General Description

The MAX77826 is a subpower management IC for the latest 3G/4G smartphones and tablets. The MAX77826 contains a high-efficiency BUCK regulator, a BUCK BOOST regulator and 15 LDOs to power up peripherals. The MAX77826 also provides power on/off control logic and an I ${ }^{2}$ C serial interface to program individual regulator output voltages and on/off control for complete flexibility.
The linear regulators support a remote cap feature and provide greater than 70dB PSRR and less than $45 \mu \mathrm{~V}_{\mathrm{RMS}}$ noise.
The MAX77826 features ${ }^{2}$ ² -compatible, 2-wire serial interface that comprises a bidirectional serial data line (SDA) and a serial clock line (SCL). The MAX77826 supports SCL clock rates up to 3.4 MHz .

Applications

- GSM, GPRS, EDGE, CDMA WCDMA, and LTE Smartphones and Tablets

Ordering Information appears at end of data sheet.

Benefits and Features

- Compact Total Solution Size Allows More Peripheral Devices in Smartphones and Tablets
- 3A High-Efficiency BUCK Regulator
- DVS (Dynamic Voltage Scaling) Through HS I2C
- $\pm 1 \%$ (typ) Output Voltage DC Accuracy
- Low Power Mode
- 2A BUCK BOOST Regulator
- 15 Linear Regulators with Remote Cap
- 3 NMOS LDOs (VOUT Range: 0.6V to 2.1875 V with 12.5 mV Step)
- $1 \times 150 \mathrm{~mA}$
- $1 \times 450 \mathrm{~mA}$
- $1 \times 600 \mathrm{~mA}$
- 6 PMOSLV LDOs (VoUT Range: 0.8 V to 3.975 V with 25 mV Step)
- $3 \times 150 \mathrm{~mA}$
- $3 \times 300 \mathrm{~mA}$
- 6 PMOSLS LDOs (Vout Range: 0.8 V to 3.975 V with 25 mV Step)
- $3 \times 150 \mathrm{~mA}$
- $3 \times 300 \mathrm{~mA}$
- $\pm 1.5 \%$ Typical Output Voltage DC Accuracy
- 70dB PSRR at 1 kHz
- Low Power Mode with $2 \mu \mathrm{~A}$ (typ) for all LDOs
- Simple Management of Power-Up/Down Sequence, Output Voltage Setting, and Fault Detection
- High-Speed (Up to 3.4 MHz) $\mathrm{I}^{2} \mathrm{C}$ Serial Interface

Absolute Maximum Ratings

SYS, V_{IO}, INL1, INL2, INL3, INL4, INL5 to GND	-0.3V to +6.0V
INB to PGNDB	-0.3V to +6.0 V
INBB, OUTBB to PGNDBB	-0.3V to +6.0 V
PGNDB, PGNDBB to GND	-0.3V to +0.3V
IRQB, CE, SDA, SCL to GN -0.3 V to ($\mathrm{V}_{\mathrm{VIO}}+0.3 \mathrm{~V}$)
FB_B, ENBB, ENB, ENL12,	
REFBYP to GND -0.3V to ($\mathrm{V}_{\text {SYS }}+0.3 \mathrm{~V}$)
FB_BB to PGNDBB.	-0.3 V to ($\mathrm{V}_{\text {OUTBB }}+0.3 \mathrm{~V}$)
LXB to PGNDB...	... -0.3V to ($\left.\mathrm{V}_{\text {INB }}+0.3 \mathrm{~V}\right)$
LXBB1 to PGNDBB	. -0.3 V to ($\mathrm{V}_{\text {INBB }}+0.3 \mathrm{~V}$)
LXBB2 to PGNDBB	-0.3V to (VOUTBB +0.3 V)

Note 1: LX_ node has internal clamp diodes to PGND_ and INB_. Applications that give forward bias to these diodes should ensure that the total power loss does not exceed IC's package power dissipation limits.

Package Thermal Characteristics (Note 2)

WLP
Junction-to-Ambient Thermal Resistance (θ_{JA}) $37^{\circ} \mathrm{C} / \mathrm{W}$
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

General Electrical Characteristics

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {IN }}=+3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)$

VPARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Shutdown Supply Current	ISHDN_SYS	$C E=$ low		2.5	10	$\mu \mathrm{A}$
Standby Current	I_{Q} SYS	CE = high and all regulators are off		35		$\mu \mathrm{A}$
Shutdown V_{10} Current	ISHDN_VIO	All regulators are off		0		$\mu \mathrm{A}$
No Load Supply Current 1	${ }^{\text {I }}$ NO_LOAD1	BUCK is on in normal mode (no switching)		60		$\mu \mathrm{A}$
No Load Supply Current 2	${ }^{\text {INO_LOAD2 }}$	BUCK and BUCK BOOST are on in normal mode (no switching)		120		$\mu \mathrm{A}$
No Load Supply Current 3	${ }^{\text {INO_LOAD3 }}$	All regulators are on in normal mode (no switching)		400	700	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SYS }}$ UNDERVOLTAGE LOCKOUT						
$\mathrm{V}_{\text {SYS }}$ Undervoltage Lockout Threshold	VUVLO_R	$\mathrm{V}_{\text {SYS }}$ rising	2.375	2.50	2.625	V
	VUVLO_F	$\mathrm{V}_{\text {SYS }}$ falling (default)		2.05		
REFERENCE						
REFBYP Output Voltage			0.786	0.80	0.814	V
REFBYP Supply Rejection		$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {SYS }} \leq 5.5 \mathrm{~V}$		0.2		mV / V

General Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{SYS}}=\mathrm{V}_{\mathrm{IN}}=+3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
THERMAL SHUTDOWN							
Thermal Shutdown Threshold	TSHDN	T_{J} rising, $15^{\circ} \mathrm{C}$ hysteresis		+165			${ }^{\circ} \mathrm{C}$
Thermal Interrupt at $+120^{\circ} \mathrm{C}$	T_{120}	T_{J} rising, $15^{\circ} \mathrm{C}$ hysteresis		+120			${ }^{\circ} \mathrm{C}$
Thermal Interrupt at $+140^{\circ} \mathrm{C}$	T_{140}	T_{J} rising, $15^{\circ} \mathrm{C}$ hysteresis		+140			${ }^{\circ} \mathrm{C}$
LOGIC AND CONTROL INPUTS							
Input Low Level	VIL	ENB, ENBB, ENL12	$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}} \leq 4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$			0.4	V
		CE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$0.3 \times \mathrm{V}_{\mathrm{VIO}}$			
Input High Level	V_{IH}	ENB, ENBB, ENL12	$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}} \leq 4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.2			V
		CE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$0.7 \times \mathrm{V}_{\mathrm{VIO}}$			
Logic Input Leakage Current	ILEAK	$\begin{aligned} & \text { CE } \\ & \left(0 \mathrm{~V}<\mathrm{V}_{\mathrm{IO}}<1.8 \mathrm{~V}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
IRQB Output Low Voltage	V_{OL}	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$				0.4	V
IRQB Output High Leakage	IOZH	$\mathrm{V}_{1 \mathrm{O}}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
INTERNAL PULLDOWN RESISTANCE							
ENB, ENBB, ENL12	R_{PD}	Pulldown resistor to GND		400	800	1600	k Ω

${ }^{12} \mathrm{C}$ Electrical Characteristics

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{I \mathrm{~N}_{-}}=+3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
VIO Voltage	$\mathrm{V}_{\mathrm{VIO}}$		1.7		3.6	V
SDA AND SCL I/O STAGES						
SCL, SDA Input High Voltage	V_{IH}		$0.7 \times \mathrm{V}_{\mathrm{V}}$			V
SCL, SDA Input Low Voltage	$\mathrm{V}_{\text {IL }}$				$3 \times \mathrm{V}_{\mathrm{VIO}}$	V
SCL, SDA Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$			x V_{V}		V
SCL, SDA Input Current	1	$\mathrm{V}_{1 \mathrm{O}}=3.7 \mathrm{~V}$	-10		+10	$\mu \mathrm{A}$
SDA Output Low Voltage	V_{OL}	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$			0.4	V
SCL, SDA Pin Capacitance	Cl_{1}			10		pF
Output Fall Time from V_{IO} to $0.3 \times \mathrm{V}_{\text {IO }}$	tof				120	ns
$1^{2} \mathrm{C}-\mathrm{COMPATIBLE}$ INTERFACE TIMING (STANDARD, FAST, AND FAST MODE PLUS) (Note 3)						
Clock Frequency	$\mathrm{f}_{\text {SCL }}$				1000	kHz
Hold Time (REPEATED) START Condition	${ }_{\text {thD }}$ STA		0.26			$\mu \mathrm{s}$
CLK Low Period	tow		0.5			$\mu \mathrm{s}$
CLK High Period	$\mathrm{t}_{\text {HIGH }}$		0.26			$\mu \mathrm{s}$
Setup Time REPEATED START Condition	tsu;STA		0.26			$\mu \mathrm{s}$
DATA Hold Time	$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$		0			$\mu \mathrm{s}$
DATA Setup Time	tsu;DAT		50			ns
Setup Time for STOP Condition	tsu;STO		0.26			$\mu \mathrm{s}$
Bus-Free Time Between STOP and START	$t_{\text {BUF }}$		0.5			$\mu \mathrm{s}$
Capacitive Load for Each Bus Line	C_{B}				550	pF
Maximum Pulse Width of Spikes That Must Be Suppressed by the Input Filter				50		ns

${ }^{1}{ }^{2} \mathrm{C}$ Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{I N_{-}}=+3.7 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{C}_{\mathrm{B}}=100 \mathrm{pF}$			$\mathrm{C}_{\mathrm{B}}=400 \mathrm{pF}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
I2C-COMPATIBLE INTERFACE TIMING (HS MODE)									
Clock Frequency	$\mathrm{f}_{\text {SCL }}$				3.4			1.7	MHz
Set-Up Time REPEATED START Condition	tsu;STA		160			160			ns
Hold Time (REPEATED) START Condition	${ }_{\text {thD }}$ STA		160			160			ns
CLK Low Period	tow		160			320			ns
CLK High Period	$\mathrm{t}_{\text {HIGH }}$		60			120			ns
DATA Setup time	tsu:DAT		10			10			ns
DATA Hold Time	thD:DAT			35			75		ns
SCL Rise Time (Note 3)	$\mathrm{t}_{\mathrm{RCL}}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10		40	20		80	ns
Rise Time of SCL Signal After a REPEATED START Condition and After an Acknowledge Bit (Note 3)	trCL^{1}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10		80	20		160	ns
SCL Fall Time (Note 3)	tfCL	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10		40	20		80	ns
SDA Rise Time (Note 3)	$\mathrm{trDA}^{\text {r }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			80			160	ns
SDA Fall Time (Note 3)	$t_{\text {fDA }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			80			160	ns
Set-Up Time for STOP Condition	${ }_{\text {tsu }}$ STO		160			160			ns
Capacitive Load for Each Bus Line	C_{B}				100			400	pF
Maximum Pulse Width of Spikes That Must Be Suppressed by the Input Filter			10			10			ns

BUCK Electrical Characteristics

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INB }}=+3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}} \mathrm{B}=\mathrm{V}_{\mathrm{OUT}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 4$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	Parametric		2.6		5.5	V
Shutdown Supply Current (Note 3)				0.1		$\mu \mathrm{A}$
Supply Quiescent Current (Note 3)	No switching, No load	Normal mode		22		$\mu \mathrm{A}$
		Low power mode		8		
Output Voltage Range	$1^{2} \mathrm{C}$-programmable 6.25 mV step		0.5		1.8	V
Output Voltage Accuracy	$\mathrm{V}_{\text {INB }}=2.6 \mathrm{~V}$ to 4.5 V , $V_{\text {OUT }}=1.25 \mathrm{~V}$, no load	PWM mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.0		+1.0	\%
		Low power mode	-3.0		+4.0	
Line Regulation	$\mathrm{V}_{\text {INB }}=2.6 \mathrm{~V}$ to 4.5 V		0.200			\%/V
Load Regulation (Note 3)	$\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}$		0.125			\%/A
Transient Load Response, VDROOP (Note 3)	$\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}$, IOUT changes from 0 A to 1.5 A in $6 \mu \mathrm{~s}$, COUT_ACTUAL $=22 \mu \mathrm{~F}, \mathrm{~L}=0.47 \mu \mathrm{H}$		-50			mV
Soft-Start Slew Rate				14		$\mathrm{mV} / \mathrm{\mu s}$
Output Voltage Ramp-Up Slew Rate	RAMP[1:0] = 00b (default)			12.5		$\mathrm{mV} / \mathrm{\mu s}$
	RAMP[1:0] = 01b		25			
	RAMP[1:0] = 10b		50			
	RAMP[1:0] = 11b		100			
Maximum Output Current	Normal mode		3000			mA
	Low power mode		10			
Peak Current Limit			3.30	4.25	5.50	A
Valley Current Limit				3.825		A
Negative Current Limit				1.000		A
N-FET Zero-Crossing Threshold	Skip mode		20			mA
Switching Frequency			1.8	2	2.2	MHz
Turn-On Delay Time	EN signal to LX switching with bias ON			30		$\mu \mathrm{s}$
HS PMOS RDSON	$\mathrm{V}_{\mathrm{INB}}=3.7 \mathrm{~V}$, INB to LX, $\mathrm{I}_{\mathrm{LX}}=200 \mathrm{~mA}$			60		$\mathrm{m} \Omega$
LS NMOS RDSON	$\mathrm{V}_{\text {INB }}=3.7 \mathrm{~V}$, LX to PGNDB, $\mathrm{L}_{\text {LX }}=200 \mathrm{~mA}$			35		$m \Omega$
Output Active Discharge Resistance	Output disabled, resistance from FB_B to PGNDB			100		Ω
LX Leakage	$\mathrm{V}_{\mathrm{LXB}}=5.5 \mathrm{~V}$ or 0 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.1	+1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
POWER-OK COMPARATOR						
Output POK Trip Level	$\mathrm{V}_{\text {OUT }}$ POK rising threshold			90		\%
Output POK Hysteresis	$\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches			5		\%

BUCK BOOST Electrical Characteristics

$\left(\mathrm{V}_{\text {INBB }}=+3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUTBB }}=+3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
GENERAL							
Operating Input Voltage Range	Supplied from $\mathrm{V}_{\text {SYS }}$			2.6		5.5	V
Shutdown Supply Current	$\begin{aligned} & \mathrm{V}_{\text {INBB }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUTBB }}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
Input Supply Current	Enabled, no load	HSKIP mode (no switching)			60		$\mu \mathrm{A}$
		FPWM mode (switching)			9		mA
Active Discharge Resistance					100		Ω
Thermal Shutdown	T_{A} rising, $20^{\circ} \mathrm{C}$ hysteresis				+165		${ }^{\circ} \mathrm{C}$
H-BRIDGE							
Maximum Output Current (Note 6)	$\mathrm{V}_{\text {INBB }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUTBB }}=3.5 \mathrm{~V}$			2000			mA
	$\mathrm{V}_{\text {INBB }}=2.6 \mathrm{~V}, \mathrm{~V}_{\text {OUTBB }}=3.5 \mathrm{~V}$			1500			
Default Output Voltage	No load, BB_VOUT[6:0] $=0 \times 48$				3.5		V
Output Voltage Accuracy	$\begin{aligned} & \text { BB_VOUT[6:0] }=0 \times 48 \text {, } \\ & \text { no load } \end{aligned}$		PWM mode	-1.0		+1.0	
			HSKIP mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.0		+4.0	\%
Output Voltage Range	${ }^{12} \mathrm{C}$ programmable (12.5 mV step)			2.6		4.1875	V
Line Regulation	$\mathrm{V}_{\text {INBB }}=2.6 \mathrm{~V}$ to 5.5 V				0.200		\%/V
Load Regulation (Note 3)	$\mathrm{V}_{\text {OUTBB }}=3.5 \mathrm{~V}$				0.125		\%/A
Transient Load Response, $\mathrm{V}_{\text {DROOP }}$ (Note 3)	$\mathrm{V}_{\text {INBB }}=3.8 \mathrm{~V}, \mathrm{~V}_{\text {OUTBB }}=3.5 \mathrm{~V},$ IOUT changes from 10 mA to 1 A in $10 \mu \mathrm{~s}$, COUT_ $\text { ACTUAL }=47 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H}$				-100		mV
Output Overvoltage Threshold	With respect to Voutbi	BB_OVP_TH[1:0] = 01b			110		\%
		BB_OVP_TH[1:0] = 10b			115		
		$\begin{aligned} & \text { BB_OVP_TH[1:0] = 11b } \\ & \text { (default) } \end{aligned}$			120		
Switching Frequency	2-phase BUCK or BOOST mode			1.6	1.8	2.0	MHz
	3-phase mode				0.9		
LXBB1, LXBB2 Leakage Current	$\mathrm{V}_{\mathrm{LXBB} 1 / 2}=0 \mathrm{~V}$ or 5.5 V , $\mathrm{V}_{\text {OUTBB }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SYS }}=$ $\mathrm{V}_{\text {INBB }}=5.5 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.2		
LXBB1/2 Current Limit				3.5	4.5	5.5	A
PMOS On-Resistance	$\mathrm{l}_{\text {LXBB }}=100 \mathrm{~mA}$, per switch				65		$\mathrm{m} \Omega$
NMOS On-Resistance	$\mathrm{I}_{\text {LXBB }}=100 \mathrm{~mA}$, per switch				55		$\mathrm{m} \Omega$

BUCK BOOST Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INBB }}=+3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUTBB }}=+3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Effective Output Capacitance	$0 \mu \mathrm{~A}$ < $\mathrm{I}_{\text {OUT }}<2000 \mathrm{~mA}$		16		$\mu \mathrm{F}$
Turn-On Delay Time	From ENBB asserting to LXBB Switching with bias on		6		$\mu \mathrm{s}$
Soft-Start Time	$\mathrm{V}_{\text {OUTBB }}=3.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$		40		$\mu \mathrm{s}$
POWER-OK COMPARATOR					
Output POK Trip Level	V ${ }_{\text {OUTBB P PKK }}$ rising threshold		80		\%
Output POK Hysteresis	$V_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		5		\%

LDO Electrical Characteristics

$\begin{aligned} & \text { LDO } \\ & \text { NO. } \end{aligned}$	TYPE	$\begin{gathered} \text { VOUT } \\ \text { RANGE (V) } \end{gathered}$	$\begin{aligned} & \text { STEP SIZE } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} \text { lout } \\ (\max , \mathrm{mA}) \end{gathered}$	DEFAULT $V_{\text {OUT }}(\mathrm{V})$	DEFAULT ON/OFF	INPUT PIN	$\mathrm{C}_{\text {OUt }}(\mu \mathrm{F})$
1	NMOS	0.6-2.1875	12.5	600	1.0	Off	INL1	4.7
2	NMOS	0.6-2.1875	12.5	150	1.0	Off	INL1	1
3	NMOS	0.6-2.1875	12.5	450	1.0	Off	INL2	4.7
4	PMOSLV	0.8-3.975	25	300	1.5	Off	INL3	4.7
5	PMOSLV	0.8-3.975	25	300	1.8	Off	INL3	4.7
6	PMOSLV	0.8-3.975	25	150	1.8	Off	INL3	2.2
7	PMOSLV	0.8-3.975	25	300	1.8	Off	INL3	4.7
8	PMOSLV	0.8-3.975	25	150	1.8	Off	INL3	2.2
9	PMOSLV	0.8-3.975	25	150	1.8	Off	INL3	2.2
10	PMOSLS	0.8-3.975	25	300	2.8	Off	INL4	2.2
11	PMOSLS	0.8-3.975	25	150	2.8	Off	INL4	2.2
12	PMOSLS	0.8-3.975	25	300	3.3	Off	INL5	2.2
13	PMOSLS	0.8-3.975	25	300	3.3	Off	INL5	2.2
14	PMOSLS	0.8-3.975	25	150	3.3	Off	INL5	2.2
15	PMOSLS	0.8-3.975	25	150	3.3	Off	INL5	2.2

Note: LDO12 can also be enabled/disabled by external logic inputs, ENL12.

LDO1 (600 mA NMOS)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLX }}$ must be lower than or equal to $\mathrm{V}_{\text {SYS }}$		V OUT		$\mathrm{V}_{\text {SYS }}$	V
	$\mathrm{V}_{\text {SYS }}$		2.6		5.5	
	(Note 7)		1.5			
Input Supply Current	Normal mode, no load			2		$\mu \mathrm{A}$
	Low power mode, no load			2		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			30		$\mu \mathrm{A}$
	Low power mode, no load			4		
	Shutdown			<0.1		
Output Voltage Programming	Minimum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h00			0.6		V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] = 7'h7F			2.1875		
	Least significant step size			0.0125		
Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\text {SYS }} \end{aligned}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		600			mA
	Low power mode		5			
Load Regulation	$\begin{aligned} & \mathrm{V}_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right) \end{aligned}$	Normal mode $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{MAX}}$	0.5			\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	0.5			
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right), \\ & \mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA} \\ & \hline \end{aligned}$	Normal mode	0.05			\%/V
		Low power mode		0.05		
Dropout Voltage	Normal mode, $\mathrm{I}_{\text {OUT }}=\mathrm{I}_{\mathrm{MAX}}$,$V_{\text {DO }}=V_{\text {INLX }}-V_{\text {OUT }}$	$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		60	150	mV
		$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$		100		
Output Current Limit	$V_{\text {OUT }}=90 \%$ of Vout(TARGET)	Normal mode		900	1800	mA
		Low power mode		10		
Output Capacitance for Stability	DCR < 200m 2 , ESL < 20nH (Note 9)		2.35	4.7		$\mu \mathrm{F}$

LDO1 (600 mA NMOS) (continued)
$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

LDO2 (150mA NMOS)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLx }}$ must be lower than or equal to $\mathrm{V}_{\text {SYS }}$		$\mathrm{V}_{\text {OUT }}$		$\mathrm{V}_{\text {SYS }}$	V
	$\mathrm{V}_{\text {SYS }}$		2.6		5.5	
	(Note 7)		1.5			
Input Supply Current	Normal mode, no load			2		$\mu \mathrm{A}$
	Low power mode, no load			2		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			25		$\mu \mathrm{A}$
	Low power mode, no load			3		
	Shutdown			<0.1		
Output Voltage Programming	Minimum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h00			0.6		V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] = 7'h7F			2.1875		
	Least significant step size			0.0125		
Output Voltage Accuracy	$\mathrm{V}_{\mathrm{SYS}} \geq \mathrm{V}_{\mathrm{OUT}}+1.5 \mathrm{~V}$ $\left(\mathrm{V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right)$, $\mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$ to $V_{S Y S}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		150			mA
	Low power mode		5			
Load Regulation	$\begin{aligned} & V_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right) \end{aligned}$	Normal mode $\mathrm{l}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\text {MAX }}$	0.5			\%
		Low power mode lout $=0.1 \mathrm{~mA}$ to 5 mA		0.5		
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right), \\ & \mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode		0.05		\%/V
		Low power mode		0.05		
Dropout Voltage	Normal mode,$\begin{aligned} & I_{\text {OUT }}=I_{\text {MAX }}, \\ & \mathrm{V}_{\text {DO }}=\mathrm{V}_{\text {INLX }}-\mathrm{V}_{\text {OUT }} \end{aligned}$	$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		60	150	mV
		$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$		100		
Output Current Limit	$V_{\text {OUT }}=90 \%$ of $V_{\text {OUT }}$ (TARGET)	Normal mode		225	450	mA
		Low power mode		10		
Output Capacitance for Stability	DCR < 200m , ESL < 20nH (Note 9)		0.5	1.0		$\mu \mathrm{F}$

LDO2 (150mA NMOS) (continued)
$\left(\mathrm{V}_{S Y S}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

| PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | UNITS

LDO3 (450mA NMOS)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLX }}$ must be lower than or equal to $\mathrm{V}_{\text {SYS }}$		$\mathrm{V}_{\text {OUT }}$		$\mathrm{V}_{\text {SYS }}$	V
	$\mathrm{V}_{\text {SYS }}$		2.6		5.5	
	(Note 7)		1.5			
Input Supply Current	Normal mode, no load			2		$\mu \mathrm{A}$
	Low power mode, no load			2		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			25		$\mu \mathrm{A}$
	Low power mode, no load			3		
	Shutdown		< 0.1			
Output Voltage Programming	Minimum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h00		0.6			V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=$ 7'h7F		2.1875			
	Least significant step size		0.0125			
Output Voltage Accuracy	$\mathrm{V}_{\mathrm{SYS}} \geq \mathrm{V}_{\mathrm{OUT}}+1.5 \mathrm{~V}$ $\left(\mathrm{V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right)$, $\mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {SYS }}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		450			mA
	Low power mode		5			
Load Regulation	$\begin{aligned} & V_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right) \end{aligned}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	0.5			\%
		Low power mode I OUT $=0.1 \mathrm{~mA}$ to 5 mA		0.5		
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}} \geq \mathrm{V}_{\mathrm{OUT}}+1.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SYSMIN }}=2.6 \mathrm{~V}\right), \\ & \mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode		0.05		\%/V
		Low power mode		0.05		
Dropout Voltage	Normal Mode, Iout $=I_{\text {MAX }}$,$V_{D O}=V_{\text {INLX }}-V_{\text {OUT }}$	$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		60	150	mV
		$\mathrm{V}_{\text {SYS }}-\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$		100		
Output Current Limit	$\mathrm{V}_{\text {OUT }}=90 \%$ of $\mathrm{V}_{\text {OUT }}$ (TARGET)	Normal mode		675	1350	mA
		Low power mode		10		
Output Capacitance for Stability	$\begin{array}{\|l} \text { DCR < 200m } \Omega, \text { ESL < 20nH } \\ \text { (Note 9) } \end{array}$		2.35	4.7		$\mu \mathrm{F}$

LDO3 (450mA NMOS) (continued)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Output Noise	Normal mode, $\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , $l_{\text {OUT }}=10 \%$ of $l_{\text {MAX }}$		$\begin{aligned} & \mathrm{V}_{\text {SYS }}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INLX }}=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMIN }} \end{aligned}$		30		$\mu \mathrm{V}_{\text {RMS }}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INLL}}=1.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.0 \mathrm{~V} \end{aligned}$		60		
			$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMAX }} \end{aligned}$		60		
Power-Supply Rejection	Normal mode, $\mathrm{f}=1 \mathrm{kHz}$, $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$				70		dB
	Normal mode, $\mathrm{V}_{\mathrm{SYS}}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {INLX }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.2 \mathrm{~V}$, $I_{\text {OUT }}=1 \mathrm{~mA}$ to $1 / 2 \times \mathrm{I}_{\text {MAX }}$ to $1 \mathrm{~mA}, \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\mathrm{FALL}}=1 \mu \mathrm{~s}$		$\mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}$		± 5		\%
			$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$		± 3		
Output Line Transient	Normal mode, VOUT $=1.2 \mathrm{~V}$, IOUT $=1 \mathrm{~mA}$, $t_{\text {RISE }}=t_{\text {FALL }}=5 \mu \mathrm{~s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V} \text { to } 3.2 \mathrm{~V} \text { to } \\ & 3.7 \mathrm{~V} \end{aligned}$			5		mV
			$=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{INLx}}=1.8 \mathrm{~V} \text { to } 1.5 \mathrm{~V}$		5		
Output Startup Ramp Rate	10\% to 90\%				30		$\mathrm{mV} / \mathrm{\mu s}$
Turn-On Delay Time	From Lx_EN = 1 to output rising, REFBYP enabled > 300μ s prior to LDO being enabled				5		$\mu \mathrm{s}$
Output Overshoot during Startup Overshoot					50		mV
Output Active Discharge Resistance	(Note 10)				100		Ω
Thermal Shutdown	T_{J} rising				165		${ }^{\circ} \mathrm{C}$
	T_{J} falling				150		
POWER-OK COMPARATOR							
Output POK Trip Level	Rising edge, $\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches				87.5		\%
Output POK Hysteresis	$\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches				5		\%

LDO4, LDO5 and LDO7 (300 mA PMOSLV)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLx }}$ must be lower than or equal to $\mathrm{V}_{\text {SYS }}$		1.7		$\mathrm{V}_{\text {SYS }}$	V
Input Supply Current	Normal mode, no load			15		$\mu \mathrm{A}$
	Low power mode, no load			1.5		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			3		$\mu \mathrm{A}$
	Low power mode, no load			0.3		
	Shutdown		< 0.1			
Output Voltage Programming	Minimum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h00		0.8			V
	Maximum VOUT, Lx_VOUT[6:0] = 7'h7F		3.975			
	Least significant step size		0.025			
Output Voltage Accuracy	$\begin{aligned} & V_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{SYS}} \end{aligned}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		300			mA
	Low power mode		5			
Load Regulation	$\mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$	Normal mode $I_{\text {OUT }}=0.1 \mathrm{~mA}$ to I_{MAX}	0.5			\%
		Low power mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA	0.5			
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\text {SYS }}, \mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode	0.05			\%/V
		Low power mode	0.05			
Dropout Voltage	Normal mode,$\begin{aligned} & \mathrm{V}_{\text {SYS }}=3.7 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=\mathrm{I}_{\text {MAX }}, \\ & \mathrm{V}_{\text {DO }}=\mathrm{V}_{\text {INLX }}-\mathrm{V}_{\text {OUT }} \end{aligned}$	$\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}$	60100100			mV
		$\mathrm{V}_{\mathrm{INLX}}=1.7 \mathrm{~V}$				
Output Current Limit	$V_{\text {OUT }}=90 \%$ of VOUT(TARGET)	Normal mode		600	1120	mA
		Low power mode	40			
Output Capacitance for Stability	$\begin{aligned} & \text { DCR }<200 \mathrm{~m} \Omega, \text { ESL }<20 \mathrm{nH} \\ & \text { (Note 9) } \end{aligned}$		2.35	4.7		$\mu \mathrm{F}$

LDO4, LDO5 and LDO7 (300 mA PMOSLV) (continued)

$\left(V_{S Y S}=V_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

LDO6, LDO8, and LDO9 (150mA PMOSLV)
$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLx }}$ must be lower than or equal to $\mathrm{V}_{\text {SYS }}$		1.7		$\mathrm{V}_{\text {SYS }}$	V
Input Supply Current	Normal mode, no load			15		$\mu \mathrm{A}$
	Low power mode, no load			1.5		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			3		$\mu \mathrm{A}$
	Low power mode, no load			0.3		
	Shutdown			< 0.1		
Output Voltage Programming	Minimum V ${ }_{\text {OUT, }}$ Lx_VOUT[6:0] $=7$ 'h00			0.8		V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h7F			3.975		
	Least significant step size			0.025		
Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \\ & \text { to } \mathrm{V}_{\text {SYS }} \end{aligned}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode $l_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA ,	-5		+5	
Maximum Output Current (Note 8)	Normal mode		150			mA
	Low power mode		5			
Load Regulation	$\mathrm{V}_{\text {INLx }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$		0.5		\%
		Low power mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA		0.5		
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\text {SYS }}, \mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode		0.05		\%/V
		Low power mode		0.05		
Dropout Voltage	$\begin{aligned} & \text { Normal mode, } \mathrm{V}_{\text {SYS }}=3.7 \mathrm{~V}, \\ & \text { I }_{\text {OUT }}=\mathrm{I}_{\text {MAX }}, \\ & \mathrm{V}_{\text {DO }}=\mathrm{V}_{\text {INLX }}-\mathrm{V}_{\text {OUT }} \end{aligned}$	$\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}$		60	150	mV
		$\mathrm{V}_{\text {INLX }}=1.7 \mathrm{~V}$		100		
Output Current Limit	$V_{\text {OUT }}=90 \%$ of Vout(TARGET)	Normal mode		300	560	mA
		Low power mode		40		
Output Capacitance for Stability	$\begin{aligned} & \hline \text { DCR }<200 \mathrm{~m} \Omega, \mathrm{ESL}<20 \mathrm{nH} \\ & \text { (Note 9) } \end{aligned}$		1.1	2.2		$\mu \mathrm{F}$

LDO6, LDO8, and LDO9 (150mA PMOSLV) (continued)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
Output Noise	Normal mode, $\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , $l_{\text {OUT }}=10 \%$ of $I_{\text {MAX }}$	$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMIN }} \end{aligned}$	25		$\mu \mathrm{V}_{\text {RMS }}$
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=2.7 \mathrm{~V}, \\ & V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	30		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=2.7 \mathrm{~V}, \\ & V_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$	40		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=3.7 \mathrm{~V}, \\ & V_{\text {OUT }}=3.0 \mathrm{~V} \end{aligned}$	60		
		$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMAX }} \end{aligned}$	60		
Power Supply Rejection	Normal mode, $\mathrm{f}=1 \mathrm{kHz}$, $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$		70		dB
Output Load Transient ($\Delta \mathrm{V} / \mathrm{V}_{\text {OUT }}$)	Normal mode, $\mathrm{V}_{\mathrm{SYS}}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ default, $I_{\text {OUT }}=1 \mathrm{~mA}$ to $1 / 2 \times \operatorname{IMAX}$ to $1 \mathrm{~mA}, \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\mathrm{FALL}}=1 \mu \mathrm{~s}$	$\mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}$	± 5		\%
		$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$	± 3		
Output Line Transient	$\begin{aligned} & \text { Normal mode, } \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \\ & \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=5 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V} \text { to } \\ & 3.2 \mathrm{~V} \text { to } 3.7 \mathrm{~V} \end{aligned}$	5		mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{SYS}}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {INLX }}= \\ & 2.0 \mathrm{~V} \text { to } 1.7 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \end{aligned}$	5		
Output Startup Ramp Rate	10\% to 90\%		30		$\mathrm{mV} / \mu \mathrm{s}$
Turn-On Delay Time	From Lx_EN = 1 to output rising, REFBYP enabled > 300μ s prior to LDO being enabled		5		$\mu \mathrm{s}$
Output Overshoot During Startup Overshoot			50		mV
Output Active Discharge Resistance	(Note 10)		100		Ω
Thermal Shutdown	T_{J} rising		+165		${ }^{\circ} \mathrm{C}$
	T_{J} falling		+150		
POWER-OK COMPARATOR					
Output POK Trip Level	Rising edge, $\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		87.5		\%
Output POK Hysteresis	$\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		3		\%

LDO11, LDO14 and LDO15 (150mA PMOSLS)

$\left(\mathrm{V}_{\text {SYS }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	VINLX		2.6		5.5	V
	$V_{\text {SYS }}$		2.6		5.5	
Input Supply Current	Normal mode, no load			15		$\mu \mathrm{A}$
	Low power mode, no load			4		
	Shutdown			< 0.1		
System Supply Current	Normal mode, no load			3.25		$\mu \mathrm{A}$
	Low power mode, no load			0.85		
	Shutdown			< 0.1		
Output Voltage Programming	Minimum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h00			0.8		V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] = 7'h7F			3.975		
	Least significant step size			0.025		
Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{SYS}} \end{aligned}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		150			mA
	Low power mode		5			
Load Regulation	$\mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	0.5			\%
		Low power mode IOUT $=0.1 \mathrm{~mA}$ to 5 mA	0.5			
Line Regulation	$\begin{aligned} & V_{\text {INLX }}=V_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & V_{\text {SYS }}, I_{O U T}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode	0.05			\%/V
		Low power mode		0.05		
Dropout Voltage	$\begin{aligned} & \text { Normal mode, } \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\text {OUT }}=\mathrm{I}_{\mathrm{MAX}}, \mathrm{~V}_{\mathrm{DO}}=\mathrm{V}_{\text {INLX }}-\mathrm{V}_{\text {OUT }} \end{aligned}$			100	200	mV
Output Current Limit	$V_{\text {OUT }}=90 \%$ of $V_{\text {OUT(TARGET) }}$	Normal mode		300	560	mA
		Low power mode	40			
Output Capacitance for Stability	DCR < 200m , ESL < 20nH (Note 9)		0.6	2.2		$\mu \mathrm{F}$

LDO11, LDO14 and LDO15 (150mA PMOSLS) (continued)

$\left(\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
Output Noise	Normal mode, $\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , $\mathrm{l}_{\text {OUT }}=10 \%$ of $\mathrm{I}_{\mathrm{MAX}}$	$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMIN }} \end{aligned}$	25		$\mu \mathrm{V}_{\text {RMS }}$
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=2.7 \mathrm{~V}, \\ & V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	30		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=2.7 \mathrm{~V}, \\ & V_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$	40		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=3.7 \mathrm{~V}, \\ & V_{\text {OUT }}=3.0 \mathrm{~V} \end{aligned}$	60		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=5.5 \mathrm{~V}, \\ & V_{\text {OUT }}=V_{\text {OUTMAX }} \end{aligned}$	60		
Power Supply Rejection	Normal mode, $\mathrm{f}=1 \mathrm{kHz}$, l OUT $=30 \mathrm{~mA}$		70		dB
Output Load Transient ($\Delta \mathrm{V} / \mathrm{V}_{\text {OUT }}$)	Normal mode, $\mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ default, IOUT $=$ 1 mA to $1 / 2 \times$ IMAX to 1 mA , $t_{\text {RISE }}=t_{\text {FALL }}=1 \mu \mathrm{~s}$	$\mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}$	± 5		\%
		$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$	± 3		
Output Line Transient	Normal mode, $\mathrm{V}_{\text {INLx }}=3.7 \mathrm{~V}$ to 3.2 V to 3.7 V , $\mathrm{V}_{\text {OUT }}=$ default, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=5 \mu \mathrm{~s}$		5		mV
Output Startup Ramp Rate	10\% to 90\%		30		$\mathrm{mV} / \mathrm{\mu s}$
Turn-On Delay Time	From Lx_EN = 1 to output rising, REFBYP enabled > 300μ s prior to LDO being enabled		5		$\mu \mathrm{s}$
Output Overshoot During Startup Overshoot			50		mV
Output Active Discharge Resistance	(Note 10)		100		Ω
Thermal Shutdown	T_{J} rising		165		${ }^{\circ} \mathrm{C}$
	T_{j} falling		150		
POWER-OK COMPARATOR					
Output POK Trip Level	Rising edge, $\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		87.5		\%
Output POK Hysteresis	$V_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		3		\%

LDO10, LDO12 and LDO13 (300 mA PMOSLS)

$\left(V_{S Y S}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {INLX }}$		2.6		5.5	V
	$\mathrm{V}_{\text {SYS }}$		2.6		5.5	
Input Supply Current	Normal mode, no load			15		$\mu \mathrm{A}$
	Low power mode, no load			4		
	Shutdown			<0.1		
System Supply Current	Normal mode, no load			3.25		$\mu \mathrm{A}$
	Low power mode, no load			0.85		
	Shutdown			< 0.1		
Output Voltage Programming	Minimum V ${ }_{\text {OUT, }}$ Lx_VOUT[6:0] $=$ 7'h00			0.8		V
	Maximum V ${ }_{\text {OUT }}$, Lx_VOUT[6:0] $=7$ 'h7F			3.975		
	Least significant step size			0.025		
Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\mathrm{OUT}}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{SYS}} \end{aligned}$	Normal mode $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{MAX}}$	-2		+2	\%
		Low power mode $l_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA	-5		+5	
Maximum Output Current (Note 8)	Normal mode		300			mA
	Low power mode		5			
Load Regulation	$\mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V}$	Normal mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}}$	0.5			\%
		Low power mode $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~mA}$ to 5 mA	0.5			
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {INLX }}=\mathrm{V}_{\text {OUT }}+0.3 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\text {SYS }}, \mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~mA} \end{aligned}$	Normal mode	0.05			\%/V
		Low power mode	0.05			
Dropout Voltage	$\begin{aligned} & \text { Normal mode, } \mathrm{V}_{\mathrm{SYS}}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=\mathrm{I}_{\mathrm{MAX}}, \mathrm{~V}_{\mathrm{DO}}=\mathrm{V}_{\text {INLX }}-\mathrm{V}_{\text {OUT }} \end{aligned}$			100	200	mV
Output Current Limit	$V_{\text {OUT }}=90 \%$ of $V_{\text {OUT(TARGET) }}$	Normal mode		600	1120	mA
		Low power mode	40			
Output Capacitance for Stability	DCR < 200m , ESL < 20nH (Note 9)		0.6	2.2		$\mu \mathrm{F}$

LDO10, LDO12 and LDO13 (300mA PMOSLS) (continued)

$\left(\mathrm{V}_{\text {SYS }}=+3.7 \mathrm{~V}, \mathrm{C}_{\text {SYS }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {REFBYP }}=100 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 5$)$

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
Output Noise	Normal mode, $\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , $\mathrm{I}_{\text {OUT }}=10 \%$ of $\mathrm{I}_{\mathrm{MAX}}$	$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMIN }} \end{aligned}$	25		$\mu \mathrm{V}_{\mathrm{RMS}}$
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=2.7 \mathrm{~V}, \\ & V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	30		
		$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$	40		
		$\begin{aligned} & V_{\text {SYS }}=V_{\text {INLX }}=3.7 \mathrm{~V}, \\ & V_{\text {OUT }}=3.0 \mathrm{~V} \end{aligned}$	60		
		$\begin{aligned} & \mathrm{V}_{\text {SYS }}=\mathrm{V}_{\text {INLX }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUTMAX }} \end{aligned}$	60		
Power Supply Rejection	Normal mode, $\mathrm{f}=1 \mathrm{kHz}$, $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$		70		dB
Output Load Transient ($\Delta \mathrm{V} / \mathrm{V}_{\text {OUT }}$)	Normal mode, $\mathrm{V}_{\mathrm{SYS}}=\mathrm{V}_{\text {INLX }}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ default, $\mathrm{I}_{\text {OUT }}=$ 1 mA to $1 / 2 \times \mathrm{I}_{\mathrm{MAX}}$ to 1 mA , $t_{\text {RISE }}=t_{\text {FALL }}=1 \mu \mathrm{~s}$	COUT $=2.2 \mu \mathrm{~F}$	± 5		\%
		$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$	± 3		
Output Line Transient	Normal mode, $\mathrm{V}_{\text {INLx }}=3.7 \mathrm{~V}$ to 3.2 V to $3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=$ default, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=5 \mu \mathrm{~s}$		5		mV
Output Startup Ramp Rate	10\% to 90\%		30		$\mathrm{mV} / \mathrm{\mu s}$
Turn-On Delay Time	From Lx_EN = 1 (or ENL12 = high) to output rising, REFBYP enabled $>300 \mu$ s prior to LDO being enabled		5		$\mu \mathrm{s}$
Output Overshoot During Startup Overshoot			50		mV
Output Active Discharge Resistance	(Note 10)		100		Ω
Thermal Shutdown	T_{J} rising		+165		${ }^{\circ} \mathrm{C}$
	T_{J} falling		+150		
POWER-OK COMPARATOR					
Output POK Trip Level	Rising edge, $\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		87.5		\%
Output POK Hysteresis	$\mathrm{V}_{\text {OUT }}$ when $\mathrm{V}_{\text {POK }}$ switches		3		\%

Note 3: Guaranteed by design. Not production tested.
Note 4: 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$, limits over the operating range are guaranteed by design.
Note 5: Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods.
Note 6: The maximum output current spec is not directly tested. Instead, it is guaranteed by LX NMOS current limit test.
Note 7: For NMOS LDOs, $\mathrm{V}_{\text {SYS }}$ must be at least 1.5 V above $\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {SYS }} \geq \mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V}\right)$.
Note 8: The maximum output current is guaranteed by the output voltage accuracy tests.
Note 9: For stability, guaranteed by design and not production tested.
Note 10: There is an n-channel MOSFET in series with the output active discharge resistance. This NMOS requires $\mathrm{V}_{\mathrm{SYS}}>1.2 \mathrm{~V}$ to be enhanced.

Pin Configurations

Pin Description

PIN	NAME	FUNCTION
C4	CE	Active-High Chip Enable Input. When CE $=$ high (standby), the ${ }^{2}$ ² interface is enabled and regulators are ready to be turned on. When CE $=$ low (shutdown), all regulators are turned off and all Type-O registers are reset to their POR default values.
D5	ENB	Active-High BUCK External Enable Input. An 800k Ω internal pull-down resistance to the GND. If this pin is not used, leave it floating.
E6	ENBB	Active-High BUCK BOOST External Enable Input. An 800k Ω internal pulldown resistance to the GND. If this pin is not used, leave it unconnected.
E4	ENL12	Active-High LDO12 External Enable Input. An 800k Ω internal pulldown resistance to the GND. If this pin is not used, leave it unconnected.
B3	FB_BB	BUCK Output Voltage Feedback
E5	GND	BUCK BOOST Output Voltage Feedback
E7	INB	BUCK Input. Bypass to PGNDB with a 10رF capacitor.
A1, A2	INBB	BUCK BOOST Input
F7, G7		

Pin Description (continued)

PIN	NAME	FUNCTION
B4	INL1	Input for LDO1 and 2. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
B5	INL2	Input for LDO3. Bypass to GND with a $1 \mu \mathrm{~F}$ capacitor.
C7	INL3	Input for LDO4, 5, 6, 7, 8, and 9. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
F2	INL4	Input for LDO10 and 11. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
F1	INL5	Input for LDO12, 13, 14, and 15. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
E3	IRQB	Interrupt Output. A $100 \mathrm{k} \Omega$ external pullup resistor to V_{10} is required.
B1, B2	LXB	BUCK Switching Node
F6, G6	LXBB1	BUCK BOOST Switching Node 1
F4, G4	LXBB2	BUCK BOOST Switching Node 2
A4	LDO1	
C6	LDO2	LDO2 (150mA NMOS) Output. Bypass to GND with a $1 \mu \mathrm{~F}$ capacitor.
A5	LDO3	LDO3 (450mA NMOS) Output. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
D7	LDO4	LDO4 (300mA PMOSLV) Output. Bypass to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
B7	LDO5	LDO5 ($300 \mathrm{~mA} \mathrm{PMOSLV)} \mathrm{Output} .\mathrm{Bypass} \mathrm{to} \mathrm{GND} \mathrm{with} \mathrm{a} 4.7 \mu \mathrm{~F}$ capacitor.
A7	LDO6	LDO6 (150mA PMOSLV) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
A6	LDO7	
B6	LDO8	LDO8 (150mA PMOSLV) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
D6	LDO9	LDO9 (150mA PMOSLV) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
G1	LDO10	
G2	LDO11	LDO11 (150mA PMOSLS) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
D1	LDO12	
E1	LDO13	
E2	LDO14	LDO14 (150mA PMOSLS) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
D2	LDO15	LDO15 (150mA PMOSLS) Output. Bypass to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
F3, G3	OUTBB	BUCK BOOST Output
C1, C2	PGNDB	BUCK Power GND
F5, G5	PGNDBB	BUCK BOOST Power GND
C5	REFBYP	LDO Reference Bypass Node. Connect a $0.1 \mu \mathrm{~F}$ Cap to GND.
D4	SCL	${ }^{2}{ }^{2} \mathrm{C}$ Clock Input. High Impedance in Off State. A $1.5 \mathrm{k} \Omega \sim 2.2 \mathrm{k} \Omega$ of pullup resistor to VIO is required.
D3	SDA	${ }^{2} \mathrm{C}$ Data I/O. High Impedance in Off State. A $1.5 \mathrm{k} \Omega-2.2 \mathrm{k} \Omega$ of pullup resistor to V_{IO} is required.
A3	SYS	System (Battery) Voltage Input. Bypass to GND with a $1 \mu \mathrm{~F}$ capacitor.
C3	V_{IO}	IO Supply Voltage Input. Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.

Block Diagram

Detailed Description

Top System Management

System Faults

The MAX77826 monitors the system for the following faults: global thermal, local thermal shutdown, and undervoltage lockout.

Global Thermal Fault

The MAX77826 has a centralized thermal protection circuit which monitors temperature on the die. If the die temperature exceeds $+165^{\circ} \mathrm{C}$ (TSHDN), a thermal shutdown event initiates, and the MAX77826 enters its global shutdown state.
In addition to the $+165^{\circ} \mathrm{C}$ threshold, there are two additional comparators that trip at $+120^{\circ} \mathrm{C}$ and $+140^{\circ} \mathrm{C}$. Interrupts are generated in the event the die temperature reaches $+120^{\circ} \mathrm{C}$ or $+140^{\circ} \mathrm{C}$.
There is a $15^{\circ} \mathrm{C}$ thermal hysteresis. After the thermal shutdown, if the die temperature reduces by $15^{\circ} \mathrm{C}$, the thermal shutdown bus deasserts.

Local Thermal Shutdown

If any of the BUCK BOOST or LDOs reach the thermal shutdown threshold, the MAX77826 shuts down the corresponding block locally. If the temperature goes below a threshold, that block goes back to normal operation.

Undervoltage Lockout

When $V_{\text {SYs }}$ falls below VUVLO_F (typ 2.05V), the MAX77826 enters its undervoltage lockout (UVLO) mode. UVLO forces the MAX77826 to a dormant state until the source voltage is high enough to allow the MAX77826 to be securely functional. $1^{2} \mathrm{C}$ does not function and the Type-O register contents are reset to their default values in UVLO mode. UVLO rising threshold is set to 2.5 V by an OTP option.
Chip Enable (CE)
A logic-high on CE pin puts the MAX77826 into standby mode (enabled). In standby mode, all user registers are accessible through ${ }^{2} \mathrm{C}$ so that the host processor can
overwrite the default output voltages of regulators and each regulator can be enabled by either $\mathrm{I}^{2} \mathrm{C}$ or the GPIO input if applicable.
When the CE pin goes high, the MAX77826 turns on the top-level bias circuitry, and it takes typically $85 \mu \mathrm{~s}$ to settle. As soon as the top-level bias is ready, BUCK BOOST is ready to be turned on. However, BUCK and LDOs require additional $85 \mu \mathrm{~s}$ (typ) for REFBYP to settle. Total, it takes $170 \mu \mathrm{~s}(85 \mu \mathrm{~s}+85 \mu \mathrm{~s})$ for REFBYP to settle from CE $=$ high. In the worst-case scenario, it can take up to $230 \mu \mathrm{~s}$. Once REFBYP is ready, all the regulators are allowed to be tuned on through $I^{2} \mathrm{C}$ or the ENx pins. In case the regulars are enabled before the bias circuitry is ready, the regulators require longer time to startup.
When CE pin is pulled low, the MAX77826 goes into shutdown mode (disabled) and turns off all the regulators regardless of ENx pins. This event also resets all Type-O registers to their POR default values.

Immediate Shutdown Events

The following events initiate immediate shutdown: thermal protection ($\mathrm{TJ}_{\mathrm{J}}>+165^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{SYS}}<\mathrm{V}_{\mathrm{SYS}}$ UVLO falling threshold (VUVLO_F), $\mathrm{V}_{\mathrm{IO}}<\mathrm{V}_{\mathrm{IO}}$ OK threshold ($\mathrm{V}_{\text {TH_VIO_OK }}$)
The events in this category are associated with potentially hazardous system states. Powering down the host processor and resetting all Type-O registers help mitigate any issues that can occur due to these potentially hazardous conditions. Note that the MAX77826 cannot be enabled until the junction temperature drops below $+150^{\circ} \mathrm{C}$ in case thermal protection caused the immediate shutdown.

Operating Mode (OPMD)

Each regulator (BUCK, BUCK BOOST, and LDO) has independent register bits to control its operating mode. These bits determines on/off operation during initial startup, output enable control, and sleep mode operation based on the enable control logic of each regulator. The POR default values of output enable bits (x_EN) are 0 (output off).

Enable Control Logic1

BUCK, BUCK BOOST, and LDO12 have independent ${ }^{12} \mathrm{C}$ enable bits and dedicated GPIO enable pins (ENB, ENBB, and ENL12). As shown in Table 1, regulators can be turned on/off by ENx or ${ }^{2}{ }^{2} \mathrm{C}$ control bits.

Enable Control Logic 2

LDO1-LDO11 and LDO13-LDO15 have independent ${ }^{2}$ C enable bits. As shown in Table 2, regulators can be turned on/off by the ${ }^{2} \mathrm{C}$ control bits.

Reset Conditions

System Reset

When $\mathrm{V}_{\text {SYS }}$ voltage drops below its POR threshold ($\approx 1.55 \mathrm{~V}$), all Type-S1 registers are reset to their POR default values.

Off Reset

Off reset occurs by any power-off events. This condition resets all Type-O registers to their POR default values.

Table 1. Enable Control
 Logic 1 Truth Table

CE	ENx	B_EN BB_EN L12_EN	B_LPM L12_LPM	OPERATING MODE
Low	x	x	x	Device off
High	Low	0	x	Output off
High	High	x	1	Output on (low power mode*)
High	High	x	0	Output on
High	x	1	1	Output on (low power mode*)
High	x	1	0	Output on

*The BUCK BOOST regulator does not have a low power mode.

Table 2. Enable Control

Logic 2 Truth Table

CE	Lx_EN	Lx_LPM	OPERATING MODE
Low	x	x	Device off
High	0	x	Output off
High	1	1	Output on (low power mode)
High	1	0	Output on

Interrupt and Mask

IRQB pin is used to indicate to the host processor that the status on the MAX77826 has changed. IRQB signal is asserted whenever one or more interrupts are triggered. The host processor reads the interrupt source register (ADDR 0x00) and the interrupt registers as indicated by the interrupt source register in order to see the cause of interrupt event.
Each interrupt register can be read at a time. IRQB pin goes high (cleared) as soon as the read sequence finishes. If an interrupt is captured during the read sequence, IRQB pin is held low. Note that the interrupt source register is cleared when the corresponding interrupt registers are read by the host processor.
Each interrupt can be masked (disabled) by setting the corresponding interrupt mask register bit. In case an interrupt mask bit is set (masked), the corresponding interrupt bit is not supposed to be set even when the interrupt condition is met. As a result, the IRQB pin stays high for this event. If the mask bit is cleared for an active interrupt, the corresponding interrupt bit is set to pull the IRQB pin low.

Figure 1. Enable Control Logic 1

Figure 2. Enable Control Logic 2

BUCK Regulator

The MAX77826 includes a 3A current-mode BUCK regulator. In normal operation, BUCK consumes only $22 \mu \mathrm{~A}$ quiescent current. In low power mode, the quiescent current is decreased to $8 \mu \mathrm{~A}$ with reduced load capability.

The summary of features is:

- 3A of maximum output current rating
- 2.6 V to 5.5 V input voltage range
- Output voltage range from 0.50 V to 1.80 V in 6.25 mV steps
- $\pm 1 \%$ (typ) output voltage DC accuracy
- 2 MHz (typ) switching frequency
- Automatic SKIP/PWM or forced PWM modes
- > 90\% peak efficiency
- Programmable slew rate for increasing output voltage settings

Operating Mode Control

The operating mode bit resides in the top level that controls the enable/disable state of BUCK through the B_EN register and also controls the operating mode (low power or normal mode) through the B_LPM register.

SKIP/Forced PWM Operation

In normal operating mode, BUCK automatically transitions from SKIP mode to fixed frequency operation as load current increases. For operating modes where lowest output ripple is required, forced PWM switching behavior can be enabled by writing 1 to B_FPWM bit.

Low Power Mode Operation

In low power mode, the quiescent current is reduced from $22 \mu \mathrm{~A}$ to $8 \mu \mathrm{~A}$. The output current is limited to 10 mA . It is not recommended to adjust the output voltage in low power mode. The regulator does not automatically enter/ exit low power mode. The host processor needs to control low power mode operation in times of known low power states through the $\mathrm{I}^{2} \mathrm{C}$ serial interface.

Startup and Soft-Start

When starting up BUCK regulator, the bias circuitry must be enabled and provided with adequate time to settle. The bias circuitry is guaranteed to settle within $250 \mu \mathrm{~s}$, at which time, the BUCK regulators' power-up sequences can commence. Note that attempting to implement a powerup sequence before BIASOK signal is generated results in all enabled regulators starting up at the same time.

The BUCK regulator supports starting into a prebiased output. For example, if the output capacitor has an initial voltage of 0.4 V when the regulator is enabled, the regulator gradually increases the capacitor voltage to the required target voltage such as 1.0 V . This is unlike other regulators without the start into prebias feature in which they can force the output capacitor voltage to OV before the soft-start ramp begins.
The BUCK regulator has a soft-start rate of $14 \mathrm{mV} / \mu \mathrm{s}$. The controlled soft-start rate and BUCK regulator current limit (ILIMP) limit the input inrush current to the output capacitor ($l_{\text {INRUSH }}$). $I_{\text {INRUSH }}=\min \left(l_{\text {LIMP }}\right.$ and COUT $\left.x d v / d t\right)$. Note that the input current of BUCK regulator is lower than the inrush current to the output capacitor by the ratio of output to input voltage.

Output Voltage Setting

The output voltage is programmable from 0.50 V to 1.80 V in 6.25 mV steps to allow fine adjustment to the processor supply voltage under light load conditions to minimize power loss within the processor. The default output voltage is set by an OTP option at the factory. The default output voltage can be overwritten by changing the contents in B_VOUT[7:0] register prior to enabling the regulator. The output voltage can also be adjusted during normal operation.

Changing Output Voltage While Operating

In a typical smartphone or tablet application, there are several power domains in which the operating frequency of the processor increases or decreases (DVFS). When the operating frequency needs to be changed, it is expected that BUCK regulator responds to a command to change the output voltages to new target values quickly. The high peak current limit, coupled with low inductance and small output capacitance, allows the BUCK regulator to respond to a positive step change in output voltage and settle to the new target value quickly. The BUCK regulator provides programmable ramp-up slew rates to accommodate different requirements.
For a negative step change in output voltage, the settling time is not critical. In forced PWM mode (either B_FPWM bit or B_FSRAD bit is enabled), the negative inductor current through NMOS discharges energy from the output capacitor to help the output voltage decrease to the new target value faster. In skip mode, negative inductor current is not allowed so that the output voltage settling time is dependent on the load current and the output capacitance.

Output Voltage Slew Rate Control

The BUCK regulator supports programmable slew rate control feature when increasing and decreasing the output voltage. The ramp-up slew rate can be set to $12.5 \mathrm{mV} / \mu \mathrm{s}$, $25 \mathrm{mV} / \mu \mathrm{s}, 50 \mathrm{mV} / \mu \mathrm{s}$ or $100 \mathrm{mV} / \mu \mathrm{s}$ independently through the B_RAMP[1:0] bits, while the ramp-down slew rate is fixed to $6.25 \mathrm{mV} / \mu \mathrm{s}$.

Output Active Discharge Resistance

BUCK provides an internal 100Ω resistor for output active discharge function. If the active discharge function is enabled ($B _A D=1$), the internal resistor discharges the energy stored in the output capacitor to GND whenever the regulator is disabled.
Either the regulator remains enabled or the active discharge function is disabled ($B _A D=0$), the internal resistor is disconnected from the output. If the active discharge function is disabled, the output voltage decays at a rate that is determined by the output capacitance and the load current when the regulator is turned off.

Inductor Selection

BUCK is optimized for a $0.47 \mu \mathrm{H}$ inductor. The lower the inductor DCR, the higher BUCK efficiency is. Users need to trade off inductor size with DCR value and choose a suitable inductor for BUCK.

Input Capacitor Selection

The input capacitor, C_{IN}, reduces the current peaks drawn from the battery or input power source and reduces switching noise in the IC. The impedance of C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly rec-
ommended due to their small size, low ESR, and small temperature coefficients. For most applications, a $10 \mu \mathrm{~F}$ capacitor is sufficient.

Output Capacitor Selection

The output capacitor, COUT, is required to keep the output voltage ripple small and to ensure regulation loop stability. COUT must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Due to the unique feedback network, the output capacitance can be very low. The recommended minimum output capacitance for BUCK is $22 \mu \mathrm{~F}$.

BUCK BOOST Regulator

The MAX77826 BUCK BOOST regulator utilizes a fourswitch H-bridge configuration to realize BUCK, BUCK BOOST, and BOOST operating modes. In this way, this topology maintains output voltage regulation when the input voltage is greater than, equal to, or less than the output voltage. The MAX77826 BUCK BOOST is ideal in Li-ion battery powered applications, providing 2.6 V to 4.1875 V output voltage and up to 2 A output current across the input voltage range. High switching frequency and a unique control algorithm allow the smallest solution size, low output noise, and highest efficiency across a wide input voltage and output current range.
The MAX77826 BUCK BOOST regulator typically generates a 3.50 V output voltage. The input current limit is set to 3.5 A (typ) to guarantee delivery of 2 A at 3.50 V from 3.0V input. Internal soft-start limits the inrush current at startup.

Table 3. Suggested Inductors for BUCK

MANUFACTURER	SERIES	NOMINAL INDUCTANCE ($\mu \mathrm{H}$)	$\begin{gathered} \text { DC } \\ \text { RESISTANCE } \\ \text { (typ, m } \Omega \text {) } \end{gathered}$	CURRENT RATING (A) -30\% ($\Delta \mathrm{L} / \mathrm{L}$)	CURRENT RATING (A) $\Delta \mathrm{T}=+40^{\circ} \mathrm{C}$ RISE	DIMENSIONS L x W x H (mm)
Semco	CIGT201610G MR47MNE	0.47	35	4.0	2.9	$2.0 \times 1.6 \times 1.0$
Toko	$\begin{gathered} \text { DFE201610-H } \\ \text {-R47N } \end{gathered}$	0.47	37	3.5	3.5	$2.0 \times 1.6 \times 1.0$

Figure 3. BUCK BOOST Block Diagram

H-Bridge Controller

The H-bridge architecture operates at 3 MHz fixed frequency with a pulse width modulated (PWM), current mode control scheme. This topology is in a cascade of a BOOST regulator and a BUCK regulator using a single inductor and output capacitor. BUCK, BUCK BOOST, and BOOST stages are 100\% synchronous for highest efficiency in portable applications.
There are three phases implemented with the H-bridge switch topology, as shown in Figure 4:
Ф1 switch period (Phase 1: P1 = on, N2 = on) stores energy in the inductor, ramping up the inductor current at a rate proportional to the input voltage divided by inductance; VINBB/L.
Ф2 switch period (Phase 2: P1 = on, N3 = on) ramps the inductor current up or down, depending on the differential voltage across the inductor, divided by inductance; $\pm\left(\mathrm{V}_{\text {INBB }}-\mathrm{V}_{\text {OUTBB }}\right) / \mathrm{L}$.
Ф3 switch period (Phase 3: N1 = on, N3 = on) ramps down the inductor current at a rate proportional to the output voltage divided by inductance, $-\mathrm{V}_{\text {OUTBB }} / \mathrm{L}$.

Figure 4. BUCK BOOST Switching Intervals

2-Phase BUCK topology is utilized when $\mathrm{V}_{\text {INBB }}>\mathrm{V}_{\text {OUTBB }}$. A switching cycle is completed in one clock periods. Switch period $\Phi 2$ is followed by switch period $\Phi 3$, resulting in an inductor current waveform similar to Figure 5.
3-Phase BUCK topology is utilized when $\mathrm{V}_{\text {INBB }}>\mathrm{V}_{\text {OUTBB }}$ and 2-Phase BUCK cannot support V_{O}. Switch period is: $\Phi 1 \rightarrow \Phi 2 \rightarrow \Phi 3$. Switch period $\Phi 1$ is fixed. This results in an inductor current waveform similar to Figure 6.
2-Phase BOOST topology is utilized when $\mathrm{V}_{\text {INBB }}$ < VOUTBB. A switching cycle is completed in one clock periods. Switch period $\Phi 1$ is followed by switch period $\Phi 2$, resulting in an inductor current waveform similar to Figure 7.
3-Phase BOOST topology is utilized when $\mathrm{V}_{\text {INBB }}<$ $V_{\text {OUTBB }}$ and 2-Phase BOOST cannot support V_{O}. Switch period is: $\Phi 1 \rightarrow \Phi 2 \rightarrow \Phi 3$. Switch period $\Phi 3$ is fixed. This results in an inductor current waveform similar to Figure 8.

Inductor Selection

BUCK BOOST is optimized for a $1 \mu \mathrm{H}$ inductor. The lower the inductor DCR, the higher BUCK BOOST efficiency is.

Users need to trade off inductor size with DCR value and choose a suitable inductor for BUCK BOOST.

The input capacitor, C_{IN}, reduces the current peaks drawn from the battery or input power source and reduces switching noise in the IC. The impedance of $\mathrm{C}_{I N}$ at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a $10 \mu \mathrm{~F}$ capacitor is sufficient.

Output Capacitor Selection

The output capacitor, COUT, is required to keep the output voltage ripple small and to ensure regulation loop stability. COUT must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Due to the unique feedback network, the output capacitance can be very low. The recommended minimum output capacitance for BUCK BOOST is $47 \mu \mathrm{~F}$.

Figure 7. 2-Phase BOOST Mode Switching Current Waveform

Figure 8. BOOST Mode Switching Current Waveforms When $V_{\text {INBB }}<V_{\text {OUTBB }}$

Figure 6. 3-Phase BUCK Switching Current Waveforms When $V_{\text {INBB }}>V_{\text {OUTBB }}$

Figure 5. 2-Phase BUCK Switching Current Waveforms

Table 4. Suggested Inductors for BUCK BOOST

MANUFACTURER	SERIES	NOMINAL INDUCTANCE ($\mu \mathrm{H}$)	$\begin{gathered} \text { DC } \\ \text { RESISTANCE } \\ \text { (typ, m } \Omega \text {) } \end{gathered}$	CURRENT RATING (A) -30% ($\Delta \mathrm{L} / \mathrm{L}$)	CURRENT RATING (A) $\Delta \mathrm{T}=+40^{\circ} \mathrm{C}$ RISE	DIMENSIONS L x W x H (mm)
TDK	$\begin{gathered} \text { TFM201610GHM } \\ \text {-1R0MTAA } \end{gathered}$	1.0	50	3.8	3.0	$2.0 \times 1.6 \times 1.0$

Linear Regulators

The MAX77826 provides 15 low dropout linear regulators including 3 NMOS LDOs, 6 PMOSLV LDOs, and 6 PMOSLS LDOs. Each of these regulators draws $27 \mu \mathrm{~A} / 18 \mu \mathrm{~A}$ (NMOS/PMOS) of quiescent current in normal operating mode and $<5 \mu \mathrm{~A}$ in low power mode. PMOSLV LDOs allow input voltages as low as 1.7 V for optimized system efficiency.
All regulators can be operated in low power mode that supports up to 5 mA of maximum load current.
The summary of features is:

- 3 NMOS LDOs (Vout range: 0.6 V to 2.1875 V with 12.5 mV step)
- $1 \times 150 \mathrm{~mA}$
- $1 \times 450 \mathrm{~mA}$
- $1 \times 600 \mathrm{~mA}$
- 6 PMOSLV LDOs (VOUT range: 0.8 V to 3.975 V with 25 mV step)
- $3 \times 150 \mathrm{~mA}$
- $3 \times 300 \mathrm{~mA}$
- 6 PMOSLS LDOs (Vout range: 0.8 V to 3.975 V with 25 mV step)
- $3 \times 150 \mathrm{~mA}$
- $3 \times 300 \mathrm{~mA}$
- $\pm 1.5 \%$ typical Output Voltage DC Accuracy
- 70 dB PSRR at 1 kHz

LDO Reference

The MAX77826 has a single LDOREF bias rail. LDOREF is enabled or disabled along with the central bias block (SBIA) so that LDOREF is ready whenever any LDO turns on. It has a very low quiescent current of $2 \mu \mathrm{~A}$ typical.

Operating Mode Control

The operation mode bits for each LDO reside in the top level that controls the enable/disable state for each LDO through the Lx_EN signal and also controls the operation modes (low power or normal mode) for each LDO through the Lx_LPM signal.

Low Power Mode

In low power mode, the quiescent current of each LDO is reduced from $27 \mu \mathrm{~A} / 18 \mu \mathrm{~A}$ (NMOS/PMOS) to less than $5 \mu \mathrm{~A}$. The output current of each LDO is limited to 5 mA if operating in low power mode. Each LDO can be individually enabled to operate in low power mode.

Soft-Start and Dynamic Voltage Change

When a regulator is enabled, the output voltage ramps to the final voltage at the slew rate of $30 \mathrm{mV} / \mu \mathrm{s}$. The $30 \mathrm{mV} /$ $\mu \mathrm{s}$ ramp rate results in around 30 mA inrush current with a $1.0 \mu \mathrm{~F}$ output capacitor under no load condition. For a 1.8 V LDO ramping from OV , the output voltage regulation is achieved within $60 \mu \mathrm{~s}$. The soft-start ramp rate is also the rate of change at the output when switching dynamically between two output voltages without disabling. The soft-start circuitry of LDOs supports starting into a prebiased output.

Output Active Discharge

Each LDO provides an internal 100Ω resistor for output active discharge function. If the active discharge function is enabled ($L x _A D=1$), the internal resistor discharges the energy stored in the output capacitor to GND whenever the regulator is disabled.
Either the regulator remains enabled or the active discharge function is disabled ($L x _A D=0$), the internal resistor is disconnected from the output. If the active discharge function is disabled, the output voltage decays at a rate that is determined by the output capacitance and the load current when the regulator is turned off.

Thermal Considerations

In most applications, the MAX77826 does not dissipate much heat because of its high efficiency. However, in applications where the MAX77826 runs with heavy loads at high ambient temperature, the junction temperature can exceed the maximum operating temperature. In case the junction temperature reaches approximately $+165^{\circ} \mathrm{C}$, the thermal overload protection triggers. The maximum power dissipation of the MAX77826 depends on the thermal resistance of the IC package and PCB. The power dissipated in the device is:

$$
P_{D}=\text { POUT } \times(1 / \eta-1)
$$

where η is the efficiency of the regulator and POUT is the output power delivered to the load.
The maximum allowed power dissipation is:

$$
P_{\text {MAX }}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}
$$

$T_{\text {JMAX }}-T_{A}$ is the temperature difference between the maximum rated junction temperature and the ambient temperature, θ_{JA} is the thermal resistance between the junction and the ambient.

Serial Interface

The ${ }^{12}$ C-compatible, 2 -wire serial interface is used for regulator on/off control, setting output voltages, and other functions. See the Register Map for details.
The I2C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). ${ }^{2}$ C is an open-drain bus. SDA and SCL require pullup resistors (500Ω or greater). Optional 24Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines.

System Configuration

${ }^{2} \mathrm{C}$ bus is a multimaster bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance.
The figure above shows an example of a typical ${ }^{2}{ }^{2} \mathrm{C}$ system. A device on $I^{2} \mathrm{C}$ bus that sends data to the bus in called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is addressed by the master is considered a slave. When the MAX77826 ${ }^{2}{ }^{2} \mathrm{C}$-compatible interface is operating in normal mode, it is a slave on $I^{2} \mathrm{C}$ bus, and it can be both a transmitter and a receiver.

Bit Transfer

One data bit transfers for each SCL clock cycle. The data on SDA must remain stable during the high portion of SCL clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions).

START and STOP Conditions

When the $I^{2} \mathrm{C}$ serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high.
A START condition from the master signals the beginning of a transmission to the MAX77826. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition.
A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.
When a STOP condition or incorrect address is detected, the MAX77826 internally disconnects SCL from the ${ }^{2}{ }^{2} \mathrm{C}$ serial interface until the next START condition, minimizing digital noise and feedthrough.

Figure 9. Functional Logic Diagram for Communications Controller

Figure 10. $I^{2} \mathrm{C}$ Bit Transfer

Figure 11. START and STOP Conditions

Acknowledge

Both the I2C bus master and MAX77826 (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each 9-bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.
Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Slave Address

The I^{2} C slave address of the MAX77826 is shown in Table 5.
In general, the clock signal generation for the ${ }^{2} \mathrm{C}$ bus is the responsibility of the master device. The ${ }^{2} \mathrm{C}$ specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The MAX77826 does not use any form of clock stretching to hold down the clock line.

General Call Address

The MAX77826 does not implement ${ }^{2} \mathrm{C}$ specification general call address. If the MAX77826 sees the general call address (00000000b), it does not issue an ACKNOWLEDGE (A).

Table 5. Power Management Slave

Address

SLAVE ADDRESS (7 bit)	SLAVE ADDRESS (Write)	SLAVE ADDRESS (Read)
1100000	$0 \times C 0(11000000)$	$0 \times C 1(11000001)$

Communication Speed

The MAX77826 provides an ${ }^{2} \mathrm{C}$ 3.0 -compatible (3.4 MHz) serial interface.

- ${ }^{2} \mathrm{C}$ revision 3-compatible serial communications channel
- 0 Hz to 100 kHz (standard mode)
- 0 Hz to 400 kHz (fast mode)
- OHz to 1 MHz (fast mode plus)
- OHz to 3.4 MHz (high-speed mode)
- Does not utilize $\mathrm{I}^{2} \mathrm{C}$ clock stretching

Operating in standard mode, fast mode and fast mode plus do not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance ($C \times R$) slow the bus operation. Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the Pullup Resistor Sizing section of ${ }^{2} \mathrm{C}$ revision 3.0 specification for detailed guidance on the pullup resistor selection. In general for bus capacitances of 200 pF , a 100 kHz bus needs $5.6 \mathrm{k} \Omega$ pullup resistors, a 400 kHz bus needs about a $1.5 \mathrm{k} \Omega$ pullup resistors, and a 1 MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates power when the opendrain bus is low. The lower the value of the pullup resistor, the higher the power dissipation is (V2/R).
Operating in high-speed mode requires some special considerations. For the full list of considerations, refer to the I2C 3.0 specification. The major considerations with respect to the MAX77826 are:

- The ${ }^{2} \mathrm{C}$ bus master uses current source pullups to shorten the signal rise times.
- The ${ }^{2}$ 2 slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.
- The communication protocols need to utilize the highspeed master code.

Figure 12. Slave Address Byte Example for Power Block

At power-up and after each STOP condition, the MAX77826 inputs filters are set for standard mode, fast mode, or fast mode plus (i.e., 0 Hz to 1 MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in Communication Protocols section.

Communication Protocols

The MAX77826 supports both writing and reading from its registers. Table TBD shows the I^{2} C communication protocols for each functional block. The power block uses the same communications protocols.

Writing to a Single Register

Figure 13 shows the protocol for the $\mathrm{I}^{2} \mathrm{C}$ master device to write one byte of data to the MAX77826. This protocol is the same as the SMBus specification's write byte protocol. The write byte protocol is as follows:

1) The master sends a START command (S).
2) The master sends the 7-bit slave address followed by a write bit ($R / \bar{W}=0$).
3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave updates with the new data
8) The slave acknowledges or does not acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
9) The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1 MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Writing to Sequential Registers

Figure 14 shows the protocol for writing to a sequential registers. This protocol is similar to the write byte protocol, except the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or REPEATED START. The writing to sequential registers protocol is as follows:

1) The master sends a START command (S).
2) The master sends the 7-bit slave address followed by a write bit ($\mathrm{R} / \overline{\mathrm{W}}=0$).

Figure 13. Writing to a Single Register with Write Byte Protocol
3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA LOW.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register, and the data becomes active.
8) Steps 6 and 7 are repeated as many times as the master requires.
9) During the last acknowledge related clock pulse, the master can issue an ACKNOWLEDGE (A) or a NOT ACKNOWLEDGE (nA).
10) The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1 MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 14. Writing to Sequential Registers X to N

Writing Multiple Bytes using Register-Data Pairs

Figure 15 shows the protocol for $\mathrm{I}^{2} \mathrm{C}$ master device to write multiple bytes to the MAX77826 using register-data pairs. This protocol allows ${ }^{2}{ }^{2} \mathrm{C}$ master device to address the slave only once and then send data to multiple registers in a random order. Registers can be written continuously until the master issues a STOP condition. The multiple byte register-data pair protocol is as follows:

1) The master sends a START command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
8) Steps 4 to 7 are repeated as many times as the master requires.
9) The master sends a STOP condition. During the rising edge of the stop related SDA edge, the data byte that was previously written is loaded into the target register and becomes active.

Figure 15. Writing to Multiple Registers with Multiple Byte Register-Data Pairs Protocol

Reading from a Single Register

The $I^{2} \mathrm{C}$ master device reads one byte of data to the MAX77826. This protocol is the same as SMBus specification's read byte protocol. The read byte protocol is as follows:

1) The master sends a START command (S).
2) The master sends the 7-bit slave address followed by a write bit ($R / \bar{W}=0$).
3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START command (Sr).
7) The master sends the 7-bit slave address followed by a read bit ($R / \bar{W}=1$).
8) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
9) The addressed slave places 8 bit of data on the bus from the location specified by the register pointer.
10) The master issues a NOT ACKNOWLEDGE (nA).
11) The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1 MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.
Note that every time MAX77826 receives a STOP, its register pointer is set to 0×00. If reading register 0×00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

Reading from Sequential Registers

Figure 16 shows the protocol for reading from sequential registers. This protocol is similar to the read byte protocol except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data. When the master has all the data it requires, it issues a NOT ACKNOWLEDGE ($n A$) and a STOP (P) to end the transmission. The continuous read from sequential registers protocol is as follows:

1) The master sends a START command (S).
2) The master sends the 7-bit slave address followed by a write bit ($\mathrm{R} / \overline{\mathrm{W}}=0$).
3) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA LOW.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START command (Sr).
7) The master sends the 7-bit slave address followed by a read bit ($R / \bar{W}=1$).
8) The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
9) The addressed slave places 8 bit of data on the bus from the location specified by the register pointer.
10) The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.
11) Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.
12) The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1 MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.
Note that every time the MAX77826 receives a STOP its register pointer is set to $0 x 00$. If reading register 0×00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

Engaging HS-Mode for Operation up to 3.4 MHz

Figure 17 shows the protocol for engaging HS mode operation. HS mode operation allows for a bus operating speed up to 3.4 MHz . The engaging HS mode protocol is as follows:

1) Begin the protocol while operating at a bus speed of 1 MHz or lower.
2) The master sends a START command (S).
3) The master sends the 8-bit master code of 00001xxxb where xxxb are don't care bits.
4) The addressed slave issues a NOT ACKNOWLEDGE (nA).
5) The master may now increase its bus speed up to 3.4 MHz and issue any read/write operation.
6) The master may continue to issue high-speed read/ write operations until a STOP (P) is issued. Issuing a STOP (P) ensures that the bus input filters are set for 1 MHz or slower operation. After a STOP has been issued, steps 1 to 6 in the above algorithm may be skipped.

Figure 16. Reading Continuously from Sequential Registers with X to N

Figure 17. Engaging HS Mode

PMIC Registers

Register Reset Conditions

Type-S1: Registers are reset when $\mathrm{V}_{\text {SYS }}<\operatorname{POR}(\approx 1.55 \mathrm{~V})$
Type-O: Registers are reset when $V_{S Y S}<V_{U V L O} O R V_{I O}<V_{T H}$ VIO_OK $O R$ CE $=$ LOW
Register Map
$\mathrm{I}^{2} \mathrm{C}$ Slave Address (W/R): 0xC0/0xC1

ADDR	NAME	RESET TYPE	R/W	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	RESET VALUE
0x00	INT_SRC	Type-O	R	RSVD	RSVD	RSVD	RSVD	RSVD	BB_INT	$\begin{aligned} & \text { REG_ } \\ & \text { INT }^{-} \end{aligned}$	TOPSYS _INT	0x00
0×01	SYS_INT	Type-S1	R/C	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{aligned} & \text { TJCT_- } \\ & 120 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { TJCT_- } \\ & 140 \mathrm{C} \end{aligned}$	0x00
0x02	REG_ INT1	Type-S1	R/C	$\begin{aligned} & \text { LDO8_ }_{-} \\ & \text {POKn } \end{aligned}$	$\begin{aligned} & \mathrm{LDO}_{-} \\ & \text {POKn } \end{aligned}$	$\begin{gathered} \text { LDO6 }_{-}^{\prime} \\ \text { POKn } \end{gathered}$	$\begin{aligned} & \mathrm{LDO5}_{-} \\ & \text {POKn } \end{aligned}$	$\begin{gathered} \mathrm{LDO}_{-} \\ \text {POKn } \end{gathered}$	$\begin{aligned} & \text { LDO3_ }_{-} \\ & \text {POKn } \end{aligned}$	$\begin{gathered} \text { LDO2_ }_{-} \\ \text {POKn } \end{gathered}$	$\begin{aligned} & \text { LDO1_ } \\ & \text { POKn } \end{aligned}$	0x00
0x03	$\begin{aligned} & \text { REG_ } \\ & \text { INT2 } \end{aligned}$	Type-S1	R/C	B_POKn	LDO15 POKn	$\begin{gathered} \text { LDO14- } \\ \text { POKn } \end{gathered}$	$\begin{aligned} & \text { LDO13_ } \\ & \text { POKn } \end{aligned}$	$\begin{gathered} \text { LDO12_ } \\ \text { POKn } \end{gathered}$	$\begin{aligned} & \text { LDO11- } \\ & \text { POKn } \end{aligned}$	$\begin{aligned} & \text { LDO10_ } \\ & \text { POKn } \end{aligned}$	$\begin{gathered} \text { LDO9_ } \\ \text { POKn } \end{gathered}$	0x00
0x04	$\begin{aligned} & \mathrm{BB}_{-} \\ & \mathrm{INT} \end{aligned}$	Type-S1	R/C	RSVD	RSVD	RSVD	RSVD	RSVD	BB_POKn	$\begin{aligned} & \mathrm{BB}_{-} \\ & \mathrm{OVP} \end{aligned}$	BB_OCP	0x00
0x05	$\begin{aligned} & \text { INT_- } \\ & \text { SRC_M } \end{aligned}$	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{gathered} \text { BB__ } \\ \text { INT_M } \end{gathered}$	$\begin{aligned} & \text { REG_- } \\ & \text { INT_M } \end{aligned}$	TOPSYS _INT_M	0x07
0x06	$\begin{aligned} & \text { TOPSYS } \\ & \text { _INT_M } \end{aligned}$	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{aligned} & \text { TJCT_- } \\ & \text { 120C_M } \end{aligned}$	$\begin{aligned} & \text { TJCT_-_ } \\ & \text { 140C_M } \end{aligned}$	0x03
0x07	$\begin{aligned} & \text { REG_- } \\ & \text { INT1_M } \end{aligned}$	Type-O	R/W	$\begin{aligned} & \text { LDO8_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO7_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO6_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO5_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO4_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO3_- }_{\text {POKn_M }} \end{aligned}$	$\begin{aligned} & \text { LDO2_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO1_- } \\ & \text { POKn_M } \end{aligned}$	0xFF
0x08	$\begin{aligned} & \text { REG_- } \\ & \text { INT2_M } \end{aligned}$	Type-O	R/W	$\underset{\text { POKn_M }}{\mathrm{B}_{-}}$	LDO15 POKn_M	$\begin{aligned} & \text { LDO14_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO13_ } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO12 } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO11_- } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO10_ } \\ & \text { POKn_M } \end{aligned}$	$\begin{aligned} & \text { LDO9_- } \\ & \text { POKn_M } \end{aligned}$	0xFF
0x09	$\begin{aligned} & \mathrm{BB} \text { _} \\ & \text { INT_M } \end{aligned}$	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{gathered} \mathrm{BB}_{-} \\ \text {POKn_M } \end{gathered}$	$\begin{gathered} \text { BB_- } \\ \text { OVP_M } \end{gathered}$	$\begin{gathered} \text { BB_- } \\ \text { OCP_M } \end{gathered}$	0x07
0x0A	$\begin{gathered} \text { TOPSYS_- } \\ \text { STAT } \end{gathered}$	Type-O	R	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{aligned} & \text { TJCT_- } \\ & 120 C^{\prime} \end{aligned}$	$\begin{aligned} & \text { TJCT_- } \\ & 140 \mathrm{C} \end{aligned}$	-
0x0B	$\begin{aligned} & \text { REG } \\ & \text { STAT1 } \end{aligned}$	Type-O	R	$\begin{gathered} \text { LDO8_ } \\ \text { POKn } \end{gathered}$	$\begin{aligned} & \text { LDO7- } \\ & \text { POKn } \end{aligned}$	$\begin{gathered} \text { LDO6 }_{-} \\ \text {POKn } \end{gathered}$	$\begin{aligned} & \text { LDO5_ }_{-} \end{aligned}$	$\begin{gathered} \mathrm{LDO}_{-} \\ \text {POKn } \end{gathered}$	$\begin{gathered} \text { LDO3_ }_{-} \\ \text {POKn } \end{gathered}$	$\begin{gathered} \mathrm{LDO}_{2} \\ \text { POKn } \end{gathered}$	$\begin{aligned} & \text { LDO1_- } \\ & \text { POKn } \end{aligned}$	-
0x0C	$\begin{aligned} & \text { REG_ } \\ & \text { STAT2 } \end{aligned}$	Type-O	R	B_POKn	LDO15_ POKn	$\begin{gathered} \text { LDO14- } \\ \text { POKn } \end{gathered}$	$\begin{gathered} \text { LDO13_ } \\ \text { POKn } \end{gathered}$	LDO12_ POKn	$\begin{aligned} & \text { LDO11_ } \\ & \text { POKn } \end{aligned}$	$\begin{aligned} & \text { LDO10_ } \\ & \text { POKn } \end{aligned}$	$\begin{gathered} \text { LDO9 } \\ \text { POKn } \end{gathered}$	-
0x0D	$\begin{aligned} & \text { BB_ } \\ & \text { STAT } \end{aligned}$	Type-O	R	RSVD	RSVD	RSVD	RSVD	RSVD	$\begin{aligned} & \text { BB_ } \\ & \text { POKn } \end{aligned}$	$\begin{aligned} & \mathrm{BB} \\ & \mathrm{OVP} \end{aligned}$	$\begin{aligned} & \mathrm{BB}_{-} \\ & \mathrm{OCP} \end{aligned}$	-
$\begin{gathered} 0 \times 0 \mathrm{E}- \\ 0 \times 0 \mathrm{~F} \end{gathered}$	RSVD											
0x10	$\begin{aligned} & \text { LDO_- } \\ & \text { OPMD1 } \end{aligned}$	Type-O	R/W	L4_EN	L4_LPM	L3_EN	L3_LPM	L2_EN	L2_LPM	L1_EN	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{LPM}_{-} \end{aligned}$	0x00

Register Map (continued)
${ }^{2}$ ²C Slave Address (W/R): 0xC0/0xC1 (continued)

ADDR	NAME	RESET TYPE	R/W	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	RESET VALUE
0x11	$\begin{aligned} & \hline \text { LDO- } \\ & \text { OPMD2 } \end{aligned}$	Type-O	R/W	L8_EN	L8_LPM	L7_EN	L7_LPM	L6_EN	L6_LPM	L5_EN	$\begin{aligned} & \hline \text { L5_ } \\ & \text { LPM } \end{aligned}$	0x00
0x12	$\begin{aligned} & \hline \text { LDO_ } \\ & \text { OPMD3 } \end{aligned}$	Type-O	R/W	L12_EN	$\begin{aligned} & \hline \text { L12 } \\ & \text { LPM } \end{aligned}$	L11_EN	L11_LPM	L10_EN	L10_LPM	L9_EN	$\begin{aligned} & \hline \text { L9 } \\ & \text { LPM } \end{aligned}$	0x00
0x13	$\begin{aligned} & \hline \text { LDO- } \\ & \text { OPMD4 } \end{aligned}$	Type-O	R/W	RSVD	RSVD	L15_EN	L15_LPM	L14_EN	L14_LPM	$\begin{gathered} \mathrm{L}^{\mathrm{L} 13} \\ \mathrm{EN} \end{gathered}$	$\begin{aligned} & \text { L13 } \\ & \text { LPM } \end{aligned}$	0x00
0x14	$\begin{aligned} & \hline \text { B_BB } \\ & \text { OPMD } \end{aligned}$	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	BB_EN	RSVD	B_EN	$\begin{gathered} \mathrm{B}_{-} \\ \text {LPM } \end{gathered}$	0x00
$\begin{aligned} & \hline 0 \times 15- \\ & 0 \times 1 \mathrm{~F} \end{aligned}$	RSVD											
0x20	$\begin{gathered} \text { LDO1_- } \\ \text { CFG } \end{gathered}$	Type-O	R/W	L1_AD	L1_VOUT[6:0]							0xA0
0x21	$\begin{gathered} \mathrm{LDO}_{2} \\ \mathrm{CFG}^{-} \end{gathered}$	Type-O	R/W	L2_AD	L2_VOUT[6:0]							0xA0
0x22	$\begin{gathered} \mathrm{LDO}_{3} \\ \mathrm{CFG} \end{gathered}$	Type-O	R/W	L3_AD	L3_VOUT[6:0]							0xA0
0x23	$\begin{gathered} \mathrm{LDO}^{-} \\ \mathrm{CFGG}^{-} \end{gathered}$	Type-O	R/W	L4_AD	L4_VOUT[6:0]							0x9C
0x24		Type-O	R/W	L5_AD	L5_VOUT[6:0]							0xA8
0x25	$\begin{aligned} & \mathrm{LDO}^{\mathrm{CDO}} \end{aligned}$	Type-O	R/W	L6_AD	L6_VOUT[6:0]							0xA8
0x26	$\begin{gathered} \mathrm{LDO}_{-}^{-} \\ \mathrm{CFFG}^{-} \end{gathered}$	Type-O	R/W	L7_AD	L7_VOUT[6:0]							0xA8
0x27	$\begin{gathered} \text { LDO8- } \\ \mathrm{CFFG}^{-} \end{gathered}$	Type-O	R/W	L8_AD	L8_VOUT[6:0]							0xA8
0x28	$\begin{gathered} \mathrm{LDO}_{-}^{-} \\ \mathrm{CFFG} \end{gathered}$	Type-O	R/W	L9_AD	L9_VOUT[6:0]							0xA8
0x29	$\begin{gathered} \text { LDO10_ } \\ \text { CFG }^{-} \end{gathered}$	Type-O	R/W	L10_AD	L10_VOUT[6:0]							0xD0
0x2A	LDO11	Type-O	R/W	L11_AD	L11_VOUT[6:0]							0xD0

Register Map (continued)

ADDR	NAME	RESET TYPE	R/W	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	RESET VALUE
0×2B	$\begin{gathered} \hline \text { LDO12 } \\ \text { _CFG } \end{gathered}$	Type-O	R/W	L12_AD	L12_VOUT[6:0]							0xE4
0x2C	$\begin{gathered} \mathrm{LDO13}_{-} \\ \text {CFG } \end{gathered}$	Type-O	R/W	L13_AD	L13_VOUT[6:0]							0xE4
0x2D	$\begin{gathered} \text { LDO14_ } \\ \text { CFG } \end{gathered}$	Type-O	R/W	L14_AD	L14_VOUT[6:0]							0xE4
0x2E	$\begin{gathered} \mathrm{LDO}_{\mathrm{L}} \mathrm{CFG}_{-}^{-} \end{gathered}$	Type-O	R/W	L15_AD	L15_VOUT[6:0]							0xE4
0×2F	RSVD											
0x30	$\begin{gathered} \text { BUCK_- } \\ \mathrm{CFG}^{-} \end{gathered}$	Type-O	R/W	B_RAMP[1:0]		RSVD	RSVD	B_AD	B_FPWM	RSVD	$\stackrel{B}{\text { B }}$ -	0x09
0x31	BUCK VOUT	Type-O	R/W	B_VOUT[7:0]								0x78
0x32	BB_CFG	Type-O	R/W	RSVD	RSVD	BB_O	TH[1:0]	BB_AD	$\begin{gathered} \mathrm{BB}_{-1} \\ \text { HSKIP } \end{gathered}$	${ }^{\mathrm{BB}}$	RSVD	0x3C
0x33	$\begin{aligned} & \mathrm{BB}_{-} \\ & \text {voút } \end{aligned}$	Type-O	R/W	RSVD	BB_VOUT[6:0]							0x48
$\begin{aligned} & 0 \times 34- \\ & 0 \times 3 F \end{aligned}$	RSVD											
0x40	$\begin{gathered} \text { BUCK_- } \\ \text { SS_FREQ } \end{gathered}$	Type-O	R/W	RSVD	RSVD	RSVD	B_SS	RSVD	B_FREQ[2:0]			0x04
0×41	UVLO FALL	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	UVLO_F[1:0]		0x01
$\begin{aligned} & 0 \times 42- \\ & 0 \times F F \end{aligned}$	RSVD											

INT_SRC

Interrupt Source Register

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: $\mathbf{0 x 0 0}$
$\mathbf{0 x 0 0}$	\mathbf{R}			
BIT	NAME	POR		
$7: 3$	RSVD	00000		
2	BB_INT	0	1: Interrupt event on BUCK BOOST is detected.	
1	REG_INT	0	1 : Interrupt event on BUCK or LDOs is detected.	
0	TOPSYS_INT	0	$1:$ Interrupt event on TOPSYS is detected.	

TOPSYS_INT
TOPSYS Interrupt Register

ADDRESS	MODE		TYPE: $\mathbf{S 1}$	RESET VALUE: $\mathbf{0 x 0 0}$
$\mathbf{0 x 0 1}$	R/C			
BIT	NAME	POR		
$7: 2$	RSVD	000000		
1	TJCT_120C	0	DESCRIPTION	
0	TJCT_140C	0	1: Junction temperature (TJCT) is higher than $+120^{\circ} \mathrm{C}$.	

REG_INT1

Regulators Interrupt Register1

ADDRESS	MODE		TYPE: $\mathbf{S 1}$	RESET VALUE: 0x00
0×02	R/C			
BIT	NAME	POR		
7	LDO8_POKn	0	1: LDO8 POKn is triggered.	
6	LDO7_POKn	0	1: LDO7 POKn is triggered.	
5	LDO6_POKn	0	1: LDO6 POKn is triggered.	
4	LDO5_POKn	0	1: LDO5 POKn is triggered.	
3	LDO4_POKn	0	1: LDO4 POKn is triggered.	
2	LDO3_POKn	0	1: LDO3 POKn is triggered.	
1	LDO2_POKn	0	1: LDO2 POKn is triggered.	
0	LDO1_POKn	0	1: LDO1 POKn is triggered.	

REG_INT2

Regulators Interrupt Register2

ADDRESS	MODE		TYPE: $\mathbf{S 1}$	RESET VALUE: 0x00
0×03	NAME	POR		
BIT	B_POKn	0	1: BUCK POKn is triggered.	
7	LDO15_POKn	0	1: LDO15 POKn is triggered.	
6	LDO14_POKn	0	1: LDO14 POKn is triggered.	
5	LDO13_POKn	0	1: LDO13 POKn is triggered.	
4	LDO12_POKn	0	1: LDO12 POKn is triggered.	
3	LDO11_POKn	0	1: LDO11 POKn is triggered.	
2	LDO10_POKn	0	1: LDO10 POKn is triggered.	
1	LDO9_POKn	0	1: LDO9 POKn is triggered.	
0				

BB_INT

BUCK BOOST Interrupt Register

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00
$\mathbf{0 x 0 4}$	R/C			
BIT	NAME	POR		
$7: 3$	RSVD	00000		
2	BB_POKn	0	1: BUCK BOOST POKn is triggered.	
1	BB_OVP	0	1: BUCK BOOST OVP is triggered.	
0	BB_OCP	0	1: BUCK BOOST OCP is triggered.	

INT_SRC_M
Interrupt Source Mask Register

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0x07	
0x05	R/W				
BIT	NAME	POR			
$7: 3$	RSVD	00000			
2	BB_INT_M	1	0: Enable BUCK BOOST interrupt events. 1: Mask BUCK BOOST interrupt events.		
1	REG_INT_M	1	0: Enable REG interrupt events. $1:$ Mask REG interrupt events.		
0	TOPSYS_INT_M	1	0: Enable TOPSYS interrupt events. 1: Mask TOPSYS interrupt events.		

TOPSYS_INT_M

TOPSYS Interrupt Mask Register

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0×03
$\mathbf{0 x 0 5}$	R/W	POR		
BIT	NAME	000000		
$7: 2$	RSVD	1	0: Enable TJCT_120 interrupt. 1: Mask TJCT_120 interrupt.	
1	TJCT_120C_M	1	0: Enable TJCT_140 interrupt. 1: Mask TJCT_140 interrupt.	
0	TJCT_140C_M			

REG_INT1_M

Regulators Interrupt Mask Register 1

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0xFF
0×07	R/W			DESCRIPTION
BIT	NAME	1	0: Enable LDO8 POKn interrupt. 1: Mask LDO8 POKn interrupt.	
7	LDO8_POKn_M	LDO7_POKn_M	1	0: Enable LDO7 POKn interrupt. 1: Mask LDO7 POKn interrupt.
6	LDO6_POKn_M	1	0: Enable LDO6 POKn interrupt. 1: Mask LDO6 POKn interrupt.	
5	LDO5_POKn_M	1	0: Enable LDO5 POKn interrupt. 1: Mask LDO5 POKn interrupt.	
4	LDO4_POKn_M	1	0: Enable LDO4 POKn interrupt. 1: Mask LDO4 POKn interrupt.	
2	LDO3_POKn_M	1	0: Enable LDO3 POKn interrupt. 1: Mask LDO3 POKn interrupt.	
1	LDO2_POKn_M	1	0: Enable LDO2 POKn interrupt. 1: Mask LDO2 POKn interrupt.	
0	LDO1_POKn_M	1	0: Enable LDO1 POKn interrupt. 1: Mask LDO1 POKn interrupt.	

REG_INT2_M

Regulators Interrupt Mask Register 2

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0xFF
0×08	R/W	POR		
BIT	NAME	1	0: Enable BUCK POKn interrupt. 1: Mask BUCK POKn interrupt.	
7	B_POKn_M	LDO15_POKn_M	1	0: Enable LDO15 POKn interrupt. 1: Mask LDO15 POKn interrupt.
6	LDO14_POKn_M	1	0: Enable LDO14 POKn interrupt. 1: Mask LDO14 POKn interrupt.	
5	LDO13_POKn_M	1	0: Enable LDO13 POKn interrupt. 1: Mask LDO13 POKn interrupt.	
4	LDO12_POKn_M	1	0: Enable LDO12 POKn interrupt. 1: Mask LDO12 POKn interrupt.	
2	LDO11_POKn_M	1	0: Enable LDO11 POKn interrupt. 1: Mask LDO11 POKn interrupt.	
1	LDO10_POKn_M	1	0: Enable LDO10 POKn interrupt. 1: Mask LDO10 POKn interrupt.	
0	LDO9_POKn_M	1	0: Enable LDO9 POKn interrupt. 1: Mask LDO9 POKn interrupt.	

BB_INT_M

BUCK BOOST Interrupt Mask Register

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0x07
0×09	NAME	POR		
BIT	RSVD	00000		
$7: 3$	BB_POKn_M	1	0: Enable BUCK BOOST POKn interrupt. 1: Mask BUCK BOOST POKn interrupt.	
2	BB_OVP_M	1	0: Enable BUCK BOOST OVP interrupt. 1: Mask BUCK BOOST OVP interrupt.	
1	BB_OCP_M	1	0: Enable BUCK BOOST OCP interrupt. 1: Mask BUCK BOOST OCP interrupt.	
0				

TOPSYS_STAT

TOPSYS Status Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: N/A
0x0A	R			
BIT	NAME	POR	DESCRIPTION	
7:2	RSVD	-		
1	TJCT_120C	-	0 : Junction 1: Junction	$\begin{aligned} & \mathrm{T}) \leq+120^{\circ} \mathrm{C} \\ & \mathrm{~T})>+120^{\circ} \mathrm{C} \end{aligned}$
0	TJCT_140C	-	0 : Junction 1: Junction	$\begin{aligned} & \text { T) } \leq+140^{\circ} \mathrm{C} \\ & \text { T) }>+140^{\circ} \mathrm{C} \end{aligned}$

REG_STAT1

Regulators Status Register 1

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0×00
$0 \times 0 B$	R			
BIT	NAME	POR		
7	LDO8_POKn	0	LDO8 POKn status	
6	LDO7_POKn	0	LDO7 POKn status	
5	LDO6_POKn	0	LDO6 POKn status	
4	LDO5_POKn	0	LDO5 POKn status	
3	LDO4_POKn	0	LDO4 POKn status	
2	LDO3_POKn	0	LDO3 POKn status	
1	LDO2_POKn	0	LDO2 POKn status	
0	LDO1_POKn	0	LDO1 POKn status	

REG_STAT2

Regulators Status Register 2

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0x00
$\mathbf{0 x 0 C}$	R			
BIT	NAME	POR		
7	B_POKn	0	BUCK POKn status	
6	LDO15_POKn	0	LDO15 POKn status	
5	LDO14_POKn	0	LDO14 POKn status	
4	LDO13_POKn	0	LDO13 POKn status	
3	LDO12_POKn	0	LDO12 POKn status	
2	LDO11_POKn	0	LDO11 POKn status	
1	LDO10_POKn	0	LDO10 POKn status	
0	LDO9_POKn	0	LDO9 POKn status	

BB_STAT

BUCK BOOST Status Register

ADDRESS	MODE		TYPE: \mathbf{O}	RESET VALUE: 0x00
0x0D	R			
BIT	NAME	POR		DESCRIPTION
$7: 3$	RSVD	00000		
2	BB_POKn	0	BUCK BOOST POKn status	
1	BB_OVP	0	BUCK BOOST OVP status	
0	BB_OCP	0	BUCK BOOST OCP status	

Note: $0 \times 0 E-0 \times 0 F: R S V D$.

LDO_OPMD1

LDO Operating Mode Register 1

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x00
0x10	R/W			
BIT	NAME	POR	DESCRIPTION	
7	L4_EN	0	0: Output off 1: Output on	
6	L4_LPM	0	0: Normal mode 1: Low power mode	
5	L3_EN	0	0 : Output off 1: Output on	
4	L3_LPM	0	0: Normal mode 1: Low power mode	
3	L2_EN	0	0 : Output off 1: Output on	
2	L2_LPM	0	0 : Normal mode 1: Low power mode	
1	L1_EN	0	0 : Output off 1: Output on	
0	L1_LPM	0	0 : Normal mode 1: Low power mode	

LDO_OPMD2

LDO Operating Mode Register 2

ADDRESS	MODE		TYPE: \mathbf{O}
0x11	R/W		
BIT	NAME	POR	
7	L8_EN	0	0: Output off 1: Output on
6	L8_LPM	0	0: Normal mode 1: Low power mode
5	L7_EN	0	0: Output off 1: Output on
4	L7_LPM	0	0: Normal mode 1: Low power mode
3	L6_EN	0	0: Output off 1: Output on
2	L6_LPM	0	0: Normal mode 1: Low power mode
1	L5_EN	0	0: Output off 1: Output on
0	0	0: Normal Mode 1: Low Power Mode	

LDO_OPMD3

LDO Operating Mode Register 3

ADDRESS	MODE		ADDRESS
$\mathbf{0 x 1 2}$	R/W	PESET VALUE: 0x00	
BIT	NAME	POR	
7	L12_EN	0	0: Output off 1: Output on
6	L12_LPM	0	0: Normal mode 1: Low power mode
5	L11_EN	0	0: Output off 1: Output on
4	L11_LPM	0	0: Normal mode 1: Low power mode
3	L10_LPM	0	0: Output off 1: Output on
2	L9_EN	0	0: Normal mode 1: Low power mode
1	L9_LPM	0: Output off 1: Output on	
0	0	0: Normal mode 1: Low power mode	

LDO_OPMD4

LDO Operating Mode Register 4

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0×00
0×13	NAME	POR		
BIT	RSVD		DESCRIPTION	
$7: 6$	L15_EN	0	Ob: Output off 1b: Output on	
5	L15_LPM	0	Ob: Normal mode 1b: Low power mode	
4	L14_EN	0	Ob: Output off 1b: Output on	
2	L14_LPM	0	Ob: Normal mode 1b: Low power mode	
1	L13_EN	0	0b: Output off 1b: Output on	
0	L13_LPM	0	Ob: Normal mode 1b: Low power mode	

B_BB_OPMD

BUCK and BUCK BOOST Operating Mode Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x00
0x14	R/W			
BIT	NAME	POR		
$7: 4$	RSVD	0000		
3	BB_EN	0	0: BUCK BOOST output off $1:$ BUCK BOOST output on	
2	RSVD	0		
1	B_EN	0	0: BUCK output off $1:$ BUCK output on	
0	0	0: Normal mode $1:$ Low power mode		

Note: 0x14-0x1F: RSVD.

LDO1_CFG

LD01 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA0		
0x20	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L1_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L1_VOUT[6:0]	0100000	NMOS LDO Output Voltage			
			$0 \times 00=0.6000 \mathrm{~V}$	$0 \times 20=1.0000 \mathrm{~V}$	$0 \times 40=1.4000 \mathrm{~V}$	$0 \times 60=1.8000 \mathrm{~V}$
			$0 \times 01=0.6125 \mathrm{~V}$	$0 \times 21=1.0125 \mathrm{~V}$	$0 \times 41=1.4125 \mathrm{~V}$	$0 \times 61=1.8125 \mathrm{~V}$
			$0 \times 02=0.6250 \mathrm{~V}$	$0 \times 22=1.0250 \mathrm{~V}$	$0 \times 42=1.4250 \mathrm{~V}$	$0 \times 62=1.8250 \mathrm{~V}$
			$0 \times 03=0.6375 \mathrm{~V}$	$0 \times 23=1.0375 \mathrm{~V}$	$0 \times 43=1.4375 \mathrm{~V}$	$0 \times 63=1.8375 \mathrm{~V}$
			$0 \times 04=0.6500 \mathrm{~V}$	$0 \times 24=1.0500 \mathrm{~V}$	$0 \times 44=1.4500 \mathrm{~V}$	$0 \times 64=1.8500 \mathrm{~V}$
			$0 \times 05=0.6625 \mathrm{~V}$	$0 \times 25=1.0625 \mathrm{~V}$	$0 \times 45=1.4625 \mathrm{~V}$	$0 \times 65=1.8625 \mathrm{~V}$
			$0 \times 06=0.6750 \mathrm{~V}$	$0 \times 26=1.0750 \mathrm{~V}$	$0 \times 46=1.4750 \mathrm{~V}$	$0 \times 66=1.8750 \mathrm{~V}$
			$0 \times 07=0.6875 \mathrm{~V}$	$0 \times 27=1.0875 \mathrm{~V}$	$0 \times 47=1.4875 \mathrm{~V}$	$0 \times 67=1.8875 \mathrm{~V}$
			$0 \times 08=0.7000 \mathrm{~V}$	$0 \times 28=1.1000 \mathrm{~V}$	$0 \times 48=1.5000 \mathrm{~V}$	$0 \times 68=1.9000 \mathrm{~V}$
			$0 \times 09=0.7125 \mathrm{~V}$	$0 \times 29=1.1125 \mathrm{~V}$	$0 \times 49=1.5125 \mathrm{~V}$	$0 \times 69=1.9125 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=0.7250 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.1250 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=1.5250 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=1.9250 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=0.7375 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.1375 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=1.5375 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=1.9375 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=0.7500 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.1500 \mathrm{~V}$	$0 \times 4 \mathrm{C}=1.5500 \mathrm{~V}$	$0 \times 6 \mathrm{C}=1.9500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=0.7625 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.1625 \mathrm{~V}$	$0 \times 4 \mathrm{D}=1.5625 \mathrm{~V}$	$0 \times 6 \mathrm{D}=1.9625 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=0.7750 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.1750 \mathrm{~V}$	$0 \times 4 \mathrm{E}=1.5750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=1.9750 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=0.7875 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.1875 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=1.5875 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=1.9875 \mathrm{~V}$
			$0 \times 10=0.8000 \mathrm{~V}$	$0 \times 30=1.2000 \mathrm{~V}$	$0 \times 50=1.6000 \mathrm{~V}$	$0 \times 70=2.0000 \mathrm{~V}$
			$0 \times 11=0.8125 \mathrm{~V}$	$0 \times 31=1.2125 \mathrm{~V}$	$0 \times 51=1.6125 \mathrm{~V}$	$0 \times 71=2.0125 \mathrm{~V}$
			$0 \times 12=0.8250 \mathrm{~V}$	$0 \times 32=1.2250 \mathrm{~V}$	$0 \times 52=1.6250 \mathrm{~V}$	$0 \times 72=2.0250 \mathrm{~V}$
			$0 \times 13=0.8375 \mathrm{~V}$	$0 \times 33=1.2375 \mathrm{~V}$	$0 \times 53=1.6375 \mathrm{~V}$	$0 \times 73=2.0375 \mathrm{~V}$
			$0 \times 14=0.8500 \mathrm{~V}$	$0 \times 34=1.2500 \mathrm{~V}$	$0 \times 54=1.6500 \mathrm{~V}$	$0 \times 74=2.0500 \mathrm{~V}$
			$0 \times 15=0.8625 \mathrm{~V}$	$0 \times 35=1.2625 \mathrm{~V}$	$0 \times 55=1.6625 \mathrm{~V}$	$0 \times 75=2.0625 \mathrm{~V}$
			$0 \times 16=0.8750 \mathrm{~V}$	$0 \times 36=1.2750 \mathrm{~V}$	$0 \times 56=1.6750 \mathrm{~V}$	$0 \times 76=2.0750 \mathrm{~V}$
			$0 \times 17=0.8875 \mathrm{~V}$	$0 \times 37=1.2875 \mathrm{~V}$	$0 \times 57=1.6875 \mathrm{~V}$	$0 \times 77=2.0875 \mathrm{~V}$
			$0 \times 18=0.9000 \mathrm{~V}$	$0 \times 38=1.3000 \mathrm{~V}$	$0 \times 58=1.7000 \mathrm{~V}$	$0 \times 78=2.1000 \mathrm{~V}$
			$0 \times 19=0.9125 \mathrm{~V}$	$0 \times 39=1.3125 \mathrm{~V}$	$0 \times 59=1.7125 \mathrm{~V}$	$0 \times 79=2.1125 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=0.9250 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=1.3250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=1.7250 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=2.1250 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=0.9375 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=1.3375 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=1.7375 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=2.1375 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=0.9500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=1.3500 \mathrm{~V}$	$0 \times 5 \mathrm{C}=1.7500 \mathrm{~V}$	$0 \times 7 \mathrm{C}=2.1500 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=0.9625 \mathrm{~V}$	$0 \times 3 \mathrm{D}=1.3625 \mathrm{~V}$	$0 \times 5 \mathrm{D}=1.7625 \mathrm{~V}$	$0 \times 7 \mathrm{D}=2.1625 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=0.9750 \mathrm{~V}$	$0 \times 3 \mathrm{E}=1.3750 \mathrm{~V}$	$0 \times 5 \mathrm{E}=1.7750 \mathrm{~V}$	$0 \times 7 \mathrm{E}=2.1750 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=0.9875 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=1.3875 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=1.7875 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=2.1875 \mathrm{~V}$

LDO2_CFG

LDO2 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA0		
0x21	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L2_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L2_VOUT[6:0]	0100000	NMOS LDO Output Voltage			
			$0 \times 00=0.6000 \mathrm{~V}$	$0 \times 20=1.0000 \mathrm{~V}$	$0 \times 40=1.4000 \mathrm{~V}$	$0 \times 60=1.8000 \mathrm{~V}$
			$0 \times 01=0.6125 \mathrm{~V}$	$0 \times 21=1.0125 \mathrm{~V}$	$0 \times 41=1.4125 \mathrm{~V}$	$0 \times 61=1.8125 \mathrm{~V}$
			$0 \times 02=0.6250 \mathrm{~V}$	$0 \times 22=1.0250 \mathrm{~V}$	$0 \times 42=1.4250 \mathrm{~V}$	$0 \times 62=1.8250 \mathrm{~V}$
			$0 \times 03=0.6375 \mathrm{~V}$	$0 \times 23=1.0375 \mathrm{~V}$	$0 \times 43=1.4375 \mathrm{~V}$	$0 \times 63=1.8375 \mathrm{~V}$
			$0 \times 04=0.6500 \mathrm{~V}$	$0 \times 24=1.0500 \mathrm{~V}$	$0 \times 44=1.4500 \mathrm{~V}$	$0 \times 64=1.8500 \mathrm{~V}$
			$0 \times 05=0.6625 \mathrm{~V}$	$0 \times 25=1.0625 \mathrm{~V}$	$0 \times 45=1.4625 \mathrm{~V}$	$0 \times 65=1.8625 \mathrm{~V}$
			$0 \times 06=0.6750 \mathrm{~V}$	$0 \times 26=1.0750 \mathrm{~V}$	$0 \times 46=1.4750 \mathrm{~V}$	$0 \times 66=1.8750 \mathrm{~V}$
			$0 \times 07=0.6875 \mathrm{~V}$	$0 \times 27=1.0875 \mathrm{~V}$	$0 \times 47=1.4875 \mathrm{~V}$	$0 \times 67=1.8875 \mathrm{~V}$
			$0 \times 08=0.7000 \mathrm{~V}$	$0 \times 28=1.1000 \mathrm{~V}$	$0 \times 48=1.5000 \mathrm{~V}$	$0 \times 68=1.9000 \mathrm{~V}$
			$0 \times 09=0.7125 \mathrm{~V}$	$0 \times 29=1.1125 \mathrm{~V}$	$0 \times 49=1.5125 \mathrm{~V}$	$0 \times 69=1.9125 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=0.7250 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.1250 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=1.5250 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=1.9250 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=0.7375 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.1375 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=1.5375 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=1.9375 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=0.7500 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.1500 \mathrm{~V}$	$0 \times 4 \mathrm{C}=1.5500 \mathrm{~V}$	$0 \times 6 \mathrm{C}=1.9500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=0.7625 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.1625 \mathrm{~V}$	$0 \times 4 \mathrm{D}=1.5625 \mathrm{~V}$	$0 \times 6 \mathrm{D}=1.9625 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=0.7750 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.1750 \mathrm{~V}$	$0 \times 4 \mathrm{E}=1.5750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=1.9750 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=0.7875 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.1875 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=1.5875 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=1.9875 \mathrm{~V}$
			$0 \times 10=0.8000 \mathrm{~V}$	$0 \times 30=1.2000 \mathrm{~V}$	$0 \times 50=1.6000 \mathrm{~V}$	$0 \times 70=2.0000 \mathrm{~V}$
			$0 \times 11=0.8125 \mathrm{~V}$	$0 \times 31=1.2125 \mathrm{~V}$	$0 \times 51=1.6125 \mathrm{~V}$	$0 \times 71=2.0125 \mathrm{~V}$
			$0 \times 12=0.8250 \mathrm{~V}$	$0 \times 32=1.2250 \mathrm{~V}$	$0 \times 52=1.6250 \mathrm{~V}$	$0 \times 72=2.0250 \mathrm{~V}$
			$0 \times 13=0.8375 \mathrm{~V}$	$0 \times 33=1.2375 \mathrm{~V}$	$0 \times 53=1.6375 \mathrm{~V}$	$0 \times 73=2.0375 \mathrm{~V}$
			$0 \times 14=0.8500 \mathrm{~V}$	$0 \times 34=1.2500 \mathrm{~V}$	$0 \times 54=1.6500 \mathrm{~V}$	$0 \times 74=2.0500 \mathrm{~V}$
			$0 \times 15=0.8625 \mathrm{~V}$	$0 \times 35=1.2625 \mathrm{~V}$	$0 \times 55=1.6625 \mathrm{~V}$	$0 \times 75=2.0625 \mathrm{~V}$
			$0 \times 16=0.8750 \mathrm{~V}$	$0 \times 36=1.2750 \mathrm{~V}$	$0 \times 56=1.6750 \mathrm{~V}$	$0 \times 76=2.0750 \mathrm{~V}$
			$0 \times 17=0.8875 \mathrm{~V}$	$0 \times 37=1.2875 \mathrm{~V}$	$0 \times 57=1.6875 \mathrm{~V}$	$0 \times 77=2.0875 \mathrm{~V}$
			$0 \times 18=0.9000 \mathrm{~V}$	$0 \times 38=1.3000 \mathrm{~V}$	$0 \times 58=1.7000 \mathrm{~V}$	$0 \times 78=2.1000 \mathrm{~V}$
			$0 \times 19=0.9125 \mathrm{~V}$	$0 \times 39=1.3125 \mathrm{~V}$	$0 \times 59=1.7125 \mathrm{~V}$	$0 \times 79=2.1125 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=0.9250 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=1.3250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=1.7250 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=2.1250 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=0.9375 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=1.3375 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=1.7375 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=2.1375 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=0.9500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=1.3500 \mathrm{~V}$	$0 \times 5 \mathrm{C}=1.7500 \mathrm{~V}$	$0 \times 7 \mathrm{C}=2.1500 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=0.9625 \mathrm{~V}$	$0 \times 3 \mathrm{D}=1.3625 \mathrm{~V}$	$0 \times 5 \mathrm{D}=1.7625 \mathrm{~V}$	$0 \times 7 \mathrm{D}=2.1625 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=0.9750 \mathrm{~V}$	$0 \times 3 \mathrm{E}=1.3750 \mathrm{~V}$	$0 \times 5 \mathrm{E}=1.7750 \mathrm{~V}$	$0 \times 7 \mathrm{E}=2.1750 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=0.9875 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=1.3875 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=1.7875 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=2.1875 \mathrm{~V}$

LDO3_CFG

LDO3 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA0		
0x22	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L3_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L3_VOUT[6:0]	0100000	NMOS LDO Output Voltage Table			
			$0 \times 00=0.6000 \mathrm{~V}$	$0 \times 20=1.0000 \mathrm{~V}$	$0 \times 40=1.4000 \mathrm{~V}$	$0 \times 60=1.8000 \mathrm{~V}$
			$0 \times 01=0.6125 \mathrm{~V}$	$0 \times 21=1.0125 \mathrm{~V}$	$0 \times 41=1.4125 \mathrm{~V}$	$0 \times 61=1.8125 \mathrm{~V}$
			$0 \times 02=0.6250 \mathrm{~V}$	$0 \times 22=1.0250 \mathrm{~V}$	$0 \times 42=1.4250 \mathrm{~V}$	$0 \times 62=1.8250 \mathrm{~V}$
			$0 \times 03=0.6375 \mathrm{~V}$	$0 \times 23=1.0375 \mathrm{~V}$	$0 \times 43=1.4375 \mathrm{~V}$	$0 \times 63=1.8375 \mathrm{~V}$
			$0 \times 04=0.6500 \mathrm{~V}$	$0 \times 24=1.0500 \mathrm{~V}$	$0 \times 44=1.4500 \mathrm{~V}$	$0 \times 64=1.8500 \mathrm{~V}$
			$0 \times 05=0.6625 \mathrm{~V}$	$0 \times 25=1.0625 \mathrm{~V}$	$0 \times 45=1.4625 \mathrm{~V}$	$0 \times 65=1.8625 \mathrm{~V}$
			$0 \times 06=0.6750 \mathrm{~V}$	$0 \times 26=1.0750 \mathrm{~V}$	$0 \times 46=1.4750 \mathrm{~V}$	$0 \times 66=1.8750 \mathrm{~V}$
			$0 \times 07=0.6875 \mathrm{~V}$	$0 \times 27=1.0875 \mathrm{~V}$	$0 \times 47=1.4875 \mathrm{~V}$	$0 \times 67=1.8875 \mathrm{~V}$
			$0 \times 08=0.7000 \mathrm{~V}$	$0 \times 28=1.1000 \mathrm{~V}$	$0 \times 48=1.5000 \mathrm{~V}$	$0 \times 68=1.9000 \mathrm{~V}$
			$0 \times 09=0.7125 \mathrm{~V}$	$0 \times 29=1.1125 \mathrm{~V}$	$0 \times 49=1.5125 \mathrm{~V}$	$0 \times 69=1.9125 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=0.7250 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.1250 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=1.5250 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=1.9250 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=0.7375 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.1375 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=1.5375 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=1.9375 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=0.7500 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.1500 \mathrm{~V}$	$0 \times 4 \mathrm{C}=1.5500 \mathrm{~V}$	$0 \times 6 \mathrm{C}=1.9500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=0.7625 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.1625 \mathrm{~V}$	$0 \times 4 \mathrm{D}=1.5625 \mathrm{~V}$	$0 \times 6 \mathrm{D}=1.9625 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=0.7750 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.1750 \mathrm{~V}$	$0 \times 4 \mathrm{E}=1.5750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=1.9750 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=0.7875 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.1875 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=1.5875 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=1.9875 \mathrm{~V}$
			$0 \times 10=0.8000 \mathrm{~V}$	$0 \times 30=1.2000 \mathrm{~V}$	$0 \times 50=1.6000 \mathrm{~V}$	$0 \times 70=2.0000 \mathrm{~V}$
			$0 \times 11=0.8125 \mathrm{~V}$	$0 \times 31=1.2125 \mathrm{~V}$	$0 \times 51=1.6125 \mathrm{~V}$	$0 \times 71=2.0125 \mathrm{~V}$
			$0 \times 12=0.8250 \mathrm{~V}$	$0 \times 32=1.2250 \mathrm{~V}$	$0 \times 52=1.6250 \mathrm{~V}$	$0 \times 72=2.0250 \mathrm{~V}$
			$0 \times 13=0.8375 \mathrm{~V}$	$0 \times 33=1.2375 \mathrm{~V}$	$0 \times 53=1.6375 \mathrm{~V}$	$0 \times 73=2.0375 \mathrm{~V}$
			$0 \times 14=0.8500 \mathrm{~V}$	$0 \times 34=1.2500 \mathrm{~V}$	$0 \times 54=1.6500 \mathrm{~V}$	$0 \times 74=2.0500 \mathrm{~V}$
			$0 \times 15=0.8625 \mathrm{~V}$	$0 \times 35=1.2625 \mathrm{~V}$	$0 \times 55=1.6625 \mathrm{~V}$	$0 \times 75=2.0625 \mathrm{~V}$
			$0 \times 16=0.8750 \mathrm{~V}$	$0 \times 36=1.2750 \mathrm{~V}$	$0 \times 56=1.6750 \mathrm{~V}$	$0 \times 76=2.0750 \mathrm{~V}$
			$0 \times 17=0.8875 \mathrm{~V}$	$0 \times 37=1.2875 \mathrm{~V}$	$0 \times 57=1.6875 \mathrm{~V}$	$0 \times 77=2.0875 \mathrm{~V}$
			$0 \times 18=0.9000 \mathrm{~V}$	$0 \times 38=1.3000 \mathrm{~V}$	$0 \times 58=1.7000 \mathrm{~V}$	$0 \times 78=2.1000 \mathrm{~V}$
			$0 \times 19=0.9125 \mathrm{~V}$	$0 \times 39=1.3125 \mathrm{~V}$	$0 \times 59=1.7125 \mathrm{~V}$	$0 \times 79=2.1125 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=0.9250 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=1.3250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=1.7250 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=2.1250 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=0.9375 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=1.3375 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=1.7375 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=2.1375 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=0.9500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=1.3500 \mathrm{~V}$	$0 \times 5 \mathrm{C}=1.7500 \mathrm{~V}$	$0 \times 7 \mathrm{C}=2.1500 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=0.9625 \mathrm{~V}$	$0 \times 3 \mathrm{D}=1.3625 \mathrm{~V}$	$0 \times 5 \mathrm{D}=1.7625 \mathrm{~V}$	$0 \times 7 \mathrm{D}=2.1625 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=0.9750 \mathrm{~V}$	$0 \times 3 \mathrm{E}=1.3750 \mathrm{~V}$	$0 \times 5 \mathrm{E}=1.7750 \mathrm{~V}$	$0 \times 7 \mathrm{E}=2.1750 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=0.9875 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=1.3875 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=1.7875 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=2.1875 \mathrm{~V}$

LDO4_CFG

LDO4 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x9C		
0x23	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L4_AD	1	Output Active Discharge 0 : Disable 1: Enable			
6:0	L4_VOUT[6:0]	0011100	PMOSLV LDO Output Voltage Table			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	0x7D $=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	0x7F $=3.975 \mathrm{~V}$

LDO5_CFG

LDO5 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA8		
0x24	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L5_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L5_VOUT[6:0]	0101000	PMOSLV LDO Output Voltage Table			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 x 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	0x7B $=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			0x1F $=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	0x5F $=3.175 \mathrm{~V}$	0x7F $=3.975 \mathrm{~V}$

LDO6_CFG

LDO6 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA8		
0x25	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L6_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L6_VOUT[6:0]	0101000	PMOSLV LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	0x4B $=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	0x7D $=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO7_CFG

LD07 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA8		
0x26	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L7_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L7_VOUT[6:0]	0101000	PMOSLV LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 x 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	0x7B $=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO8_CFG

LDO8 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA8		
0x27	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L8_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L8_VOUT[6:0]	0101000	PMOSLV LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	0x4B $=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	0x7D $=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO9_CFG

LDO9 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xA8		
0x28	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L9_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L9_VOUT[6:0]	0101000	PMOSLV LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 x 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	0x4B $=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 x 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	0×77 = 3.775V
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO10_CFG

LD010 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xD0		
0x29	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L10_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L10_VOUT[6:0]	1010000	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	0x4B $=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	0x7B $=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	0x7D $=3.925 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LD011_CFG

LDO11 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xD0		
0x29	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L10_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L10_VOUT[6:0]	1010000	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 x 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 x 0 \mathrm{D}=1.125 \mathrm{~V}$	0x2D $=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			0x1E $=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 x 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO12_CFG

LDO12 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xE4		
0x2B	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L12_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L12_VOUT[6:0]	1100100	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 x 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 x 0 \mathrm{D}=1.125 \mathrm{~V}$	$0 \times 2 \mathrm{D}=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 x 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			0x1E $=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO13_CFG

LDO13 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xE4		
0x2C	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L13_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L13_VOUT[6:0]	1100100	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 \times 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 x 0 \mathrm{D}=1.125 \mathrm{~V}$	0x2D $=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 x 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 x 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			0x1E $=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 x 7 \mathrm{~F}=3.975 \mathrm{~V}$

LDO14_CFG

LD014 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xE4		
0x2D	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L14_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L14_VOUT[6:0]	1100100	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 x 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 x 0 \mathrm{D}=1.125 \mathrm{~V}$	0x2D $=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			0x1E $=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 x 7 \mathrm{~F}=3.975 \mathrm{~V}$

LD015_CFG

LD015 Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0xE4		
0x2E	R/W					
BIT	NAME	POR	DESCRIPTION			
7	L15_AD	1	Output Active Discharge 0: Disable 1: Enable			
6:0	L15_VOUT[6:0]	1100100	PMOSLS LDO Output Voltage			
			$0 \times 00=0.800 \mathrm{~V}$	$0 \times 20=1.600 \mathrm{~V}$	$0 \times 40=2.400 \mathrm{~V}$	$0 \times 60=3.200 \mathrm{~V}$
			$0 \times 01=0.825 \mathrm{~V}$	$0 \times 21=1.625 \mathrm{~V}$	$0 \times 41=2.425 \mathrm{~V}$	$0 \times 61=3.225 \mathrm{~V}$
			$0 \times 02=0.850 \mathrm{~V}$	$0 \times 22=1.650 \mathrm{~V}$	$0 \times 42=2.450 \mathrm{~V}$	$0 \times 62=3.250 \mathrm{~V}$
			$0 \times 03=0.875 \mathrm{~V}$	$0 \times 23=1.675 \mathrm{~V}$	$0 \times 43=2.475 \mathrm{~V}$	$0 \times 63=3.275 \mathrm{~V}$
			$0 \times 04=0.900 \mathrm{~V}$	$0 \times 24=1.700 \mathrm{~V}$	$0 \times 44=2.500 \mathrm{~V}$	$0 \times 64=3.300 \mathrm{~V}$
			$0 \times 05=0.925 \mathrm{~V}$	$0 \times 25=1.725 \mathrm{~V}$	$0 \times 45=2.525 \mathrm{~V}$	$0 \times 65=3.325 \mathrm{~V}$
			$0 \times 06=0.950 \mathrm{~V}$	$0 \times 26=1.750 \mathrm{~V}$	$0 \times 46=2.550 \mathrm{~V}$	$0 \times 66=3.350 \mathrm{~V}$
			$0 \times 07=0.975 \mathrm{~V}$	$0 \times 27=1.775 \mathrm{~V}$	$0 \times 47=2.575 \mathrm{~V}$	$0 \times 67=3.375 \mathrm{~V}$
			$0 \times 08=1.000 \mathrm{~V}$	$0 \times 28=1.800 \mathrm{~V}$	$0 \times 48=2.600 \mathrm{~V}$	$0 \times 68=3.400 \mathrm{~V}$
			$0 x 09=1.025 \mathrm{~V}$	$0 \times 29=1.825 \mathrm{~V}$	$0 \times 49=2.625 \mathrm{~V}$	$0 \times 69=3.425 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=1.050 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=1.850 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=2.650 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.450 \mathrm{~V}$
			$0 x 0 \mathrm{~B}=1.075 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=1.875 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=2.675 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.475 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=1.100 \mathrm{~V}$	$0 \times 2 \mathrm{C}=1.900 \mathrm{~V}$	$0 \times 4 \mathrm{C}=2.700 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.500 \mathrm{~V}$
			$0 x 0 \mathrm{D}=1.125 \mathrm{~V}$	0x2D $=1.925 \mathrm{~V}$	$0 \times 4 \mathrm{D}=2.725 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.525 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=1.150 \mathrm{~V}$	$0 \times 2 \mathrm{E}=1.950 \mathrm{~V}$	$0 \times 4 \mathrm{E}=2.750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.550 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=1.175 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=1.975 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=2.775 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.575 \mathrm{~V}$
			$0 \times 10=1.200 \mathrm{~V}$	$0 \times 30=2.000 \mathrm{~V}$	$0 \times 50=2.800 \mathrm{~V}$	$0 \times 70=3.600 \mathrm{~V}$
			$0 \times 11=1.225 \mathrm{~V}$	$0 \times 31=2.025 \mathrm{~V}$	$0 \times 51=2.825 \mathrm{~V}$	$0 \times 71=3.625 \mathrm{~V}$
			$0 \times 12=1.250 \mathrm{~V}$	$0 \times 32=2.050 \mathrm{~V}$	$0 \times 52=2.850 \mathrm{~V}$	$0 \times 72=3.650 \mathrm{~V}$
			$0 \times 13=1.275 \mathrm{~V}$	$0 \times 33=2.075 \mathrm{~V}$	$0 \times 53=2.875 \mathrm{~V}$	$0 \times 73=3.675 \mathrm{~V}$
			$0 \times 14=1.300 \mathrm{~V}$	$0 \times 34=2.100 \mathrm{~V}$	$0 \times 54=2.900 \mathrm{~V}$	$0 \times 74=3.700 \mathrm{~V}$
			$0 \times 15=1.325 \mathrm{~V}$	$0 \times 35=2.125 \mathrm{~V}$	$0 \times 55=2.925 \mathrm{~V}$	$0 \times 75=3.725 \mathrm{~V}$
			$0 \times 16=1.350 \mathrm{~V}$	$0 \times 36=2.150 \mathrm{~V}$	$0 \times 56=2.950 \mathrm{~V}$	$0 \times 76=3.750 \mathrm{~V}$
			$0 \times 17=1.375 \mathrm{~V}$	$0 \times 37=2.175 \mathrm{~V}$	$0 \times 57=2.975 \mathrm{~V}$	$0 \times 77=3.775 \mathrm{~V}$
			$0 \times 18=1.400 \mathrm{~V}$	$0 \times 38=2.200 \mathrm{~V}$	$0 \times 58=3.000 \mathrm{~V}$	$0 \times 78=3.800 \mathrm{~V}$
			$0 \times 19=1.425 \mathrm{~V}$	$0 \times 39=2.225 \mathrm{~V}$	$0 \times 59=3.025 \mathrm{~V}$	$0 \times 79=3.825 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=1.450 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=2.250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.050 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=3.850 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=1.475 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=2.275 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.075 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=3.875 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=1.500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=2.300 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.100 \mathrm{~V}$	$0 \times 7 \mathrm{C}=3.900 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=1.525 \mathrm{~V}$	$0 \times 3 \mathrm{D}=2.325 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.125 \mathrm{~V}$	$0 \times 7 \mathrm{D}=3.925 \mathrm{~V}$
			0x1E $=1.550 \mathrm{~V}$	$0 \times 3 \mathrm{E}=2.350 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.150 \mathrm{~V}$	$0 \times 7 \mathrm{E}=3.950 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=1.575 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=2.375 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.175 \mathrm{~V}$	$0 x 7 \mathrm{~F}=3.975 \mathrm{~V}$

Note: 0x2F: RSVD.

BUCK_CFG

BUCK Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x09
0x30	R/W			
BIT	NAME	POR	DESCRIPTION	
7:6	B_RAMP[1:0]	00	Rising Ramp Rate Control 00b: $12.5 \mathrm{mV} / \mu \mathrm{s}$ 01b: $25 \mathrm{mV} / \mu \mathrm{s}$ 10b: $50 \mathrm{mV} / \mathrm{\mu s}$ 11b: $100 \mathrm{mV} / \mu \mathrm{s}$	
5:4	RSVD	00		
3	B_AD	1	Output Active Discharge 0: Disable 1: Enable	
2	B_FPWM	0	Forced PWM 0: Turn off Forced PWM (Automatic SKIP mode operation under light load) 1: Turn on Forced PWM Mode	
1	RSVD	0		
0	B_FSRAD	1	Falling Slew Rate Active Discharge 0: Disable Active Discharge BUCK is allowed to operate in SKIP mode during the time the output voltage decreases (only if B3_FPWM = 0). In SKIP mode, BUCK cannot sink current from the output capacitor and the output voltage falling slew rate is a function of the external load. If the load is heavy, the output voltage falling slew rate is limited to $6.25 \mathrm{mV} / \mu \mathrm{s}$. If the load is light, the output voltage falling slew rate is a function of the output capacitance and the load. Note that the internal feedback string always imposes a $2 \mu \mathrm{~A}$ load on the output. 1: Enable Active Discharge BUCK operates in forced PWM mode during the time the output voltage decreases. In forced PWM mode, BUCK can sink current from the output capacitor to ensure that the output voltage falls at the rate of $6.25 \mathrm{mV} / \mathrm{\mu s}$. To ensure a smooth output voltage ramp-down, forced PMW mode remains engaged for $50 \mu \mathrm{~s}$ after the output voltage decreases to its target voltage.	

BUCK_VOUT

BUCK Output Voltage Setting Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x78
0×31	R/W	POR		
BIT	NAME	01111000	BUCK Output Voltage (see table immediately below)	
$7: 0$	B_VOUT[7:0]			

BUCK Output Voltage

$\begin{gathered} 0 \times 00= \\ 0.50000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 20= \\ 0.70000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 40= \\ 0.90000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 60= \\ 1.10000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 80= \\ 1.30000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 0= \\ 1.50000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 0= \\ 1.70000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 0= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 01= \\ 0.50625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 21= \\ 0.70625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 41= \\ 0.90625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 61= \\ 1.10625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 81= \\ 1.30625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times \mathrm{A} 1= \\ 1.50625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 1= \\ 1.70625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 1= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 02= \\ 0.51250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 22= \\ 0.71250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 42= \\ 0.91250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 62= \\ 1.11250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 82= \\ 1.31250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 2= \\ 1.51250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 2= \\ 1.71250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 2= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 03= \\ 0.51875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 23= \\ 0.71875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 43= \\ 0.91875 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0 \times 63= \\ 1.11875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 83= \\ 1.31875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times \mathrm{A} 3= \\ 1.51875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 3= \\ 1.71875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 3= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 04= \\ 0.52500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 24= \\ 0.72500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 44= \\ 0.92500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 64= \\ 1.12500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 84= \\ 1.32500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times \mathrm{A} 4= \\ 1.52500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 4= \\ 1.72500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x E 4= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 05= \\ 0.53125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 25= \\ 0.73125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 45= \\ 0.93125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 65= \\ 1.13125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 85= \\ 1.33125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times \mathrm{A} 5= \\ 1.53125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 5= \\ 1.73125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 5= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 06= \\ 0.53750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 26= \\ 0.73750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 46= \\ 0.93750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 66= \\ 1.13750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 86= \\ 1.33750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 6= \\ 1.53750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 6= \\ 1.73750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 6= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 07= \\ 0.54375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 27= \\ 0.74375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 47= \\ 0.94375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 67= \\ 1.14375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 87= \\ 1.34375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 7= \\ 1.54375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 7= \\ 1.74375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 7= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 08= \\ 0.55000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 28= \\ 0.75000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 48= \\ 0.95000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 68= \\ 1.15000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 88= \\ 1.35000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 8= \\ 1.55000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 8= \\ 1.75000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 8= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 09= \\ 0.55625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 29= \\ 0.75625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 49= \\ 0.95625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 69= \\ 1.15625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 89= \\ 1.35625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 9= \\ 1.55625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 9= \\ 1.75625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E 9= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{~A}= \\ 0.56250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{~A}= \\ 0.76250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{~A}= \\ 0.96250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{~A}= \\ 1.16250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{~A}= \\ 1.36250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A A= \\ 1.56250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C A= \\ 1.76250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E A= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{~B}= \\ 0.56875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{~B}= \\ 0.76875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{~B}= \\ 0.96875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{~B}= \\ 1.16875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{~B}= \\ 1.36875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A B= \\ 1.56875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C B= \\ 1.76875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E B= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{C}= \\ 0.57500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{C}= \\ 0.77500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{C}= \\ 0.97500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{C}= \\ 1.17500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{C}= \\ 1.37500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A C= \\ 1.57500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C C= \\ 1.77500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E C= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{D}= \\ 0.58125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{D}= \\ 0.78125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{D}= \\ 0.98125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{D}= \\ 1.18125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{D}= \\ 1.38125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A D= \\ 1.58125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C D= \\ 1.78125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E D= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{E}= \\ 0.58750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{E}= \\ 0.78750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{E}= \\ 0.98750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{E}= \\ 1.18750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{E}= \\ 1.38750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A E= \\ 1.58750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x C E= \\ 1.78750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E E= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 0 \mathrm{~F}= \\ 0.59375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{~F}= \\ 0.79375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{~F}= \\ 0.99375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{~F}= \\ 1.19375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{~F}= \\ 1.39375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A F= \\ 1.59375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C F= \\ 1.79375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times E F= \\ 1.80000 \mathrm{~V} \end{gathered}$

BUCK Output Voltage (continued)

$\begin{gathered} 0 \times 10= \\ 0.60000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 30= \\ 0.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 50= \\ 1.00000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 70= \\ 1.20000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 90= \\ 1.40000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 0= \\ 1.60000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 0= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 0= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 11= \\ 0.60625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 31= \\ 0.80625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 51= \\ 1.00625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 71= \\ 1.20625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 91= \\ 1.40625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 1= \\ 1.60625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 1= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 1= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 12= \\ 0.61250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 32= \\ 0.81250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 52= \\ 1.01250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 72= \\ 1.21250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 92= \\ 1.41250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 2= \\ 1.61250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 2= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 2= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 13= \\ 0.61875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 33= \\ 0.81875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 53= \\ 1.01875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 73= \\ 1.21875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 93= \\ 1.41875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 3= \\ 1.61875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 3= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 3= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 14= \\ 0.62500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 34= \\ 0.82500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 54= \\ 1.02500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 74= \\ 1.22500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 94= \\ 1.42500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 4= \\ 1.62500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 4= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 4= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 15= \\ 0.63125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 35= \\ 0.83125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 55= \\ 1.03125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 75= \\ 1.23125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 95= \\ 1.43125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 5= \\ 1.63125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 5= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x F 5= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 16= \\ 0.63750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 36= \\ 0.83750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 56= \\ 1.03750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 76= \\ 1.23750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 96= \\ 1.43750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 6= \\ 1.63750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 6= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 6= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 17= \\ 0.64375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 37= \\ 0.84375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 57= \\ 1.04375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 77= \\ 1.24375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 97= \\ 1.44375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 7= \\ 1.64375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 7= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 7= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 18= \\ 0.65000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 38= \\ 0.85000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 58= \\ 1.05000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 78= \\ 1.25000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 98= \\ 1.45000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 8= \\ 1.65000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 8= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 8= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 19= \\ 0.65625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 39= \\ 0.85625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 59= \\ 1.05625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 79= \\ 1.25625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 99= \\ 1.45625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 9= \\ 1.65625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D 9= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F 9= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 \mathrm{~A}= \\ 0.66250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{~A}= \\ 0.86250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{~A}= \\ 1.06250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{~A}= \\ 1.26250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{~A}= \\ 1.46250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B A= \\ 1.66250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D A= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F A= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 \mathrm{~B}= \\ 0.66875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 B= \\ 0.86875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{~B}= \\ 1.06875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{~B}= \\ 1.26875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{~B}= \\ 1.46875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B B= \\ 1.66875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x D B= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F B= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 \mathrm{C}= \\ 0.67500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{C}= \\ 0.87500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{C}= \\ 1.07500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{C}= \\ 1.27500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{C}= \\ 1.47500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B C= \\ 1.67500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D C= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F C= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 \mathrm{D}= \\ 0.68125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{D}= \\ 0.88125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{D}= \\ 1.08125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{D}= \\ 1.28125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{D}= \\ 1.48125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B D= \\ 1.68125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D D= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x F D= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 E= \\ 0.68750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 E= \\ 0.88750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{E}= \\ 1.08750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{E}= \\ 1.28750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{E}= \\ 1.48750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B E= \\ 1.68750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times D E= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times F E= \\ 1.80000 \mathrm{~V} \end{gathered}$
$\begin{gathered} 0 \times 1 F= \\ 0.69375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 F= \\ 0.89375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{~F}= \\ 1.09375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{~F}= \\ 1.29375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{~F}= \\ 1.49375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B F= \\ 1.69375 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0 \times D F= \\ 1.80000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 x F F= \\ 1.80000 \mathrm{~V} \end{gathered}$

BB_CFG

BUCK BOOST Configuration Register

BB_VOUT

BUCK BOOST Output Voltage Setting Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x48		
0×33	R/W					
BIT	NAME	POR	DESCRIPTION			
7	RSVD	0	Write 0.			
6:0	BB_VOUT[6:0]	1000000	BUCK BOOST Output Voltage			
			$0 \times 00=2.6000 \mathrm{~V}$	$0 \times 20=3.0000 \mathrm{~V}$	$0 \times 40=3.4000 \mathrm{~V}$	$0 \times 60=3.8000 \mathrm{~V}$
			$0 \times 01=2.6125 \mathrm{~V}$	$0 \times 21=3.0125 \mathrm{~V}$	$0 \times 41=3.4125 \mathrm{~V}$	$0 \times 61=3.8125 \mathrm{~V}$
			$0 \times 02=2.6250 \mathrm{~V}$	$0 \times 22=3.0250 \mathrm{~V}$	$0 \times 42=3.4250 \mathrm{~V}$	$0 \times 62=3.8250 \mathrm{~V}$
			$0 \times 03=2.6375 \mathrm{~V}$	$0 \times 23=3.0375 \mathrm{~V}$	$0 \times 43=3.4375 \mathrm{~V}$	$0 \times 63=3.8375 \mathrm{~V}$
			$0 \times 04=2.6500 \mathrm{~V}$	$0 \times 24=3.0500 \mathrm{~V}$	$0 \times 44=3.4500 \mathrm{~V}$	$0 \times 64=3.8500 \mathrm{~V}$
			$0 \times 05=2.6625 \mathrm{~V}$	$0 \times 25=3.0625 \mathrm{~V}$	$0 \times 45=3.4625 \mathrm{~V}$	$0 \times 65=3.8625 \mathrm{~V}$
			$0 \times 06=2.6750 \mathrm{~V}$	$0 \times 26=3.0750 \mathrm{~V}$	$0 \times 46=3.4750 \mathrm{~V}$	$0 \times 66=3.8750 \mathrm{~V}$
			$0 \times 07=2.6875 \mathrm{~V}$	$0 \times 27=3.0875 \mathrm{~V}$	$0 \times 47=3.4875 \mathrm{~V}$	$0 \times 67=3.8875 \mathrm{~V}$
			$0 \times 08=2.7000 \mathrm{~V}$	$0 \times 28=3.1000 \mathrm{~V}$	$0 \times 48=3.5000 \mathrm{~V}$	$0 \times 68=3.9000 \mathrm{~V}$
			$0 \times 09=2.7125 \mathrm{~V}$	$0 \times 29=3.1125 \mathrm{~V}$	$0 \times 49=3.5125 \mathrm{~V}$	$0 \times 69=3.9125 \mathrm{~V}$
			$0 \times 0 \mathrm{~A}=2.7250 \mathrm{~V}$	$0 \times 2 \mathrm{~A}=3.1250 \mathrm{~V}$	$0 \times 4 \mathrm{~A}=3.5250 \mathrm{~V}$	$0 \times 6 \mathrm{~A}=3.9250 \mathrm{~V}$
			$0 \times 0 \mathrm{~B}=2.7375 \mathrm{~V}$	$0 \times 2 \mathrm{~B}=3.1375 \mathrm{~V}$	$0 \times 4 \mathrm{~B}=3.5375 \mathrm{~V}$	$0 \times 6 \mathrm{~B}=3.9375 \mathrm{~V}$
			$0 \times 0 \mathrm{C}=2.7500 \mathrm{~V}$	$0 \times 2 \mathrm{C}=3.1500 \mathrm{~V}$	$0 \times 4 \mathrm{C}=3.5500 \mathrm{~V}$	$0 \times 6 \mathrm{C}=3.9500 \mathrm{~V}$
			$0 \times 0 \mathrm{D}=2.7625 \mathrm{~V}$	$0 \times 2 \mathrm{D}=3.1625 \mathrm{~V}$	$0 \times 4 \mathrm{D}=3.5625 \mathrm{~V}$	$0 \times 6 \mathrm{D}=3.9625 \mathrm{~V}$
			$0 \times 0 \mathrm{E}=2.7750 \mathrm{~V}$	$0 \times 2 \mathrm{E}=3.1750 \mathrm{~V}$	$0 \times 4 \mathrm{E}=3.5750 \mathrm{~V}$	$0 \times 6 \mathrm{E}=3.9750 \mathrm{~V}$
			$0 \times 0 \mathrm{~F}=2.7875 \mathrm{~V}$	$0 \times 2 \mathrm{~F}=3.1875 \mathrm{~V}$	$0 \times 4 \mathrm{~F}=3.5875 \mathrm{~V}$	$0 \times 6 \mathrm{~F}=3.9875 \mathrm{~V}$
			$0 \times 10=2.8000 \mathrm{~V}$	$0 \times 30=3.2000 \mathrm{~V}$	$0 \times 50=3.6000 \mathrm{~V}$	$0 \times 70=4.0000 \mathrm{~V}$
			$0 \times 11=2.8125 \mathrm{~V}$	$0 \times 31=3.2125 \mathrm{~V}$	$0 \times 51=3.6125 \mathrm{~V}$	$0 \times 71=4.0125 \mathrm{~V}$
			$0 \times 12=2.8250 \mathrm{~V}$	$0 \times 32=3.2250 \mathrm{~V}$	$0 \times 52=3.6250 \mathrm{~V}$	$0 \times 72=4.0250 \mathrm{~V}$
			$0 \times 13=2.8375 \mathrm{~V}$	$0 \times 33=3.2375 \mathrm{~V}$	$0 \times 53=3.6375 \mathrm{~V}$	$0 \times 73=4.0375 \mathrm{~V}$
			$0 \times 14=2.8500 \mathrm{~V}$	$0 \times 34=3.2500 \mathrm{~V}$	$0 \times 54=3.6500 \mathrm{~V}$	$0 \times 74=4.0500 \mathrm{~V}$
			$0 \times 15=2.8625 \mathrm{~V}$	$0 \times 35=3.2625 \mathrm{~V}$	$0 \times 55=3.6625 \mathrm{~V}$	$0 \times 75=4.0625 \mathrm{~V}$
			$0 \times 16=2.8750 \mathrm{~V}$	$0 \times 36=3.2750 \mathrm{~V}$	$0 \times 56=3.6750 \mathrm{~V}$	$0 \times 76=4.0750 \mathrm{~V}$
			$0 \times 17=2.8875 \mathrm{~V}$	$0 \times 37=3.2875 \mathrm{~V}$	$0 \times 57=3.6875 \mathrm{~V}$	$0 \times 77=4.0875 \mathrm{~V}$
			$0 \times 18=2.9000 \mathrm{~V}$	$0 \times 38=3.3000 \mathrm{~V}$	$0 \times 58=3.7000 \mathrm{~V}$	$0 \times 78=4.1000 \mathrm{~V}$
			$0 \times 19=2.9125 \mathrm{~V}$	$0 \times 39=3.3125 \mathrm{~V}$	$0 \times 59=3.7125 \mathrm{~V}$	$0 \times 79=4.1125 \mathrm{~V}$
			$0 \times 1 \mathrm{~A}=2.9250 \mathrm{~V}$	$0 \times 3 \mathrm{~A}=3.3250 \mathrm{~V}$	$0 \times 5 \mathrm{~A}=3.7250 \mathrm{~V}$	$0 \times 7 \mathrm{~A}=4.1250 \mathrm{~V}$
			$0 \times 1 \mathrm{~B}=2.9375 \mathrm{~V}$	$0 \times 3 \mathrm{~B}=3.3375 \mathrm{~V}$	$0 \times 5 \mathrm{~B}=3.7375 \mathrm{~V}$	$0 \times 7 \mathrm{~B}=4.1375 \mathrm{~V}$
			$0 \times 1 \mathrm{C}=2.9500 \mathrm{~V}$	$0 \times 3 \mathrm{C}=3.3500 \mathrm{~V}$	$0 \times 5 \mathrm{C}=3.7500 \mathrm{~V}$	$0 \times 7 \mathrm{C}=4.1500 \mathrm{~V}$
			$0 \times 1 \mathrm{D}=2.9625 \mathrm{~V}$	$0 \times 3 \mathrm{D}=3.3625 \mathrm{~V}$	$0 \times 5 \mathrm{D}=3.7625 \mathrm{~V}$	$0 \times 7 \mathrm{D}=4.1625 \mathrm{~V}$
			$0 \times 1 \mathrm{E}=2.9750 \mathrm{~V}$	$0 \times 3 \mathrm{E}=3.3750 \mathrm{~V}$	$0 \times 5 \mathrm{E}=3.7750 \mathrm{~V}$	$0 \times 7 \mathrm{E}=4.1750 \mathrm{~V}$
			$0 \times 1 \mathrm{~F}=2.9875 \mathrm{~V}$	$0 \times 3 \mathrm{~F}=3.3875 \mathrm{~V}$	$0 \times 5 \mathrm{~F}=3.7875 \mathrm{~V}$	$0 \times 7 \mathrm{~F}=4.1875 \mathrm{~V}$

Note: 0x34-0x3F: RSVD.

BUCK_SS_FREQ

BUCK Soft-Start and Switching Frequency Configuration Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x04
0x40	R/W			
BIT	NAME	POR	DESCRIPTION	
7:5	RSVD	000	Write 0.	
4	B_SS	0	BUCK Soft-Start Slew Rate 0: $14 \mathrm{mV} / \mathrm{ms}$ 1: $25 \mathrm{mV} / \mu \mathrm{s}$	
3	RSVD	0	Write 0.	
2:0	B_FREQ[2:0]	100	Multiphase Current Mode BUCK Switching Frequency 000b: 3.6 MHz 001b: 3.2 MHz 010b: 2.8 MHz 011b: 2.4MHz 100b: 2.0 MHz 101b: 1.6 MHz 110b: 1.2 MHz 111b: 0.8 MHz	

UVLO_FALL

VSYS UVLO Falling Threshold Program Register

ADDRESS	MODE		TYPE: 0	RESET VALUE: 0x01
0x41	R/W			
BIT	NAME	POR	DESCRIPTION	
7:2	RSVD	000000	Write 000000.	
1:0	UVLO_F[1:0]	01	VSYS UVLO Falling Threshold 00b: Not used 01b: 2.05V 10b: 2.25 V 11b: 2.45 V	

Note: 0x42-0xFF: RSVD.

Typical Application Circuit

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX $77826 \mathrm{EWJ}+$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$49 \mathrm{Bumps}(7 \times 7)$
0.4 mm Pitch		

+Denotes a lead(Pb)-free/RoHS-compliant package.
Chip Information
PROCESS: S18B

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
49 WLP	W493E3+1	$21-0728$	Refer to Application Note 1891

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 15$	Initial release	-
1	$7 / 15$	Corrected typos and updated notes in Electrical Characteristics table.	4,7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management Specialised - PMIC category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 LV56841PVD-XH AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MCP16501TC-E/RMB ISL91212AIIZTR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C LR745N8-G MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ$\underline{\text { AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB MIC5166YML-TR GPE-4323 GPS-2303 }}$

