTC1069-1CN8\#PBF LTC1069-7IS8\#PBF LTC1069-6CS8\#PBF LTC1562IG-2\#PBF LTC1164-5CSW\#PBF LTC1566-1CS8\#PBF
LTC1064-7CN\#PBF LTC1063CN8\#PBF LTC1062CN8\#PBF LTC6603IUF\#PBF LTC1565-31CS8\#PBF LTC1061ACN\#PBF
LTC1061CN\#PBF LTC1264CN\#PBF LTC1562AIG\#PBF LTC1164-7CSW\#PBF LTC1064-3CN\#PBF HMC890ALP5E HMC892ALP5E
HMC891ALP5E HMC882ALP5E HMC881ALP5E ADMV8432ACPZ HMC1023LP5E HMC1044LP3E HMC881LP5ETR
HMC882LP5ETR HMC1000LP5ETR HMC900LP5E LTC1068IN\#PBF LTC1566-1IS8\#PBF

