Click here to ask about the production status of specific part numbers.

MAX77975/MAX77976

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

General Description

The MAX77975/MAX77976 is a high-performance high-input 3.5/5.5A fast charger with Smart Power SelectorTM. The IC can operate as a reverse boost without an additional inductor, allowing the battery to share its power through the charging port and is voltage programmable from 5V to 12V. The device features fully integrated low-loss power switches to provide small solution size and high-efficiency, even at high input voltage and high charging current. Its high switching frequency allows the use of a smaller sized inductor. The IC features true load disconnection in reverse boost mode and has an adjustable output current protection limit. The device is highly flexible and programmable through I²C configuration.

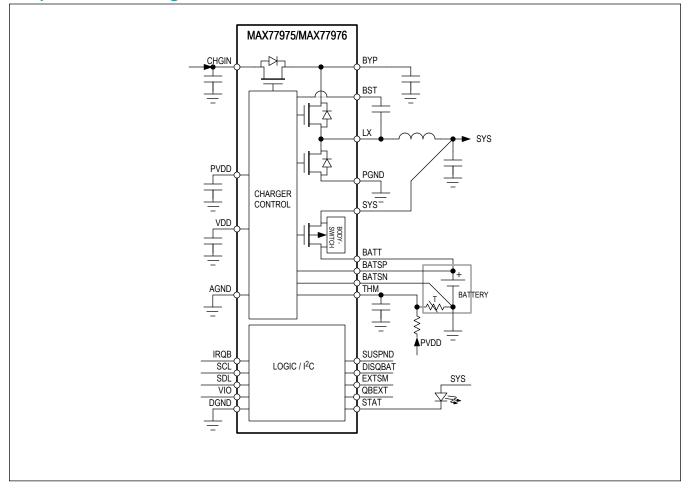
The battery charger includes a Smart Power Selector to accommodate a wide range of battery sizes and system loads. The Smart Power Selector allows the system to start-up gracefully as soon as an input source is available, even when the battery is deeply discharged (dead battery) or missing. It can be configured so that when power is applied to the charger input, the battery charging can automatically start.

Applications

- Gaming Devices
- VR Applications
- mPOS
- Tablet PCs

Benefits and Features

- High-Efficiency Single-Cell Switching Charger
 - Up to 5.5A Charging with MAX77976
 - 91.2% Buck Efficiency at 4A, 12V Input
 - 90.5% Charging Efficiency at 3.5A, 9V Input
 - Optimized for High Voltage Input Operation
 - Accelerate Charge Time by Monitoring Kelvin Sensing Battery Voltage
 - Up to 3.2A Input Current Limit with AICL
- +28V Absolute Maximum Input Voltage Rating
- 4.7V to 19V Input Operating Voltage Range
- Reverse Boost with Programmable Output Voltage Options up to 12V
 - Up to 18W for MAX77976
 - Up to 12W for MAX77975
- Integrated Battery True-Disconnect FET
 - R_{DSON} = 7.7mΩ
 - Discharge Current up to 10A
 - Support Shipping Mode and Low Battery Leakage
 Current
 - 1.3MHz/2.6MHz Switching Frequency with 1µH/ 0.47µH Inductor
 - Disconnect Input (DISQBAT)
- Safety
 - Battery Temperature Sensing and Charge Safety
 Timer
 - JEITA Guideline Compliant
 - Thermal Regulation and Thermal Shutdown
 - System Voltage OVLO/UVLO
- Charge Status Output for LED
- Push-Button Input for Exiting from Ship Mode
- External Discharge FET Enable Output
- Dedicated Input for Suspend Mode (SUSPND)
- I²C Interface
- 4mm x 4mm FC2QFN


<u>Ordering Information</u> appears at end of data sheet.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc. USB Type-C is a registered trademark of USB Implementers Forum. PowerPath is a trademark of Linear Technology Corporation.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Simplified Block Diagram

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

TABLE OF CONTENTS

General Description	. 1
Applications	. 1
Benefits and Features	. 1
Simplified Block Diagram	. 2
Absolute Maximum Ratings	. 7
Package Information	. 7
FCQFN	. 7
Electrical Characteristics	11
Typical Operating Characteristics	21
Pin Configuration	22
FC2QFN	22
Pin Description	22
Functional Diagram	24
Functional Diagram	24
Detailed Description	25
Switching Mode Charger	25
Features	25
Detailed Description	25
Smart Power Selector (SPS)	26
Input Validation.	27
Input Current Limit	27
Input Voltage Regulation Loop	27
System Self-Discharge with No Power.	28
Power States	30
Charger States	31
No Input Power or Charge Idle State	32
Precharge State	33
Trickle Charge State	33
Fast-Charge Constant Current (CC) State	34
Fast-Charge Constant Voltage (CV) State	34
Top-Off State	34
Done State	35
Timer Fault State	35
Watchdog Timer	35
Thermal Shutdown State	36
Charger Interrupt Debounce Time	36
Battery Differential Voltage Sense	
Reverse Boost Mode	36
Battery Overcurrent Protection	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

TABLE OF CONTENTS (CONTINUED)

Battery to SYS Q _{BATT} Switch Control (DISIBS)	37
HW Control of Battery to SYS Q _{BATT} Switch—DISQBAT	38
Thermal Management	38
Thermal Foldback	38
Thermistor Input (THM)	39
JEITA Controlled Charging.	41
Analog Low-Noise Power PVDD and VDD	42
Factory-Ship Mode	42
External Q _{BATT} Control I/O	43
Charge Status LED Indication	43
Design Considerations to Protect Against Hot Plug Event.	43
Top System Management	44
Overview	44
Main Bias.	44
System Faults	44
System Faults Debounce Time	45
I ² C Interface Description	45
Register Map	49
ТОР	49
Register Details	49
CHARGER	52
Register Details	
Typical Application Circuits	
Ordering Information	
Revision History	76

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

LIST OF FIGURES

Figure 1. System Self-Discharge Circuit
Figure 2. Power State Diagram
Figure 3. Li+/Li-Poly Charge Profile
Figure 4. Hardware Control of Battery to SYS Switch
Figure 5. Charge Currents vs. Junction Temperature 39
Figure 6. JEITA Controlled Charging 42
Figure 7. I ² C Bit Transfer
Figure 8. I ² C Start and Stop
Figure 9. System Configurations
Figure 10. I ² C Acknowledge
Figure 11. I ² C Master Transmits
Figure 12. I ² C Master Reads After Setting Register Address
Figure 13. I ² C Master Block Read

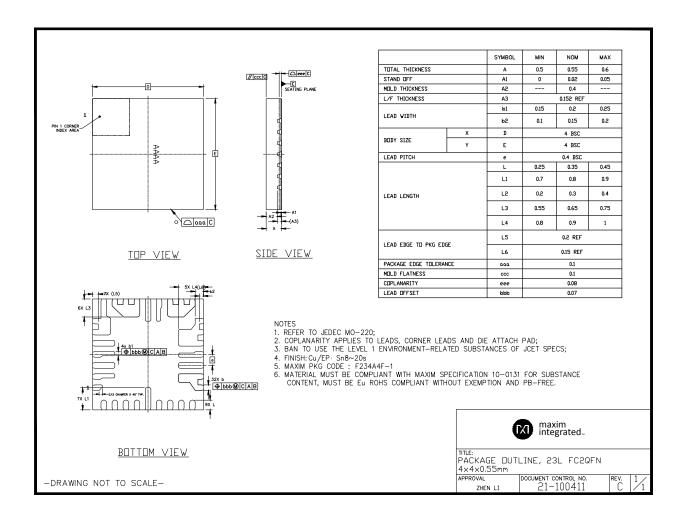
19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

LIST OF TABLES

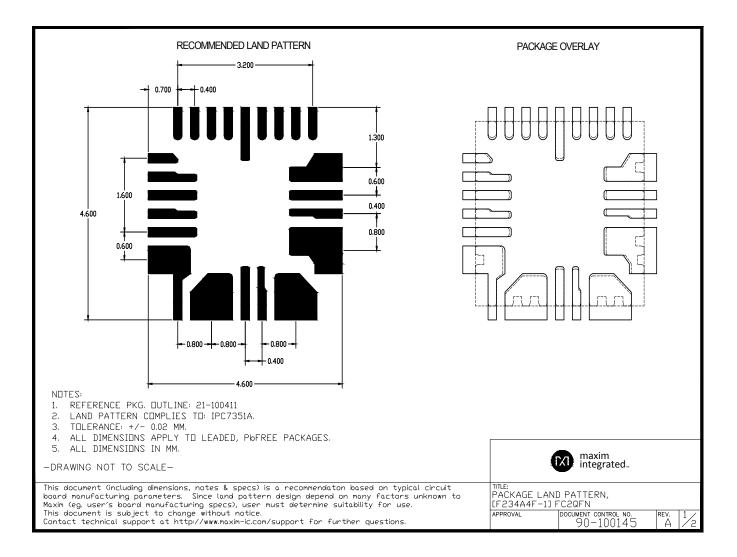
Table 1. Charger Interrupt Debounce Time.	36
Table 2. Trip Temperatures for Different Thermistors	40
Table 3. QBEXT Output in Different System Modes	43
Table 4. STAT_MODE = 0x0	43
Table 5. STAT_MODE = 0x1	43
Table 6. System Faults Debounce Time Summary	45

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

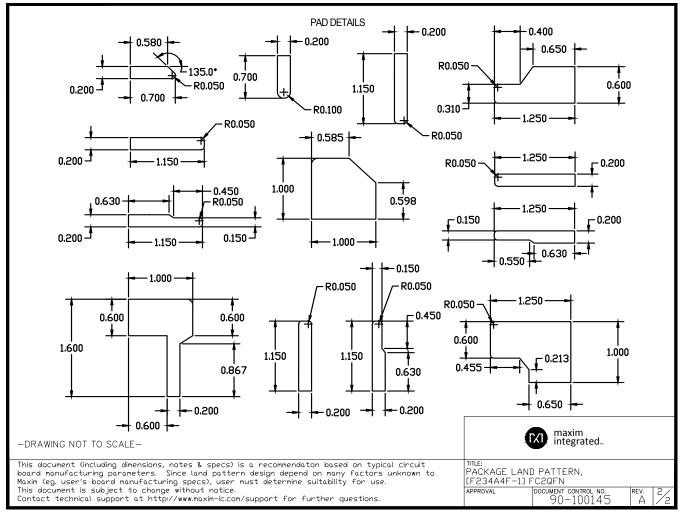
Absolute Maximum Ratings


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information


FCQFN

Package Code	F234A4F+1
Outline Number	<u>21-100411</u>
Land Pattern Number	<u>90-100145</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	28.30°C/W
Junction to Case (θ_{JC})	6.65°C/W


19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL ELECTRICAL	CHARACTERIS	TICS				
		V _{CHGIN} = 5.0V, SUSPEND pin digital high or MODE = 0, DEEP_SUSP_DIS = 1		0.19	0.38	mA
CHGIN Quiescent Current	ICHGIN	V _{CHGIN} = 5.0V, SUSPEND pin digital high or MODE = 0, DEEP_SUSP_DIS = 0		85		μA
		V_{CHGIN} = 5.0V, V_{BATT} = 4.2V, MODE = 5, DONE state (V_{SYS} = 4.35V), I_{SYS} = 0A		2.35		mA
Input Undervoltage Supply Current	I _{IN}	V _{CHGIN} = 2.4V, the input is undervoltage		0.035		mA
BAT Quiescent Current	IBAT	V_{CHGIN} = 0V, V_{BATT} = 3.6V, Q_{BATT} FET is on, LPM = 0, I_{SYS} = 0A		29		μA
BAT Quiescent Current in Low-Power Mode	I _{BAT}	V_{CHGIN} = 0V, V_{BATT} = 3.6V, Q_{BATT} FET is on, LPM = 1, I _{SYS} = 0A		22		μA
BAT Quiescent Current in Factory-Ship Mode	I _{BAT}	V_{CHGIN} = 0V, V_{BATT} = 3.6V, Q_{BATT} FET is off, V_{SYS} = V_{VDD} = 0V, factory-ship mode		3		μA
BAT Quiescent Current in Done State	I _{MBDN}	V_{CHGIN} = 5V, I_{BYP} = 0A, V_{BATT} = 4.2V, I_{SYS} = 0A, Q_{BATT} FET is off, MODE = 5, done state		7.5	10.5	μA
SYS Operating Voltage	V _{SYS}	Guaranteed by V _{SYS_UVLO_R} and V _{SYS_OVLO_R}	V _{SYS_U} VLO_R		V _{SYS_O} VLO_R	V
VIO Voltage Range	V _{VIO}		1.62		5.5	V
SCL, SDA Input Low Level	V _{SCL_SDA_IN_}	T _A = +25°C			0.3 x V _{VIO}	V
SCL, SDA Input High Level	V _{SCL_SDA_IN_} H	T _A = +25°C	0.7 x V _{VIO}			V
SCL, SDA Input Hysteresis	V _{SCL_SDA_HY} S	T _A = +25°C		0.05 x V _{VIO}		V
SCL, SDA Logic Input Current	I _{SCL_SDA}	V _{SCL} = V _{SDA} = V _{VIO} = 1.9V	-10		+10	μA
SDA Output Low Voltage	V _{SDA_OUT_L}	I _{SDA} = 20mA sinking			0.4	V
IRQB Output Low Voltage	VIRQB_OUT_L	I _{IRQB} = 1mA sinking			0.4	V
IRQB Output High Leakage	I _{IRQB_H}	$V_{IRQB} = 5.5V, T_A = 2+5^{\circ}C$	-1	0	+1	μA
0		V _{IRQB} = 5.5V, T _A = +85°C		0.1		
CHGIN INPUT LIMITER		Versen must be loss than Versen				
CHGIN Operating Voltage Range	V _{CHGIN}	V_{CHGIN} must be less than V_{CHGIN}_{OVLO} and greater than both V_{CHGIN}_{UVLO} and (V_SYS + V_CHGIN2SYS_TH) for the charger to turn-on	V _{CHGIN} _ UVLO		V _{CHGIN} _ OVLO	V
CHGIN Overvoltage Threshold	V _{CHGIN_OVLO}	V _{CHGIN} rising	19	19.5	20	V
CHGIN Overvoltage Threshold Hysteresis	V _{CHGIN} OVLO HYS			500		mV

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHGIN Undervoltage Threshold Setting Range	VCHGIN_UVLO	V _{CHGIN} rising, 20% hysteresis, programmable at 4.7V, 4.8V, 4.9V, 5.05V	4.7		5.05	v
CHGIN Undervoltage Threshold Accuracy	V _{CHGIN} _UVLO _ACC	V _{CHGIN} rising, 4.7V setting	4.6	4.7	4.8	V
CHGIN to SYS Undervoltage Threshold Rising	V _{CHGIN2SYS} _ TH	V _{CHGIN} - V _{SYS} , rising	0.12	0.20	0.28	V
CHGIN Turn-On Threshold Validation Delay	^t D-UVLO	Delay from V _{CHGIN} > V _{CHGIN_UVLO} to Q _{CHGIN} FET enable		8		ms
CHGIN Switching Start Delay	^t start	Delay from Input Validation to LX switching (if charge or buck mode is selected and charger is not suspended); see the <u>Input Validation</u> section for input validation conditions		150		ms
CHGIN Adaptive Voltage Regulation Threshold Setting Range	V _{CHGIN_REG}	Programmable at 4.5V, 4.6V, 4.7V, 4.85V. The input voltage regulation loop decreases the input current to regulate V_{CHGIN} at V_{CHGIN} REG under weak input source conditions. If the input current is decreased to I_{IULO} DET and the input voltage is equal or below V_{CHGIN} REG, then the charger input is turned off.	4.5		4.85	V
CHGIN Adaptive Voltage Regulation Threshold Accuracy	V _{CHGIN_REG_}	4.5V setting	4.4	4.5	4.6	v
CHGIN Input Current Limit Setting Range	I _{INLIMIT}	Programmable, 500mA default, 50mA step, production tested at 100mA, 500mA, 1000mA, 1800mA, and 3200mA settings only	0.1		3.2	A
		Charger enabled, 500mA input current limit setting	440	470	500	
CHGIN Input Current		Charger enabled, 1000mA input current limit setting	880	940	1000	
Limit Accuracy	INLIMIT	Charger enabled, 1800mA input current limit setting	1584	1692	1800	mA
		Charger enabled, 3200mA input current limit setting	2816	3008	3200	
CHGIN Input Current Low Threshold	IULO_DET	Charger enabled, 3200mA input current limit setting		60		mA
SYSTEM BUCK		•				
Buck Output Voltage Setting Range (Tracking Disabled)	V _{SYSREG}	Programmable 4.15V to 4.46V in 10mV steps (5-bits). Production tested at 4.2V only.	4.15		4.46	v

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Buck Output Voltage Accuracy (Tracking Disabled)	V _{SYSREG_} AC C	Buck only, charging disabled	-3		+3	%
Buck Output Voltage	V _{SYSREG_TR} K_MIN	MODE = 4, SYS Tracking mode enabled, V _{BATT} < V _{SYS_MIN} /1.04	3.48	3.60	3.72	V
(Tracking Enabled)	V _{SYSREG_} TR K	MODE = 4, SYS Tracking mode enabled, $V_{BATT} \ge V_{SYS}MIN/1.04$, $V_{SYSREG}TRK$ represented as a percentage of V_{BATT}		104		%
Buck Inductor Current	I _{HSILIM}	For MAX77976	8.5	9.5	10.5	
Limit	IHSILIM	For MAX77975	5.95	7.00	8.05	A
Buck Minimum On Time	t _{ON-MIN}	Measured on LX		100		ns
Buck Minimum Off Time	toff-min	Measured on LX		100		ns
System Power-Up Current (from BYP)	ISYSPU_BYP	Charger present, V _{SYS} < V _{SYS_UVLO_R}	50	75	100	mA
System Power-Up Time- Out (from BYP)	tsyspu_byp			150		ms
CHARGER						
Precharge Charge Current	IPRECHG	V _{BATT} < V _{PRECHG}	40	55	80	mA
Precharge Voltage Threshold	V _{PRECHG}	V _{BATT} rising	2.4	2.5	2.6	V
Precharge Voltage Threshold Hysteresis	V _{PRECHG_HY} S			500		mV
Trickle Charge Current	ITRICKLE	TKEN = 1 by default, V _{PRECHG} < V _{BATT} < V _{TRICKLE}	270	300	330	mA
Trickle Charge Voltage Threshold	VTRICKLE	V _{BATT} rising, TKEN = 1 by default	3.0	3.1	3.2	V
Trickle Charge Voltage Threshold Hysteresis	V _{TRICKLE_HY} S	TKEN = 1 by default		100		mV
Prequalification Time	t _{PQ}	Applies to the total time of precharge and trickle charge mode		30		min
Fast-Charge Current	I _{FC}	100mA to 5500mA in 50mA steps; production tested at 500mA, 1000mA, 3000mA, and 5000mA settings (MAX77976 only)	0.1		5.5	A
Setting Range		100mA to 3500mA in 50mA steps; production tested at 500mA, 1000mA, and 3000mA settings (MAX77975 only)	0.1		3.5	
		Programmed I _{FC} ≥ 500mA, V _{BATT} > V _{SYSMIN} , T _A = +25°C	-3.5		+3.5	
Fast-Charge Current Accuracy	I _{FC_ACC}	Programmed I _{FC} ≥ 500mA, V _{BATT} > V _{SYSMIN} , T _A = 0°C to +85°C	-6		+6	%
, tourdoy		Programmed I _{FC} ≥ 500mA, V _{TRICKLE} < V _{BATT} < V _{SYSMIN} (LDO mode), T _A = -5°C to +85°C	-10		+10	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fast-Charge Current Thermal Regulation Setting Range	T _{REG}	Junction temperature when charge current starts to reduce for thermal regulation; programmable from +85°C to +130°C in 5°C steps; default value is +115°C	85		130	°C
Fast-Charge Current Thermal Regulation Gain	A _{TJREG}	The charge current is decreased 5.73% of the fast-charge current full-scale for every degree that the junction temperature exceeds the thermal regulation temperature. This slope ensures that the full-scale current of 5.5A is reduced to 0A by the time the junction temperature is +17.5°C above the programmed loop set point. For lower programmed charge currents such as 480mA, this slope is valid for charge current reductions down to 80mA; below 100mA the slope becomes shallower but the charge current is reduced to 0A if the junction temperature is +20°C above the programmed loop set point.		-315		mA/°C
Fast-Charge Termination Voltage Setting Range	VBATTREG	Programmable from 4.15V to 4.46V in 10mV steps (5-bits); production tested at 4.2V and 4.35V only	4.15		4.46	V
Fast-Charge Termination Voltage Accuracy at Room Temp	VBATTREG_AC C	V _{BATTREG} = 4.35V setting, represented as percentage of V _{BATTREG} ; T _A = +25°C	-0.6	-0.3	+0.0	%
Fast-Charge Termination Voltage Accuracy	V _{BATTREG_} AC C	$V_{BATTREG}$ = 4.35V setting, represented as percentage of $V_{BATTREG}$; T_A = -5°C to +85°C	-0.8	-0.3	+0.2	%
Fast-Charge Termination Debounce Time	t _{TERM}			30		ms
Fast-Charge Constant Current + Constant Voltage Safety Time	t _{FC}	Adjustable from 3hrs, 4hrs, 5hrs, 6hrs, 7hrs, 8hrs including a disable setting; 5hrs default		5		hrs
Top-Off Current Setting Range	Іто	Programmable from 150mA to 850mA with 50mA in 16 steps; production tested at 150mA, 200mA, 500mA, and 850mA settings	150		850	mA
		150mA setting	122.5		177.5	
Top-Off Current		200mA setting	170		230]
Accuracy	ITO_ACC	500mA setting	455		545	mA
		850mA setting	787.5		912.5	
Top-Off Time	tто	Adjustable from 30sec to 70min in 10min steps; default setting is 30min		30		min

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Charge Restart Threshold Setting Range	V _{RSTRT}	Adjustable at 100mV, 150mV, and 200mV; it can also be disabled	100	150	200	mV
Charge Restart Debounce Time	^t CRDG			130		ms
Charge State Change Interrupt Debounce Time	^t SCIDG	Excludes transition to timer fault state, watchdog timer state		30		ms
Charge Watchdog Time	t _{WD}			80		S
Charge Timers Accuracy	tACC		-20		+20	%
Charge-Overvoltage Threshold	V _{COV}	V _{BAT_SP} - V _{BAT_SN} , relative to V _{CHG_CV_} PRM		200		mV
Remote Sense BAT_SP Input Current in Charging Mode	IBAT_SP_CHG	$V_{BATT_SP} = V_{BATT} = 3.8V$, MODE = 5, T _A = +25°C		14		μA
Remote Sense BAT_SN Input Current in Charging Mode	IBAT_SN_CHG	V _{BATT_SN} = 0, MODE = 5, T _A = +25°C		10		μA
SMART POWER SELECT	FOR					•
System Regulation	V _{SYSMIN}	Charging enabled, V _{BATT} < V _{SYSMIN} - V _{SYSTRK}	3.492	3.600	3.708	
Voltage (Charging Enabled, Low Battery)	V _{SYSTRK}	Charging enabled, V _{SYSMIN} - V _{SYSTRK} < V _{BATT} < V _{SYSMIN} , measure of V _{SYS} - V _{BATT}		0.45		V
BATT to SYS Reverse Regulation Voltage	V _{BSREG}	Measure of V_{SYS} - V_{BATT} ; production tested at 10mA and 2A		-100		mV
SYS Self-Discharge Resistor	R _{SYSSD}	Switching is disabled, Q _{BATT} FET is off, V _{SYS} < V _{SYSUVLO_F}		600		Ω
SYSTEM POWER-UP						1
System Power-Up Current (from BATT)	I _{SYSPU_BAT}	V _{CHGIN} = 0V	35	50	80	mA
System Power-Up Voltage (from BATT)	V _{SYSPU_BAT}	V _{SYS} rising, 100mV hysteresis	1.9	2.0	2.1	V
System Power-Up Time- Out (from BATT)	^t SYSPU_BAT			150		ms
REVERSE BOOST						
Reverse Boost Quiescent Current		V _{BYP} = 5.1V, V _{BATT} = 3.8V, MODE = 0x0A, V _{BYPSET} = 0x1		2.5		mA
Reverse Boost Output Voltage Setting Range	V _{BYP_OTG}	Measured on BYP pin, 2.5V < V _{BATT} < 4.5V; adjustable from 5V to 12V with 0.1V step; production tested at 5V and 12V	5		12	v
Reverse Boost Output Voltage Accuracy	V _{BYP_ACC}	Measured on BYP, MODE = 0x0A, V _{BYPSET} = 0x1	4.95	5.10	5.25	V

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Boost Inductor	ILSILIM	For MAX77976	8.5	9.5	10.5	А
Current Limit	ILSILIM	For MAX77975	5.95	7.00	8.05	
CHGIN OUTPUT LIMITE	R					
OTG Output Current Limit Setting Range (MAX77975)	ICHGIN_OTG_L IM	Configurable from 500mA to 2400mA in 100mA steps. Clamped to 12W power limit	500		2400	mA
OTG Output Current Limit Setting Range (MAX77976)	ICHGIN_OTG_L IM	Configurable from 500mA to 3100mA in 100mA steps. Clamped to 18W power limit	500		3100	mA
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x00	500	537	575	
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x04	900	967	1035	
OTG Output Current	ICHGIN_OTG_L	3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x0A	1500	1612	1725	
Limit		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x19 (MAX77975 only)	2400	2580	2760	mA
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x19 (MAX77976 only)	3000	3225	3450	
OTG Output Current Limit Alarm Time	^t OTG_ALARM	Delay from OTG overcurrent event to BYP_I interrupt generated		20		ms
OTG Output Current Limit Fault Time	tOTG_FAULT	Delay from OTG overcurrent event to Q _{CHGIN} FET opening		30		ms
OTG Output Current Limit Retry Time	totg_retry	Delay from Q _{CHGIN} FET opening to Q _{CHGIN} FET closing again (OTG_REC_EN = 1)		300		ms
SWITCHE IMPEDANCES	S AND LEAKAGE	CURRENTS				
CHGIN to BYP On Resistance at Room Temp	R _{CHGIN2BYP} _ ROOM	CHGIN pin to BYP pin, T _A = +25°C		13.0	16.9	mΩ
CHGIN to BYP On Resistance	R _{CHGIN2BYP}	CHGIN pin to BYP pin, T _A = -40°C to +85°C		13.0	20.0	mΩ
LX High-Side On Resistance at Room Temp	R _{HS_ROOM}	BYP pin to LX pin, T _A = +25°C		31.0	43.4	mΩ
LX High-Side On Resistance	R _{HS}	BYP pin to LX pin, $T_A = -40^{\circ}C$ to +85°C		31.0	54.3	mΩ
LX Low-Side On Resistance at Room Temp	R _{LS_ROOM}	LX pin to PGND pin, T _A = +25°C		16.0	22.4	mΩ
LX Low-Side On Resistance	R _{LS}	LX pin to PGND pin, $T_A = -40^{\circ}C$ to +85°C		16.0	28.0	mΩ
BATT to SYS On Resistance at Room Temp	R _{BAT2SYS_RO} OM	BATT pin to SYS pin, V _{BATT} = 4.4V, T _A = +25°C		7.70	11.05	mΩ
BATT to SYS On Resistance	R _{BAT2SYS}	BATT pin to SYS pin, V_{BATT} = 4.4V, T_A = -40°C to +85°C		7.70	12.75	mΩ

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		$V_{LX} = V_{PGND}$ or V_{BYP} , $T_A = +25^{\circ}C$		0.01	10		
LX Leakage Current	ILX_LEAK	$V_{LX} = V_{PGND}$ or V_{BYP} , $T_A = +85^{\circ}C$		1		μΑ	
DST Lookage Current		V _{BST} - V _{LX} = 1.8V, T _A = +25°C		0.01	10		
BST Leakage Current	^I BST_LEAK	V _{BST} - V _{LX} = 1.8V, T _A = +85°C		1		μΑ	
	I _{BYP_LEAK}	V_{BYP} = 5.5V, V_{CHGIN} = 0V, V_{LX} = 0V, charger disabled, T_A = +25°C		0.01	10		
BYP Leakage Current		V_{BYP} = 5.5V, V_{CHGIN} = 0V, V_{LX} = 0V, charger disabled, T_A = +85°C		1		μA	
BATSP Input Current Leakage	IBATSP	Charger disabled, $V_{BATSP} = V_{BATT}$, $T_A = +25^{\circ}C$		±1		μA	
BATSN Input Current Leakage	IBATSN	Charger disabled, V _{BATSN} = V _{AGND} , T _A = +25°C		±1		μA	
LOGIC AND CONTROL I	/Os						
		SUSPND, DISQBAT, T _A = +25°C			0.4		
Input Low Level	VIL	EXTSM, T _A = +25°C			0.3 x V _{BATT}	V	
	V _{IH}	SUSPND, DISQBAT, T _A = +25°C	1.4				
Input High Level		EXTSM, T _A = +25°C	0.7 x V _{BATT}			V	
Input Leakage Current	llκ	SUSPND, DISQBAT, EXTSM pin, at 5.5V (including current through pulldown resistor)		24	60	μA	
Output Low Voltage QBEXT	V _{OLQBEXT}	Sourcing 1mA, T _A = +25°C			0.4	V	
Output High Leakage	1	V _{SYS} = 5.5V, T _A = +25°C	-1	0	+1		
QBEXT	ILQBEXT	V _{SYS} = 5.5V, T _A = +85°C		0.1		μA	
SUSPND Internal Pulldown Resistor	R _{SUSPND}			235		kΩ	
DISQBAT Internal Pulldown Resistor	R _{DISQBAT}			235		kΩ	
EXTSM Internal Pulldown Resistor	R _{EXTSM}			235		kΩ	
EXTSM Debounce Time	^t extsm_deb	V _{BATT} in 3.3V to 4.5V range, EXTSM_T = 0		10			
		V _{BATT} in 3.3V to 4.5V range, EXTSM_T = 1		0.1		ms	
CHARGE STATUS INDIC	ATOR						
Charge Status Current Setting Range	I _{STAT_RNG}	5mA to 20mA in 5mA steps; production tested at V_{STAT} - V_{AGND} = 1.0V and 5.0V	5		20	mA	
Charge Status Current Accuracy	ISTAT_ACC	Production tested at 5mA and 20mA	-30		+30	%	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Electrical Characteristics (continued)

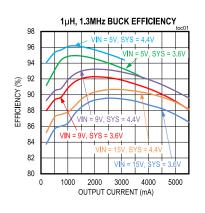
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
THERMISTOR MONITOR	ł					
THM Threshold, COLD	THM_COLD	V _{THM} /V _{PVDD} rising, 1% hysteresis (thermistor temperature falling)	73.8	75.0	76.2	%
THM Threshold, COOL	THM_COOL	V _{THM} /V _{PVDD} rising, 1% hysteresis (thermistor temperature falling)	64.3	65.5	66.7	%
THM Threshold, WARM	THM_WARM	V _{THM} /V _{PVDD} falling, 1% hysteresis (thermistor temperature rising)	30.8	32.0	33.2	%
THM Threshold, HOT	тнм_нот	V _{THM} /V _{PVDD} falling, 1% hysteresis (thermistor temperature rising)	20.8	22.0	23.2	%
THM Threshold, Disabled	THM_DIS	V _{THM} /V _{PVDD} falling, 1% hysteresis, THM function is disabled below this voltage	4.8	6.0	7.2	%
THM Threshold, Battery Removal Detection	THM_RM	V _{THM} /V _{PVDD} rising, 1% hysteresis, battery removal	85	87	89	%
THM Input Leakage	1	$V_{THM} = V_{AGND}$ or V_{PVDD} , charger disabled, $T_A = +25^{\circ}C$		0.1	1	μA
Current	ILKTHM	$V_{THM} = V_{AGND}$ or V_{PVDD} , charger disabled, $T_A = +85^{\circ}C$		0.1		μ
SUPPLIES AND MONITO	DRING					
VDD Output Voltage	V _{VDD_1P8}	V_{SYS} or V_{BATT} = 3.8V, I_{VDD} = 20mA	1.71	1.80	1.89	V
SYS Undervoltage- Lockout Threshold (SYS Rising)	V _{SYS_UVLO_R}		2.74	2.80	2.86	v
SYS Undervoltage- Lockout Threshold (SYS Falling)	V _{SYS_UVLO_F}		2.55	2.60	2.65	v
SYS Undervoltage- Lockout Hysteresis	V _{SYS_UVLO_H}			200		mV
SYS Overvoltage- Lockout Threshold (SYS Rising)	V _{SYS_OVLO_R}	SYS rising	5.2	5.35	5.5	v
SYS Overvoltage- Lockout Threshold (SYS Falling)	V _{SYS_OVLO_F}	SYS falling	5	5.15	5.3	v
SYS Overvoltage- Lockout Hysteresis	V _{SYS_OVLO_H}			200		mV
Thermal Shutdown Threshold	T _{SHDN_R}	T _j rising		155		°C
Thermal Shutdown Threshold Hysteresis	T _{SHDN_H}			15		°C
PVDD Output Voltage	V _{PVDD_1P8}	V _{SYS} = 3.8V, I _{PVDD} = 20mA	1.71	1.80	1.89	V
I ² C-COMPATIBLE INTER	RFACE TIMING F	OR STANDARD, FAST, AND FAST-MODE	PLUS			
Clock Frequency	f _{SCL}				1000	kHz
Hold Time (Repeated) START Condition	^t HD;STA		0.26			μs
CLK Low Period	tLOW		0.5			μs

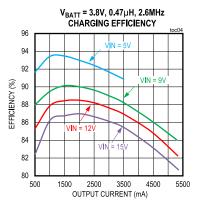
19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

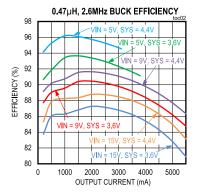
Electrical Characteristics (continued)

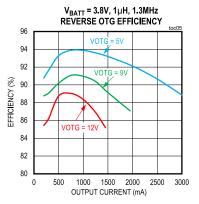
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLK High Period	thigh		0.26			μs
Set-Up Time Repeated START Condition	^t SU;STA		0.26			μs
DATA Hold Time	thd:dat		0			μs
DATA Valid Time	t _{VD:DAT}				0.45	μs
DATA Valid Acknowledge Time	tvd:ack				0.45	μs
DATA Set-Up time	t _{SU;DAT}		50			ns
Set-Up Time for STOP Condition	tsu;sto		0.26			μs
Bus-Free Time Between STOP and START	^t BUF		0.5			μs
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			50		ns
I ² C-COMPATIBLE INTER	FACE TIMING FOR	HS-MODE (CB = 100pF)	· · · ·			
Clock Frequency	f _{SCL}				3.4	MHz
Set-Up Time Repeated START Condition	^t SU;STA		160			ns
Hold Time (Repeated) START Condition	^t HD;STA		160			ns
CLK Low Period	tLOW		160			ns
CLK High Period	tніgн		60			ns
DATA Set-Up time	tsu;dat		10			ns
DATA Hold Time	thd:dat		0			ns
Set-Up Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			10		ns
I ² C-COMPATIBLE INTER	FACE TIMING FOR	HS-MODE (CB = 400pF)				
Clock Frequency	f _{SCL}				1.7	MHz
Set-Up Time Repeated START Condition	^t su;sta		160			ns
Hold Time (Repeated) START Condition	^t hd;sta		160			ns
CLK Low Period	t _{LOW}		320			ns
CLK High Period	^t HIGH		120			ns
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	thd:dat		0			ns

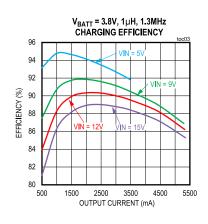
19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

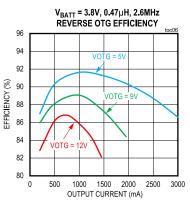

Electrical Characteristics (continued)

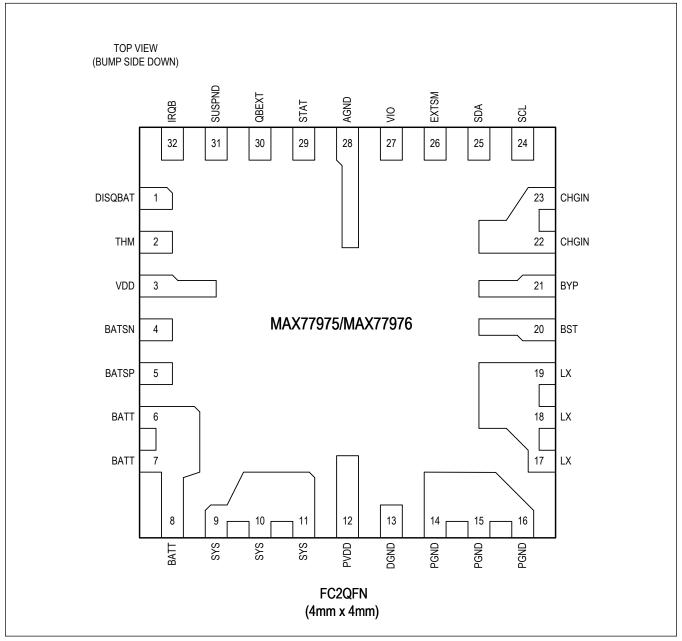

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Set-Up Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			10		ns


19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, unless otherwise noted.)$





19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

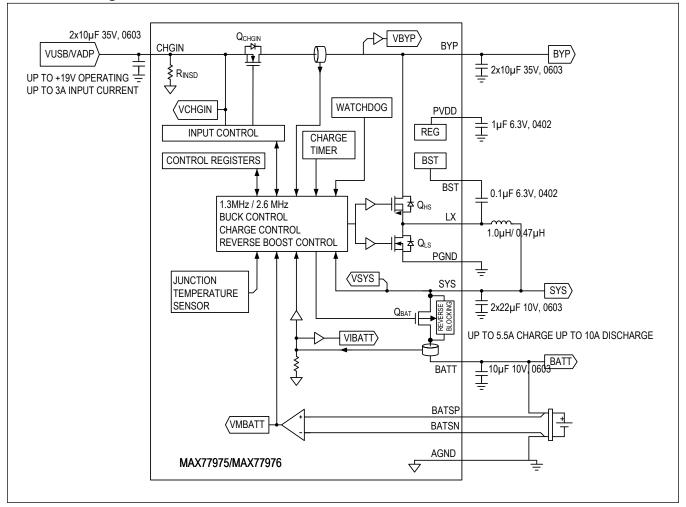
Pin Configuration

FC2QFN

Pin Description

PIN	NAME	FUNCTION	
1	DISQBAT	Active-high to disable internal QBATT FET between SYS and BATT.	DI
2	THM	Thermistor Connection. Connect an external thermistor between THM and AGND.	А

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD


Pin Description (continued)

B 111			
PIN	NAME	FUNCTION	TYPE
3 VDD		Analog Voltage Level. The output of on-chip low voltage LDO used to power on- chip, low-noise circuits. Bypass with a $0.1\mu F$ (6.3V) ceramic capacitor to AGND.	
		Powering external loads from VDD is not recommended, other than pullup resistors.	
4	BATSN	Battery Negative Differential Sense Connection. Connect to the negative or ground terminal as close as possible.	
5	BATSP	Battery Positive Differential Sense Pin. Connect to battery positive terminal as close as possible to eliminate errors due to trace/connector voltage drops.	А
6, 7, 8	BATT	Connection with Battery. Connect to the positive terminal of a single-cell Li-ion battery. Bypass with a 10μ F (6.3V) ceramic capacitor from BATT to PGND.	Ρ
		Connection with System. Bypass with at least 2x 22µF (6.3V) ceramic capacitors from SYS to PGND. This ensures that the minimum effective capacitance on the SYS node is 12µF	_
9, 10, 11 SYS		(effective), for stability purposes. For application purposes, SYS node capacitance can increase up to 350µF total (effective).	Р
12 PVDD		Internal Bias Regulator High Current Output Bypass Pin. Supplies internal noisy and high current gate drive loads. Bypass with 1x 1 μ F (6.3V) and 1x 100nF (6.3V) from PVDD to PGND.	Р
		Powering external loads from PVDD is not recommended, other than pullup resistors.	
13	DGND	Digital Ground	А
14, 15 ,16	PGND	Charger Power Ground	Р
17, 18, 19	LX	Charger Switching Node. Connect the inductor between LX and SYS.	Р
20	BST	High-Side FET Driver Supply. Bypass BST to LX with a 1x 100nF (6.3V) ceramic capacitor.	А
21	BYP	CHGIN Bypass Pin. This pin is the input for the switching charger and the output for the boost converter when the charger is operating in 'reverse-boost' mode. Bypass with 2x 10μ F (35V) ceramic capacitor from BYP to PGND.	Ρ
22, 23	CHGIN	Charger Input. Connect 2x 10µF (35V) between CHGIN and PGND. Connect a Schottky diode with anode at CHGIN and cathode at BYP if required. See the <i>Design Considerations to Protect Against Hot Plug Event</i> section.	Ρ
24	SCL	I ² C Interface Clock Input	DI
25	SDA	I ² C Interface Data Input	DI
26	EXTSM	Exit Ship Mode Input by Push-Button. Active-high input.	DI
27	VIO	I ² C Supply Voltage Input. Bypass to AGND with a 0.1 μ F (6.3V) capacitor.	Р
28	AGND	Analog Ground	А
29	STAT	LED Low-Side Driver Output for Indicating Charging Status	А
30	QBEXT	External Battery FET Control Output. Connect a pullup resistor to VIO, SYS, or BATT supply.	DO
31	SUSPND	Active-High Input to Disable the DC-DC Between CHGIN Input and SYS Output	DI
32	IRQB	Interrupt Output. Connect a $100k\Omega$ pullup resistor between IRQB and VIO.	DO

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Functional Diagram

Functional Diagram

Detailed Description

Switching Mode Charger

Features

- Complete Li+/LiPoly Battery Charger
 - Prequalification, Constant Current, Constant Voltage
 - 55mA Precharge Current
 - 300mA Trickle Charge Current
 - Adjustable Constant Current Charge
 - 100mA to 5.5A in 50mA steps
 - Adjustable Charge-Termination Threshold
 - 150mA to 850mA in 50mA Steps
 - Adjustable Battery Regulation Voltage
 - 4.15V to 4.46V in 10mV Steps
 - -0.8/+0.2% accuracy from 0°C to +85°C
 - Remote Differential Sensing
- Synchronous Switch-Mode Based Design
- Smart Power Selector
 - Optimally distributes power between the charge adapter, system, and battery.
 - When powered by a charge adapter, the battery can provide supplemental current to the system.
 - The charge adapter can support the system with a dead battery or without a battery.
- No External MOSFETs Required for Switcher
- CHGIN Input
 - Adjustable Input Current Limit
 - 100mA to 3.20A in 50mA steps (CHGIN_ILIM)
 - Default is set to 500mA
 - Supports AC-to-DC Wall Adapters
 - V_{CHGIN_OVLO} = 19V
 - Reverse-Leakage Protection Prevents the Battery Leaking Current to the Inputs
- Charge Safety Watchdog Timer
 - Selectable: 3hr to 10hr, plus a Disable Setting
- Die Temperature Monitor with Thermal Foldback Loop
 - Selectable Die-Temperature Thresholds (°C): +85°C to +130°C in +5°C steps
- Input Voltage Dropout Control Allows Operation from High-Impedance Sources (AICL)
- BATT to SYS Switch is 7.7mΩ Typical
- Capable of 10A Steady-State Operation from BATT to SYS
- Short-Circuit Protection
 - DISIBS Bit Allows the Host to Disable the Battery to System Discharge Path to Protect Against a Short-Circuit
 - SYS Short to Ground
 - Buck current is limited by switcher current limit and disabling of the synchronous rectifier.

Detailed Description

The MAX77975/MAX77976 includes a full-featured switch-mode charger for a one-cell lithium-ion (Li+) or lithium-polymer (Li-polymer) battery. The current limit for CHGIN input is independently programmable from 100mA to 3.2A in 50mA steps allowing the flexibility for connection to either an AC-to-DC wall charger or a USB port.

The synchronous switch-mode DC-DC converter utilizes a high 1.3MHz/2.6MHz switching frequency which is ideal for portable devices because it allows the use of small components while eliminating excessive heat generation. The DC-DC has both a buck and a boost mode of operation. When charging the main-battery the converter operates as a buck. The DC-DC buck operates from a 4.3V to 19.5V source. The battery charge current is programmable from 100mA to 5.5A.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

As a boost converter, the DC-DC uses energy from the main-battery to boost the voltage at BYP. The BYP supplies the USB OTG voltage (5.1V) and USB Type-C[®] PD Source Voltages (5V to 12V). The programmable boost output current limit range is from 0.5A to 3.1A with a 0.1A step.

Maxim's Smart Power Selector architecture makes the best use of the limited adapter power and the battery's power at all times to supply up to buck current limit from the buck to the system. (Additionally, supplement mode provides additional current from the battery to the system.) Adapter power that is not used for the system goes to charging the battery. All power switches for charging and switching the system load between the battery and adapter power are included on-chip—no external MOSFETs are required.

A multitude of safety features ensures reliable charging. Features include a charge timer, watchdog, junction thermal regulation, over/under voltage protection, and short circuit protection.

Smart Power Selector (SPS)

The SPS architecture is a network of internal switches and control loops that distribute energy between external power sources CHGIN, BYP, SYS, and BATT.

The *Functional Diagram* shows a detailed arrangement of the Smart Power Selector switches and gives them the following names: Q_{CHGIN}, Q_{HS}, Q_{LS}, and Q_{BATT}.

Switch and Control Loop Descriptions

- CHGIN Input Switch: The input switch is either completely on or completely off. As shown in the *Functional Diagram*, there are SPS control loops that monitor the current through the input switches as well as the input voltage.
- DC-DC Switches: Q_{HS} and Q_{LS} are the DC-DC switches that can operate as a buck (step-down) or a boost (step-up). When operating as a buck, energy is moved from BYP to SYS. When operating as a boost, energy is moved from SYS to BYP. SPS control loops monitor the DC-DC switch current, the SYS voltage, and the BYP voltage.
- Battery-to-System Switch: Q_{BATT} controls the battery charging and discharging. Additionally, Q_{BATT} allows the battery to be isolated from the system (SYS). An SPS control loop monitors the Q_{BATT} current.

Control Bits

- MODE configures the Smart Power Selector
- V_{BYPSET} sets the BYP regulation voltage target

Energy Distribution Priority

- With a valid external power source:
 - The external power source is the primary source of energy
 - The main-battery is the secondary source of energy
 - · Energy delivery to BYP is the highest priority
 - Energy delivery to SYS is the second priority
 - Any energy that is not required by BYP or SYS is available to the main-battery charger
- With no power source available at CHGIN:
 - The main-battery is the primary source of energy
 - Energy delivery to BYP (if boost mode is selected) and SYS share the same priority
 - BYP includes CHGIN if boost OTG mode is selected, itself limited by OTG_ILIM threshold

BYP Regulation Voltage

- When the DC-DC is off or in one of its buck modes and there is a valid power source at CHGIN, V_{BYP} = V_{CHGIN} I_{CHGIN} x RCHGIN2BYP.
- When the DC-DC is off and there is no valid power source at CHGIN, BYP is connected to LX through the high-side switch's body diode.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

SYS Regulation Voltage

- When the DC-DC is enabled as a buck and the charger is disabled, Q_{BATT} is off and V_{SYS} is regulated to V_{SYSREG_TRK_MIN} when the V_{BATT} < V_{SYSMIN} or V_{SYSREG_TRK} when the V_{BATT} ≥ V_{SYSMIN}.
 When the DC-DC is enabled as a buck and the charger is enabled but in a non-charging state such as done,
- When the DC-DC is enabled as a buck and the charger is enabled but in a non-charging state such as done, thermistor suspend, watchdog suspend or timer fault, Q_{BATT} is off and V_{SYS} is regulated to V_{SYSREG_TRK_MIN} when the V_{BATT} < V_{SYSMIN} or V_{SYSREG_TRK} when the V_{BATT} ≥ V_{SYSMIN}.
 When the DC-DC is enabled as a buck and charging in prequalification, fast-charge, or top-off modes, V_{SYS} is
- When the DC-DC is enabled as a buck and charging in prequalification, fast-charge, or top-off modes, V_{SYS} is regulated to V_{SYSMIN} when the V_{BATT} < V_{SYSMIN}; in this mode, the Q_{BATT} switch acts as a linear regulator and dissipates power [P = (V_{SYSMIN} V_{BATT}) × I_{BATT}]. When V_{BATT} > V_{SYSMIN}, then V_{SYS} = V_{BATT} + I_{BATT} × R_{BAT2SYS}; in this mode, the Q_{BATT} switch is closed.
- In all of the above modes, if the combined SYS and BYP loading exceeds the input current limit, then V_{SYS} drops to V_{BATT} - V_{BSREG} and the battery provides supplemental current.
- When the DC-DC is enabled as a boost, then the QBATT switch is closed, and VSYS = VBATT IBATT X RBAT2SYS.

Input Validation

The charger input is compared with several voltage thresholds to determine if it is valid. A charger input must meet the following four characteristics to be valid:

- CHGIN must be above V_{CHGIN_UVLO} to be valid. Once CHGIN is above the UVLO threshold, the information (together with IN2SYS, described below) is latched and can only be reset when the charger is in adaptive input current loop (AICL) and input current is lower than the IULO_DET threshold.
- CHGIN must be below its overvoltage-lockout threshold (V_{CHGIN OVLO}).
- CHGIN must be above the system voltage by IN2SYS drop out.
- CHGIN input generates a CHGIN_I interrupt when its status changes. The input status can be read with CHGIN_OK and CHGIN_DTLS. Interrupts can be masked with CHGIN_M.

Input Current Limit

The default settings of the CHGIN_ILIM and MODE control bits are such that when a charge source is applied to CHGIN, the IC turns its DC-DC converter on in BUCK mode, limits V_{SYS} to V_{SYSREG_TRK} , and limits the charge source current to $I_{INLIMIT}$. All control bits are reset on global shutdown.

Input Voltage Regulation Loop

An input voltage regulation loop allows the charger to be well behaved when it is attached to a poor quality charge source. The loop improves performance with relatively high resistance charge sources that exist when long cables are used or devices are charged with non-compliant USB hub configurations. Additionally, this input voltage regulation loop improves performance with current limited adapters. If the ICs input current limit is programmed above the current-limit threshold of a given adapter, the input voltage loop allows the IC to regulate at the current limit of the adapter. Finally, the input-voltage regulation loop allows the IC to perform well with adapters that have poor transient load response times.

The input voltage regulation loop automatically reduces the inductor average current to keep the input voltage at V_{CHGIN_REG} . If the input current is reduced to I_{ULO_DET} and the input voltage is below V_{CHGIN_REG} , then the charger input is turned off. V_{CHGIN_REG} is programmable with V_{CHGIN_REG} [1:0].

After operating with the input voltage regulation loop active, a AICL_I interrupt is generated, AICL_OK sets to 0. To optimize input power when working with a current limited charge source, monitor the AICL_OK status while decreasing the input current limit. When the input current limit is set below the limit of the adapter, the input voltage rises. Although the input current limit is lowered, more power can be extracted from the input source when the input voltage is allowed to rise.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Example 1. Optimum use of the Input Voltage Regulation Loop along with a current limited adapter.

Sequence of Events:

- 1. V_{BATT} = 3.2V, the system is operating normally.
- 2. MODE = 0x04, CHGIN_ILIM = 100mÅ, CHG_CV_PRM = 4.2V, V_{CHGIN_REG} = 4.5V, CHG_CC_TOT = 2.0A.
- 3. A 5.0V 1.2A current limited dedicated USB charger is applied to CHGIN.
- 4. The DC-DC buck regulator turns on, V_{SYS} is regulated to V_{BATTREG} (4.2V) and the input is allowed to provide 100mA to the system.
- 5. The system detects that the charge source is a dedicated USB charger and enables the battery charger (MODE = 0x05) and programs an input current limit to 1.8A (CHGIN ILIM = 1.8A).
- The input current limit starts to ramp up from 100mA to 1.8A, but at the input current limit of the adapter (1.2A), the adapter voltage collapses. The ICs input voltage regulation loop prevents the adapter voltage from falling below 4.5V (V_{CHGIN REG} = 4.5V). A AICL_I interrupt is generated and AICL_OK sets to 0.
- 7. With the input-voltage regulation loop active, the adapter provides 1.2A at 4.5V which is a total of 5.4W being delivered to the system.
- 8. The system software detects that the input voltage regulation loop is active and it begins to ramp down the programmed input current limit. When the current limit ramps down to 1.175A, the adapter is no longer in current limit, and the adapter voltage increases from 4.5V to 5.0V.
- 9. With the adapter operating just below its current limit, it provides 1.175A at 5.0V which is a total of 5.88W to the system. This is 440mW more than when the adapter was in current limit.

System Self-Discharge with No Power

To ensure a timely, complete, repeatable, and reliable reset behavior when the system has no power, the ICs actively discharge the SYS nodes when Q_{BATT} and switcher are disabled and V_{SYS} is less than $V_{SYSUVLO}$. As shown in Figure 1, the SYS discharge resistor is 600 Ω .

Example 1. Basic System Self-Discharge

Initial Conditions: No charger adapter is present at CHGIN, the BAT-to-SYS switch is closed, C_{BAT} = 100µF, C_{SYS} = 200µF, V_{BATT} = 3.6V, and $V_{SYSUVLO}$ falling is SYS_UVLOB_F.

Sequence of Events:

- 1. With the system in its normal operating mode it is drawing 1A.
- 2. The main battery is removed.
- 3. The system continues to draw 1A until V_{SYS} falls below V_{SYSUVLO}. This takes 480µs ((3.6V-2.0V)/1A x 300µF).
- When the system voltage falls below V_{SYSUVLO}, the system turns off leakage current. To facilitate discharging C_{BAT} and C_{SYS} the IC engages its 600Ω discharge resistors.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

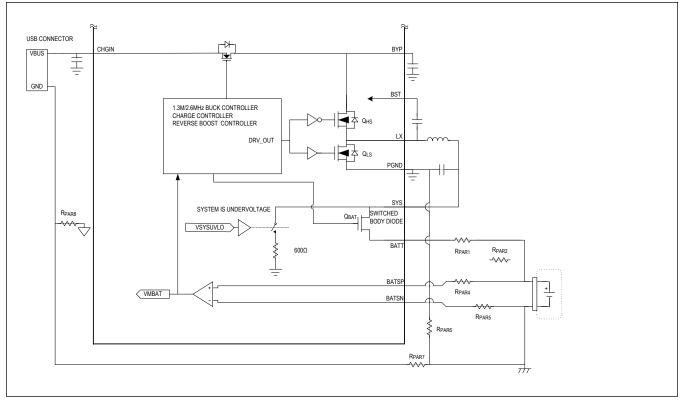


Figure 1. System Self-Discharge Circuit

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Power States

The MAX77975/MAX77976 transitions between power states as input/battery and load conditions dictate; see Figure 2.

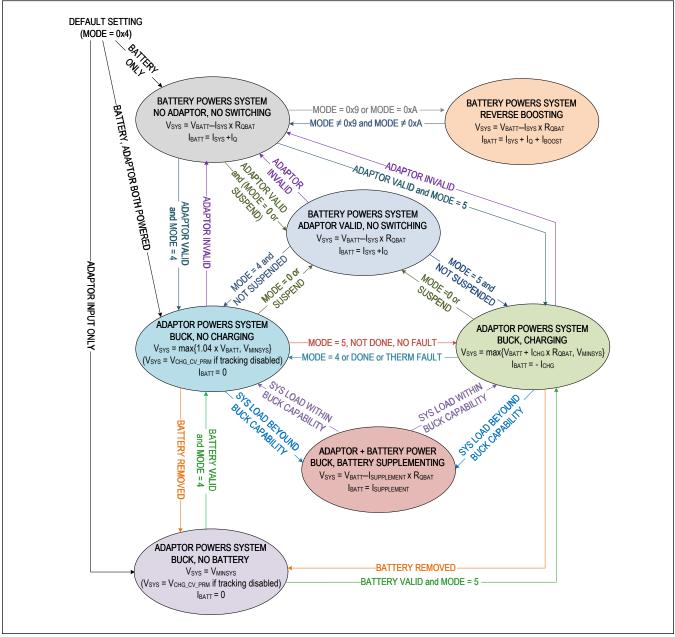


Figure 2. Power State Diagram

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

The IC provides five (5) power modes and one (1) no power mode (MODE detailed description is at register CHG_CNFG_00 [3:0]). Under power limited conditions, the PowerPathTM feature maintains SYS load at the expense of battery charge current. Also, the battery supplements the input power when required. As shown, transitions between power states are initiated by detection/removal of valid power sources, OTG events, and undervoltage conditions. Details of the SYS voltage and BATT current are provided for each state. There are six main usage modes:

1. NO INPUT POWER, <u>MODE = undefined</u>: No input adapter or battery is detected. The charger and system are off. The battery is disconnected and the charger is off.

2. BATTERY-ONLY, <u>MODE = any modes</u>: Adapter is invalid and outside the input voltage operating range ($Q_{CHGIN} = OFF$). The battery is connected to power the SYS load ($Q_{BATT} = ON$).

3. NO CHARGE-BUCK, <u>MODE = 0x04</u>: Adapter is valid, buck supplies power to SYS. The battery is disconnected ($Q_{BATT} = OFF$) when SYS load is less than the power that buck can supply.

When SYS load is larger than the power that buck can supply, the battery is reconnected ($Q_{BATT} = ON$) and supplements extra SYS load.

4. CHARGE-BUCK, MODE = 0x05: Adapter is valid, buck supplies power to SYS, and charges battery with IBATT.

5. BATTERY-BOOST (FLASH), <u>MODE = 0x09</u>: OTG is inactive ($Q_{CHGIN} = OFF$). Battery is connected to support SYS and BYP loads ($Q_{BATT} = ON$), and charger is operating in boost mode (Boost = ON).

6. BATTERY-BOOST (OTG), <u>MODE = 0x0A</u>: OTG is active ($Q_{CHGIN} = ON$). Battery is connected to support SYS and OTG loads ($Q_{BATT} = ON$), and charger is operating in boost mode (Boost = ON).

Charger States

The ICs utilize several charging states to safely and quickly charge batteries as shown in <u>Figure 3</u>. The figure shows an exaggerated view of a Li+/Li-Poly battery progressing through the following charge states when there is no system load and the die and battery are close to room temperature. It shows a complete charging state transition process with four states: prequalification, fast-charge, top-off, and done.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

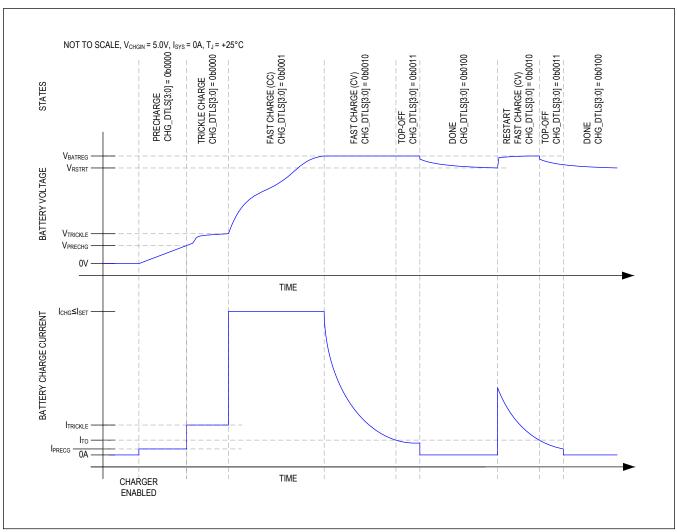


Figure 3. Li+/Li-Poly Charge Profile

No Input Power or Charge Idle State

While in the "no input power or charger idle" state, the charge current is 0mA, the watchdog and charge timers are forced to 0, and the power to the system is provided by either the battery or the adapter. When both battery and adapter power is available, the adapter provides primary power to the system and the battery contributes supplemental energy to the system if necessary.

To exit the "no input power or charger idle" state, the charger input must be valid and the charger has to be enabled.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Precharge State

As shown in <u>Figure 3</u>, the precharge state occurs when the main-battery voltage is less than V_{PRECHG}. After being in this state for t_{SCIDG}, a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS is set to 0x00. In the precharge state, charge current into the battery is I_{PRECHG}.

The following events cause the state machine to exit this state:

- Main battery voltage rises above V_{PRECHG} and the charger enters the next state in the charging cycle: "Trickle Charge".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced (see the <u>Watchdog Timer</u> section), the charger state machine transitions to the "Watchdog Suspend" state.

Note that the precharge state works with battery voltages down to 0V. The low 0V operation typically allows this battery charger to recover batteries that have an "open" internal pack protector. Typically a pack internal protection circuit opens if the battery has seen an overcurrent, undervoltage, or overvoltage. When a battery with an "open" internal pack protector is used with this charger, the precharge mode current flows into the 0V battery—this current raises the pack's terminal voltage to the pointer where the internal pack protection switch closes.

Note that a normal battery typically stays in the precharge state for several minutes or less. Therefore a battery that stays in the precharge for longer than t_{PQ} may be experiencing a problem.

Trickle Charge State

As shown in <u>Figure 3</u>, the trickle charge state occurs when $V_{BATT} > V_{PRECHG}$ and $V_{BATT} < V_{TRICKLE}$. After being in this state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x00.

With TKEN = 1 and the IC is in its trickle charge state, the current in the battery is less than or equal to ITRICKLE. When TKEN = 0, the battery current is less than or equal to I_{FC} .

Charge current may be less than ITRICKLE/I_{FC} for any of the following reasons:

- The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

Typical systems operate with TKEN = 1. When operating with TKEN = 0, the system's software usually sets I_{FC} to a low value such as 450mA and then monitors the battery voltage. When the battery exceeds a relatively low voltage such as 3.1V, then the system's software usually increases I_{FC} .

The following events cause the state machine to exit this state:

- When the main battery voltage rises above VTRICKLE or the PQEN bit is cleared, the charger enters the next state in the charging cycle: "Fast Charge (CC)".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Note that a normal battery typically stays in the trickle charge state for several minutes or less. Therefore a battery that stays in trickle charge for longer than t_{PQ} may be experiencing a problem.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Fast-Charge Constant Current (CC) State

As shown in <u>Figure 3</u>, the fast-charge CC state occurs when the main-battery voltage is greater than the low-battery prequalification threshold and less than the battery regulation threshold ($V_{TRICKLE} < V_{BATT} < V_{BATTREG}$). After being in the fast-charge CC state for t_{SCIDG}, a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x01.

In the fast-charge CC state, the current into the battery is less than or equal to I_{FC} . Charge current may be less than I_{FC} for any of the following reasons:

- The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events causes the state machine to exit this state:

- When the main battery voltage rises above V_{BATTREG}, the charger enters the next state in the charging cycle: "Fast Charge (CV)".
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

The battery charger dissipates the most power in the fast-charge constant current state. This power dissipation causes the internal die temperature to rise. If the die temperature exceeds T_{REG} , I_{FC} is reduced. See the <u>Thermal Foldback</u> section for more information.

Fast-Charge Constant Voltage (CV) State

As shown in <u>Figure 3</u>, the fast-charge CV state occurs when the battery voltage rises to $V_{BATTREG}$ from the fast-charge CC state. After being in the fast-charge CV state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x02.

In the fast-charge CV state, the battery charger maintains $V_{BATTREG}$ across the battery and the charge current is less than or equal to I_{FC} . As shown in Figure 3, charger current decreases exponentially in this state as the battery becomes fully charged.

The smart power selector control circuitry may reduce the charge current lower than the battery may otherwise consume for any of the following reasons:

- The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events causes the state machine to exit this state:

- When the charger current is below I_{TO} for t_{TERM}, the charger enters the next state in the charging cycle: "TOP OFF" state.
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Top-Off State

As shown in Figure 3, the top-off state can only be entered from the fast-charge CV state when the charger current decreases below I_{TO} for t_{TERM} . After being in the top-off state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x03. In the top-off state, the battery charger tries to maintain $V_{BATTREG}$ across the battery and typically the charge current is less than or equal to I_{TO} .

The smart power selector control circuitry may reduce the charge current lower than the battery may otherwise consume

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

for any of the following reasons:

- The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events cause the state machine to exit this state:

- After being in this state for the top-off time (t_{TO}), the charger enters the next state in the charging cycle: "DONE" state.
- If VBATT < VBATTREG VRSTRT, the charger goes back to the "FAST CHARGE (CC)" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Done State

As shown in <u>Figure 3</u>, the battery charger enters its done state after the charger has been in the top-off state for t_{TO} . After being in this state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 0, and CHG_DTLS = 0x04.

The following events cause the state machine to exit this state:

- If V_{BATT} < V_{BATTREG} V_{RSTRT}, the charger goes back to the "FAST-CHARGE CC" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

In the done state, the charge current into the battery (I_{CHG}) is 0A. In the done state, the charger presents a very low load (I_{MBDN}) to the battery. If the system load presented to the battery is low, then a typical system can remain in the done state for many days. If left in the done state long enough, the battery voltage decays below the restart threshold (V_{RSTRT}), and the charger state machine transitions back into the fast-charge CV state. There is no soft-start (di/dt limiting) during the done to fast-charge state transition.

Timer Fault State

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. The charge timer prevents the battery from charging indefinitely. The time that the charger is allowed to remain in each of its prequalification states is t_{PQ} . The time that the charger is allowed to remain in the fast-charge CC & CV states is t_{FC} which is programmable with FCHGTIME. Finally, the time that the charger is in the top-off state is t_{TO} which is programmable with TO_TIME. Upon entering the timer fault state a CHG_I interrupt is generated without a delay, CHG_OK is cleared, and CHG_DTLS = 0x06.

In the timer fault state, the charger is off. The charger can exit the timer fault state by programming the charger to be off and then programming it to be on again through the MODE bits. Alternatively, the charger input can be removed and re-inserted to exit the timer fault state.

Watchdog Timer

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. The watchdog timer protects the battery from charging indefinitely if the host hangs or otherwise cannot communicate correctly. The watchdog timer is disabled by default with WDTEN = 0. To use the watchdog timer feature enable the feature by setting WDTEN. While enabled, the system controller must reset the watchdog timer within the timer period (t_{WD}) for the charger to operate normally. Reset the watchdog timer by programming WDTCLR = 0x01.

If WD_QBATTOFF bit is set to 0 and the watchdog timer expires while the charger is in dead-battery prequalification, low-battery prequalification, fast-charge CC or CV, top-off, done, or timer fault, the charging stops, a CHG_I interrupt is generated only if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS indicates that the charger is off because the watchdog timer expired. Once the watchdog timer has expired, the charger may be restarted by programming WDTCLR = 0x01. The SYS node can be supported by the battery and/or the adapter through the DC-DC buck while the watchdog timer is expired.

If WD_QBATTOFF bit is set to 1 and the watchdog timer expires, MAX77976 turns off the buck, charger, and Q_{BATT} switch for 150ms. And then V_{SYS} voltage collapses and it resets all I²C registers. The IC restarts as initial power-up condition.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Thermal Shutdown State

The thermal shutdown state occurs when the battery charger is in any state and the junction temperature (T_J) exceeds the device's thermal-shutdown threshold (T_{SHDN}). When T_J is close to T_{SHDN} the charger folds back the charge current to 0A (see the <u>Thermal Foldback</u> section). Upon entering this state, CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS = 0x0A.

In the thermal shutdown state, the charger is off. MODE register (CHG_CNFG_00[3:0]) is reset to its default value as well as all O type registers.

Charger Interrupt Debounce Time

Table 1. Charger Interrupt Debounce Time

	DEBOUNCE TIME RISING	DEBOUNCE TIME FALLING
INTERRUPT	Typ (ms)	Typ (ms)
AICL_I	30	30
CHGIN_I	7.5	—
INLIM_I	30	30
BAT_I (Overvoltage T _{BATOV})	7.5	—
BYP_I (T _{OTG_I})	20	_
BYP_I (BST_I _{LIM})	30	—
BYP_I (Buck Neg I _{LIM})	0.5	—

Accuracy of the timer is defined by T_{ACC}.

Battery Differential Voltage Sense

BATSP and BATSN are differential remote sense lines for the main-battery. To improve accuracy and decrease charging times, the battery charger voltage sense is based on the differential voltage between BATSP and BATSN. Similarly, the thermistor voltage is interpreted with respect to BATSN.

A Maxim battery charger without the remote sensing function would typically measure the battery voltage between BATT and GND. In case a charge current of 1A measuring from BATT to GND leads to a V_{BATT} that is 40mV higher than the real voltage because of R_{PAR1} and R_{PAR7} ($I_{CHG} \times (R_{PAR1} + R_{PAR7}) = 1A \times 40m\Omega = 40mV$). Since the charger thinks the battery voltage is higher than it actually is, it enters its fast-charge CV state sooner and the effective charge time may be extended by 10 minutes (based on real lab measurements). This charger with differential remote sensing does not experience this type of problem because BATSP and BATSN sense the battery voltage directly. To get the maximum benefit from these sense lines, connect them as close as possible to the main-battery connector.

Reverse Boost Mode

The DC-DC converter topology of the IC allows it to operate as a forward buck converter or as a reverse boost converter. The modes of the DC-DC converter are controlled with MODE. When MODE = 0x09 or 0x0A, the DC-DC converter operates in reverse boost mode allowing it to source current to BYP. To allow current flow to CHGIN, set MODE = 0x0A. This mode allows current to be sourced from CHGIN and is commonly referred to as OTG mode.

When MODE = 0x0A, the DC-DC converter operates in reverse boost mode and regulates V_{BYP} to $V_{BYP.OTG}$ and the low ohmic ($R_{CHGIN2BYP}$) switch from BYP to CHGIN is closed. The current through the BYP to CHGIN switch is limited to the value programmed by OTG_ILIM. The programmable OTG_ILIM options allow for supplying from 500mA to 3100mA to an external load. When the OTG mode is selected, the unipolar CHGIN transfer function measures the current going out of CHGIN. When OTG mode is not selected, the unipolar CHGIN transfer function measures current going into CHGIN.

If the external OTG load at CHGIN exceeds ICHGIN.OTG.ILIM current during a minimum time of $T_{OTG_{-}I}$ ms, then a BYP_I interrupt is generated. BYP_OK = 0 and BYP_DTLS[0] = 1. In response to an overload at CHGIN during OTG mode operation, the BYP to CHGIN switch is latched off $T_{OTG_{-}fault}$ after entering OTG_ILIM condition. If the overload at CHGIN persists, BYP_DTLS keeps continuing to report OTG_ILIM fault through BYP_DTLS[0] = 1.

If OTG_REC_EN bit = '1: other functions remain unaffected, i.e., BYP is supplied by reverse boost and the BYP to CHGIN

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

switch automatically retries after T_{OTG_retry} . If the overload at CHGIN persists, then the CHGIN switch toggles ON and OFF with T_{OTG_fault} ON time and T_{OTG_retry} OFF time.

If OTG_REC_EN bit = '0: the BYP to CHGIN switch remains off and the switcher is turned off until MODE is toggled.

BYP_I exit interrupt is only generated on OTG load release such as IOTG < ICHGIN.OTG.ILIM or FET opening. At that time, BYP_I interrupt is generated. BYP_OK = 1 and BYP_DTLS[0] = 0.

Note: On OTG_ILIM debounce time out, BYP_DTLS[0] is latched until the BYP_DTLS register is read by AP. BYP_OK is matching BYP_DTLS[0] behavior.

Battery Overcurrent Protection

The IC is rated for a maximum discharge current of 10A. To protect against excessive battery discharge current, the IC must only be used with a battery pack with overcurrent protection circuit rated for 10A or less.

Battery to SYS Q_{BATT} Switch Control (DISIBS)

To protect the system from unexpected and critical events (e.g., excessive battery discharge current), the AP can control the MAX77975/MAX77976 Q_{BATT} switch by driving DISIBS bit to a logic-high.

There are different scenarios of how the IC responds to setting the DISIBS bit high depending on the available power source and the state of the charger:

1) The IC is only powered from BATT and DISIBS bit is set

- a. QBATT switch opens
- b. SYS collapses and is allowed to go to 0V

c. If RECYCLE_EN = 1, the IC self-recovers and restarts after t_{OCP_RETRY} . If RECYCLE_EN = 0, after t_{OCP_RETRY} , the IC does not recycle until a valid charger input is inserted.

2) The IC is powered from BATT, CHGIN is present, the charger buck is not switching, and DISIBS bit is set:

- a. QBATT switch opens
- b. SYS collapses and is allowed to go to 0V
- a. Regardless of RECYCLE bit setting, the IC self-recovers and restarts after t_{OCP RETRY}.

3) The IC is powered from CHGIN, buck is switching, charge is OFF, and DISIBS bit is set:

- a. QBATT stays OFF (opened)
- b. Turn off Buck
- c. SYS collapses and is allowed to go to 0V
- d. Regardless of RECYCLE bit setting, the IC self-recovers and restarts after tocp RETRY.
- 4) The IC is powered from CHGIN, buck is switching, charge is ON, and DISIBS bit is set:
 - a. Charge is disabled
 - b. QBATT turns off (opened)
 - c. Turn off Buck
 - d. SYS collapses and is allowed to go to 0V
 - e. Regardless of RECYCLE bit setting, the IC self-recovers and restarts after t_{OCP RETRY}.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

HW Control of Battery to SYS QBATT Switch—DISQBAT

To protect the system from unexpected and critical events (e.g., excessive battery discharge current), the AP can control the ICs Q_{BATT} switch by driving the DISQBAT hardware pin. This pin can also be driven during factory test modes.

On DISQBAT low-to-high assertion, Q_{BATT} FET opens and any ongoing charge is disabled but buck keeps switching (if allowed by MODE setting).

The IC supports factory-boost mode to enter in boost mode (through CHG_CNFG_00.MODE setting) and keep Q_{BATT} OFF even if boost mode is set.

This functionality is only enabled once functional register CHG_CNFG_07.FMBST bit is set 1.

DISQBAT is an input control signal for Q_{BATT} FET with an external logic signal. If DISQBAT is driven by high, Q_{BATT} FET is truly disconnected. It has an internal 470k Ω pulldown resistor.

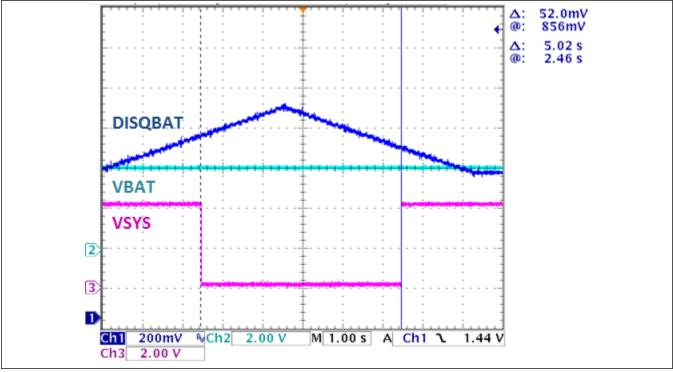


Figure 4. Hardware Control of Battery to SYS Switch

Thermal Management

The ICs charger uses several thermal management techniques to prevent excessive battery and die temperatures.

Thermal Foldback

Thermal foldback maximizes the battery charge current while regulating the ICs junction temperature. As shown in Figure 5, when the die temperature exceeds the value programmed by REGTEMP (T_{REG}), a thermal limiting circuit reduces the battery charger's target current by A_{TJREG} . The target charge current reduction is achieved with an analog control loop (i.e., not a digital reduction in the input current). When the thermal foldback loop changes state, a CHG_I interrupt is generated and the system's microprocessor may read the status of the thermal regulation loop through the T_{REG} status bit. Note that the thermal foldback loop being active is not considered to be abnormal operation and the thermal foldback loop status does not affect the CHG_OK bit (only information contained within CHG_DTLS affects CHG_OK).

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

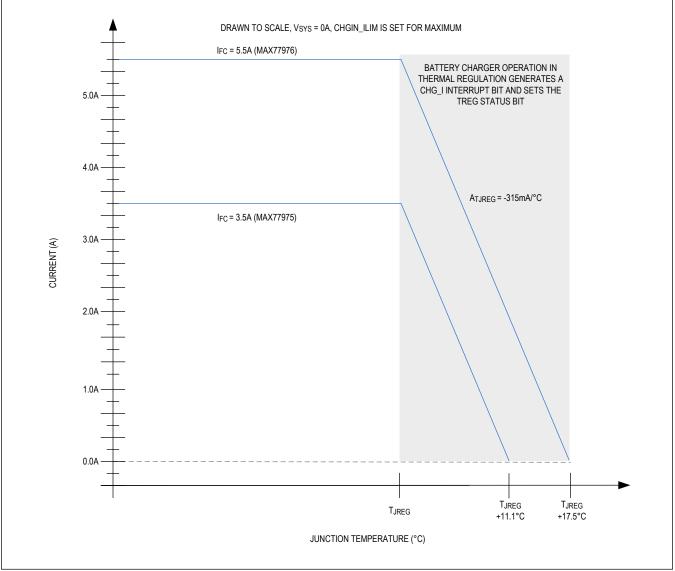


Figure 5. Charge Currents vs. Junction Temperature

Thermistor Input (THM)

The thermistor input can be utilized to achieve functions such as, charge suspension, JEITA compliant charging, and battery removal detection. The thermistor monitoring feature can be disabled by connecting the THM pin to ground.

The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system temperature.

JEITA Compliant Charging

JEITA compliant charging is available with JEITA_EN = 1.

Charging stops when the thermistor temperature is out of range (T < T_{COLD} or T > T_{HOT}). The charge timers are reset and the CHG_DTLS[3:0], CHG_OK register bits report the charging suspension status, and CHG_I interrupt bit is set. When the thermistor comes back into range ($T_{COLD} < T < T_{HOT}$), charging resumes, and the charge timer restarts.

See the JEITA Controlled Charging section for more details.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Battery Removal Detection

With pullup connected between PVDD and THM, if battery is removed, the thermistor is disconnected from THM; this event is detected as THM is pulled up to PVDD. Battery removal event prevents charging.

Disable Thermistor Monitoring

Connecting THM to GND disables the thermistor monitoring function, and JEITA controlled charging is unavailable in this configuration. The IC detects an always-connected battery when THM is grounded, and charging starts automatically when a valid adapter is plugged in. In applications with removable batteries, do not connect THM to GND because the IC is not able to detect battery removal when THM is grounded. Instead, connecting THM to the thermistor pin in the battery pack is recommended.

Since the thermistor monitoring circuit employs an external bias resistor from THM to PVDD, the thermistor is not limited only to $10k\Omega$ (at +25°C). Any resistance thermistor can be used as long as the value is equivalent to the thermistors +25°C resistance. For example, with a $10k\Omega$ at RTB resistor, the charger enters a temperature suspend state when the thermistor resistance falls below $4.67k\Omega$ (too hot) or rises above $30.3k\Omega$ (too cold). This corresponds to 0°C to +45°C range when using a $10k\Omega$ NTC thermistor with a beta of 3610. The general relation of thermistor resistance to temperature is defined by the following equation:

$$R_{T} = R_{25} \times e^{\left\{\beta \left\{\frac{1}{T+273^{\circ}C} - \frac{1}{298^{\circ}C}\right\}\right\}}$$

where:

 R_T = The resistance in Ω of the thermistor at temperature T in Celsius

R₂₅= The resistance in Ω of the thermistor at +25°C

 β = The material constant of the thermistor, which typically ranges from 3000k to 5000k

T = The temperature of the thermistor in °C

Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing R_{TB} , connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β . For example, a +45°C hot threshold and 0°C cold threshold can be realized by using a thermistor with a β to 4250 and connecting 120k Ω in parallel. Since the thermistor resistance near 0°C is much higher than it is near +50°C, a large parallel resistance lowers the cold threshold while only slightly lowering the hot threshold. Conversely, a small series resistance raises the cold threshold, while only slightly raising the hot threshold. Raising R_{TB} , lowers both the hot and cold threshold, while lowering R_{TB} raises both thresholds.

Thermistor bias current flows whenever PVDD is enabled (CHGIN valid or BOOST enabled). When using a 10k Ω thermistor and a 10k Ω pullup to THM, this results in an additional 90µA load. This load can be reduced to 9µA by instead using a 100k Ω thermistor and 100k Ω pullup resistor.

	R25 (Ω)	10000	10000	47000	100000
	Thermistor Beta (β)	3380	3610	4050	4250
Thermistor	RTB (Ω)	10000	10000	47000	100000
	R15 (Ω)	14826	15223	75342	164083
	R45 (Ω)	4900	4671	19993	40781
	T _{COLD} (°C)	-1.3	0.2	2.7	3.7
Trin Tomporaturaa	T _{COOL} (°C)	9.0	10.0	11.6	12.2
Trip Temperatures	T _{WARM} (°C)	46.2	44.8	42.5	41.7
	T _{HOT} (°C)	62.5	59.8	55.6	54.1

Table 2. Trip Temperatures for Different Thermistors

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

JEITA Controlled Charging

The MAX77976 safely charges Li+ batteries in accordance with JEITA specifications. The IC monitors the battery temperature with an NTC thermistor connected at THM pin and automatically adjusts the fast-charge current and/or charge termination voltage as the battery temperature varies. JEITA controlled charging can be disabled by setting JEITA_EN to '0; if JEITA_EN = '0, thermistor input is not taken into account to determine charge state or charge current and voltage levels.

CHG_DTLS and THM_DTLS registers report JEITA controlled charging status.

The JEITA controlled fast-charging current (I_{CHGCC_JEITA}) for $T_{WARM} < T < T_{HOT}$ is programmable with I^2C bit CHG_CC_WARM.

The JEITA controlled charge termination voltage (V_{CHGCV_JEITA}) for $T_{COLD} < T < T_{COOL}$ is programmable with I²C bit CHG_CV_COOL.

The JEITA controlled fast-charging current for $T_{COLD} < T < T_{COOL}$ is halved (to CHG_CC x 0.5) and the charge termination voltage for $T_{WARM} < T < T_{HOT}$ is reduced to (CHG_CV_PRM - 150mV), as shown in the Figure 6.

The JEITA controlled charging is suspended when the battery temperature is too cold or too hot (T < T_{COLD} or T_{HOT} < T).

Temperature thresholds T_{COLD} , T_{COOL} , T_{WARM} , T_{HOT} depend on the thermistor selection. See the <u>Thermistor Input</u> (<u>THM</u>) section for more details.

When JEITA controlled battery charge current is reduced by 50%, the charger timer is doubled.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

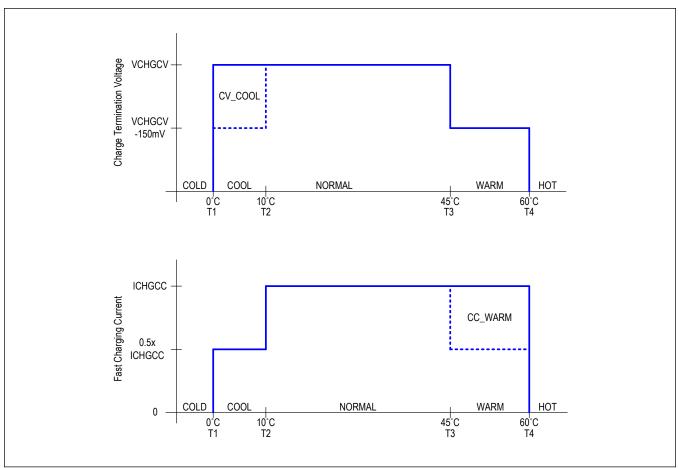


Figure 6. JEITA Controlled Charging

Analog Low-Noise Power PVDD and VDD

VDD is the 1.8V LDO output for the charger's analog circuitry. VDD takes its power from the higher voltage of CHGIN, BATT, and SYS. VDD has a bypass capacitance of 1μ F.

PVDD is the 1.8V LDO output for internal power circuitry. PVDD has a bypass capacitance of 1µF.

Factory-Ship Mode

The ICs support factory-ship mode.

Charger's CHG_CNFG_07 bit 0: FSHIP_MODE bit controls this mode.

When this bit is set to 1, the IC goes into factory-ship mode.

This mode can be exited by battery removal or on a valid charger input plug or by pulling EXTSM high longer than $t_{\text{EXTSM DEB}}$ (programmable with EXTSM_T bit).

Factory-ship mode can not be entered when a valid charger is present.

This feature minimizes battery leakage current when factory ships battery connected devices.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

External Q_{BATT} Control I/O

QBEXT is an open-drain output that is driven low in Battery mode and high-impedance (pulled-up externally) in non-battery mode.

The Q_{BATT} in MAX77976 has a very low R_{DSON} that equals to 8.5m Ω . If the application requires a lower resistive discharging path then this output can be utilized to drive an external Q_{BATT} FET driver in parallel with internal Q_{BATT} . This output can be enabled or disabled by the QBEXT_CTRL bit.

Table 3. QBEXT Output in Different System Modes

SYSTEM MODE	TEM MODE USE CASE DETAILS				
Battery Mode	All use cases except non-battery mode	Low			
Non-Battery Mode	Valid adapter is present, and buck is switching (whatever charge status is) or MODE = 0x09 (Boost) or MODE = 0x0A (Boost + OTG)	Hi-Z (pulled-up)			

Charge Status LED Indication

STAT is the LED current sink shown in the following tables based on the STAT_MODE bit.

The LED driving current can be programmed through I²C STAT_CURR from 5mA to 20mA with a 5mA step.

Table 4. STAT_MODE = 0x0

CHG STATUS	LED	DUTY (%)
No DC input or Suspend or Buck operation	Off	0
Any Charging Timeout, Off by JEITA feature, Off by thermal shutdown	Blink in 2Hz	50
DBAT, Pre-Q, CC, CV	Blink in 1Hz	50
Top-off, Done, Restart	Solid on	100

Table 5. STAT_MODE = 0x1

CHG STATUS	LED	DUTY (%)
No DC input or Suspend or Buck operation	Off	0
Any Charging Timeout, Off by JEITA feature, Off by thermal shutdown	Off	0
DBAT, Pre-Q, CC, CV	Blink in 1Hz	50
Top-off, Done, Restart	Solid on	100

Design Considerations to Protect Against Hot Plug Event

In USB Type-C compatible applications, the output slew rate of the travel adaptor when changing output levels is defined by the USB Type-C spec to be within $30\text{mV}/\mu\text{s}$. However, non-compliant USB adapters or high fixed voltage sources \geq 15V can cause high inrush current during a hot plug event. The amount of inrush current that can flow through the IC is defined by the following equation:

• I_inrush = dVIN/dt x C_BYP

With the recommended 2 x 10 μ F 0805 package capacitance at BYP node (effective capacitance of 4 μ F at 12V), the max inrush current can be as high as 4A if dVIN/dt is within 1V/ μ s. During this rising edge, the Q_{CHGIN} FET is off, so all the current goes through the body diode. To prevent damaging the IC when the application uses a voltage source that is already "hot" when connected, or with a high input slew rate, connect an external Schottky diode with anode at CHGIN and cathode at BYP. The Schottky diode must be selected as follows:

- Calculate I_inrush with dVIN/dt information and assume C_BYP = 4µF
- Select the Shottky so that when forward voltage at room temperature is 0.45V, the current is less than I_inrush x 1.5

Example: 1V/µs max slew rate, I_inrush = 4A. The Schottky is chosen to be rated at least 6A at 0.45V.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Top System Management

Overview

This section discusses the top system of the MAX77975/MAX77976 and how the IC manages its bias, system faults, and turn-on and off events.

Main Bias

The main bias includes voltage and current references for all circuitry that runs from the V_{SYS} node.

System Faults

V_{SYS} Fault

The system monitors the V_{SYS} node for undervoltage and overvoltage events. The following describes the IC behavior if any of these events is to occur.

V_{SYS} Undervoltage Lockout (V_{SYSUVLO})

 V_{SYS} undervoltage lockout prevents the regulators from being used when the input voltage is below the operating range. When the voltage from SYS to GND (V_{SYS}) is less than the undervoltage-lockout threshold ($V_{SYSUVLO}$), MAX77975/ MAX77976 shuts down and resets "O" Type I²C registers.

V_{SYS} Overvoltage Lockout (V_{SYSOVLO})

 V_{SYS} overvoltage lockout is a fail-safe mechanism and prevents the regulators from being used when the input voltage is above the operating range. The absolute maximum ratings state that the SYS node withstands up to 6V. The SYS OVLO threshold is set to 5.35V (typ)—ideally V_{SYS} should not exceed the battery charge termination threshold. Systems must be designed such that V_{SYS} never exceeds 5.2V (transient and steady-state). If the V_{SYS} exceeds $V_{SYS}_{OVLO_R}$, the ICs shuts down and resets "O" Type I²C registers.

V_{SYS} Power-Up Failure (P_{WRUPFAIL})

 V_{SYS} power-up failure is a hardware diagnostic mechanism to detect failures affecting the system and preventing the platform from powering up. When a **valid** power source (battery $V_{BATT} > SYS_UVLOB_R$ or charger with $V_{CHGIN} > V_{CHGIN_UVLO_R}$) is plugged, MAX77975/MAX77976 is expected to pull SYS node up by means of one of the system power-up current sources (I_{SYSPU_BAT} or I_{SYSPU_BYP} respectively). If V_{SYS} does not rise above V_{SYSPU} due to a fault in the application (external to MAX77976), after a time-out elapses (I_{SYSPU_BAT} or I_{SYSPU_BYP} respectively) a power-up fault is asserted and an interrupt (PWRUP_FAIL_INT) is generated. Because the SYS node is down, the application software may not be able to service the interrupt; the interrupt can only be observed by pulling VIO up externally and serviced by taking control of the I²C interface.

Thermal Fault

The ICs have one centralized thermal circuit which senses temperature on the die. If temperature increases >155°C (T_{SHDN}) this constitutes a thermal shutdown event and the MAX77976 shuts down and resets "O" Type I²C registers. There is a 15°C thermal hysteresis. After thermal shutdown, if the die temperature is reduced by 15°C, the thermal shutdown bus is deasserted and the IC can be enabled again. The main battery charger has an independent thermal control loop which does not cause a thermal shutdown event. In the event that a charger thermal overload occurs, only the charger turns off.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

System Faults Debounce Time

Applicable in charge or buck mode.

Table 6. System Faults Debounce Time Summary

	EDGE 1	ΤΟ Ι/Τ	I/T TO FAULT		ACTION ON FAULT
	t _{DEB} (Rising)	t _{DEB} (Falling)	t _{DEB} (Rising)	t _{DEB} (Falling)	
SYS UVLO	_	—	8ms		O-Type reset
SYS OVLO	*-/100µs by I ² C	—		_	O-Type reset
TSHDN	175µs	_		_	O-Type reset
OTG OCP	^t OTG_ALARM	_	^t OTG_FAULT ^{- t} OTG_ALARM		RBFET opens

(*) depending on I²C bit SYSOVLO_DEB_EN

I²C Interface Description

Main I²C Interface

The IC acts as a Slave Transmitter/Receiver and has the following slave addresses:

Slave Address (7 bit) 0x6B 110 1011 Slave Address (Write) 0xD6 1101 0110 Slave Address (Read) 0xD7 1101 0111

I²C Bit Transfer

One data bit is transferred for each clock pulse. The data on SDA must remain stable during the high portion of the clock pulse as changes in data during this time are interpreted as a control signal.

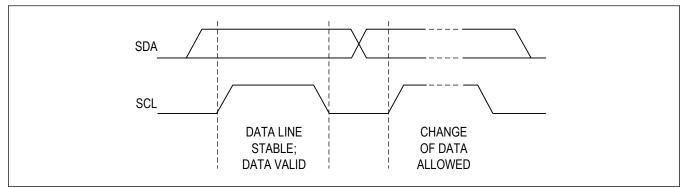


Figure 7. I²C Bit Transfer

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

I²C Start and Stop Conditions

Both SDA and SCL remain High when the bus is not busy. The Start (S) condition is defined as a high-to-low transition of the SDA while the SCL is high. The Stop (P) condition is defined as a low-to-high transition of the SDA while the SCL is high.

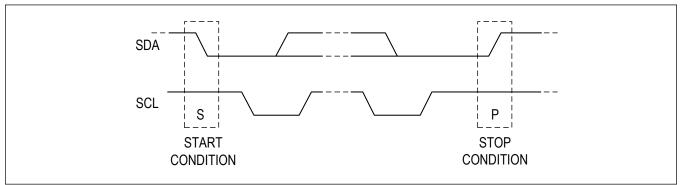


Figure 8. I²C Start and Stop

I²C System Configuration

A device on the I²C bus that generates a "message" is called a "Transmitter" and a device that receives the message is a "Receiver". The device that controls the message is the "Master" and the devices that are controlled by the "Master" are called "Slaves".

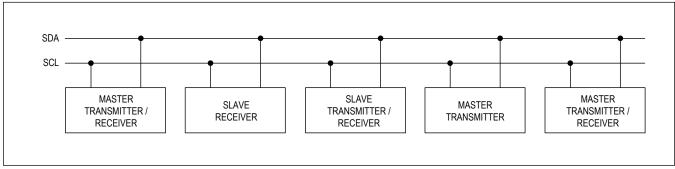


Figure 9. System Configurations

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

I²C Acknowledge

The number of data bytes between the start and stop conditions for the Transmitter and Receiver are unlimited.

Each 8-bit byte is followed by an Acknowledge bit. The Acknowledge bit is a high level signal put on SDA by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after each byte it receives. Also a master receiver must generate an acknowledge after each byte it receives that has been clocked out of the slave transmitter.

The device that acknowledges must pulldown the SDA line during the acknowledge-clock pulse, so that the SDA line is stable and low during the high period of the acknowledge-clock pulse (setup and hold times must also be met). A master receiver must signal the end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave SDA high to enable the master to generate a stop condition.

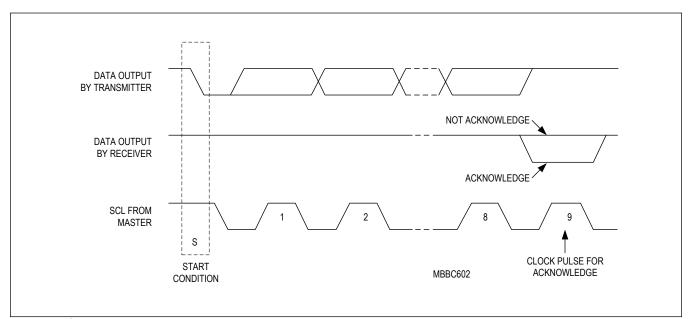


Figure 10. I²C Acknowledge

Master Transmits (Write Mode)

Use the following format when the master writes to the slave.

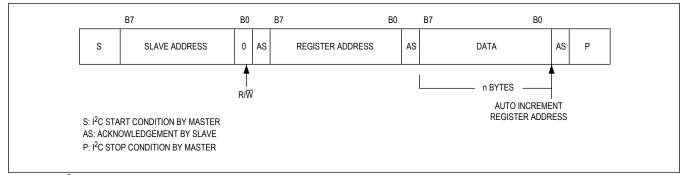


Figure 11. I²C Master Transmits

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Master Reads after Setting Register Address (Write Register Address and Read Data)

Use the following format to read a specific register.

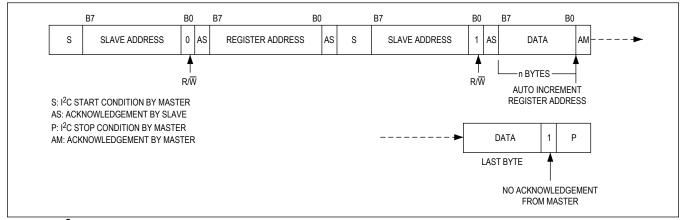


Figure 12. I²C Master Reads After Setting Register Address

Master Reads Register Data Without Setting Register Address (Read Mode)

Use the following format to read registers continuously starting from first address.

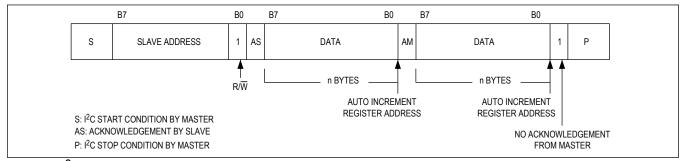


Figure 13. I²C Master Block Read

Register Map

TOP

I²C Slave Address

Slave Address (7 bit)	0x6B (7'b110 1011)
Slave Address (Write)	0xD6 (8'b1101 0110)
Slave Address (Read)	0xD7 (8'b1101 0111)

Functional Reset Conditions

The chip has different levels of reset as defined below:

• Type S: Registers are reset each time when: SYS < VDD (1.8V)

• Type O: Registers are reset each time when: SYS < VDD or SYS < SYS UVLO or SYS > SYS OVLO or die temp >

T_{SHDN} or software reset (SW_RST) ADDRESS NAME MSB LSB TOP_FUNC 0x00 CHIP_ID[7:0] ID[7:0] 0x01 CHIP_REVISION[7:0] VERSION[3:0] **REVISION**[3:0] 0x02 SPR_7_4[3:0] OTP_REV[3:0] OTP_REVISION[7:0] PWRUP TSHDN_ SYSOVL SYSUVL SPR 7 SPR_3_1[2:0] FAIL I 0x03 **TOP INT[7:0]** INT O_INT O_INT NT SYSUVL SYSOVL PWRUP TSHDN O_INT_ O_INT_ 0x04 TOP_INT_MASK[7:0] SPR 7 SPR_3_1[2:0] FAIL_I INT_M NT_M Μ Μ SYSOVL SYSOVL TSHDN_ 0x05 SPR_6_4[2:0] LPM O DEB TOP_CTRL[7:0] _ O_DIS DIS ΕN 0x50 SWR_RST[7:0] SW RESET[7:0] EXTSM_ 0x51 SM_CTRL[7:0] SPR_7_1[6:0] Т I2C_FUNC HS EXT SPR_7 PAIR 0x40 I2C_CNFG[7:0] **RSVD**[1:0] SPR_3_1[2:0] ĒΝ

Register Details

CHIP_ID (0x0)

PMIC ID											
BIT	7 6 5 4 3 2 1 0										
Field		ID[7:0]									
Reset				C	x76						
Access Type		Read Only									
BITFIELD	BITS		DESCRIPT	ION			DECODE				
ID	7:0	ID of MAX77	7976/MAX7797	75		MAX77976 MAX77975					

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

CHIP_REVISION (0x1)

PMIC revision

BIT	7	6	5	4	3	2	1	0			
Field		VERSI	ON[3:0]	·		REVISION[3:0]					
Reset		0:	к0			0b010					
Access Type		Read	Only		Read Only						
BITFIELD	BITS		DESCRIPT	ION		DECODE					
VERSION	7:4	Version									
REVISION	3:0	Revision			0b001: PASS1 0b010: PASS2 0b011: PASS3 0b100: PASS4						

OTP_REVISION (0x2)

BIT	7	6	5	5 4 3 2 1					
Field		SPR_7	_4[3:0]		OTP_REV[3:0]				
Reset		0:	k 0			0x0			
Access Type		Read	Only		Read Only				
BITFIEI	LD	BITS			DE	SCRIPTION			
SPR_7_4		7:4							
OTP_REV		3:0	Revis	Revision					

TOP_INT (0x3)

Top SYS Interrupts

BIT	7	6	5	4		3	2	1	0	
Field	SPR_7	TSHDN_IN T	SYSOVLO_ INT	SYSUVLO_ INT		SPR_3_1[2:0]			PWRUP_F AIL_INT	
Reset	0b0	0b0	0b0	0b0			0x0		0b0	
Access Type	Read Clears All	Read Clears All	Read Clears All	Read Clears All		Read Clears All			Read Clears All	
BITFIELD	BITS		DESCRIPTION				DECODE			
SPR_7	7									
TSHDN_INT	6	Thermal Shu condition)	utdown Interrup	ot (entering faul	t	0b0: No interrupt 0b1: Interrupt is detected				
SYSOVLO_I NT	5	SYSOVLO I	nterrupt (enteri	ng fault condition	on)	0b0: No interrupt 0b1: Interrupt is detected				
SYSUVLO_I NT	4	SYSUVLO I	SYSUVLO Interrupt (entering fault condition)				0b0: No interrupt 0b1: Interrupt is detected			
SPR_3_1	3:1									
PWRUP_FAI L_INT	0	PowerUp Fa	ail Interrupt (ent	PowerUp Fail Interrupt (entering fault condition)			0b0: No interrupt 0b1: Interrupt is detected			

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

TOP_INT_MASK (0x4)

Top SYS Interrupt Mask

BIT	7	6	5	4	3	2	1	0		
Field	SPR_7	TSHDN_IN T_M	SYSOVLO_ INT_M	SYSUVLO_ INT_M		SPR_3_1[2:0] PV				
Reset	0b1	0b1	0b1	0b1		0x7		0b0		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE				
SPR_7	7									
TSHDN_INT _M	6	Thermal Shu	utdown Interrup	ot Mask		0b0: Unmasked 0b1: Masked				
SYSOVLO_I NT_M	5	SYSOVLO I	nterrupt Mask			0b0: Unmasked 0b1: Masked				
SYSUVLO_I NT_M	4	SYSUVLO I	nterrupt Mask			0b0: Unmasked 0b1: Masked				
SPR_3_1	3:1									
PWRUP_FAI L_INT_M	0	Powe-Up Fa	ail Interrupt Mas	sk		0b0: Unmasked 0b1: Masked				

TOP_CTRL (0x5)

Main Control1									
BIT	7	6 5 4				3	2	1	0
Field	_		SPR_6_4[2:0]			LPM	SYSOVLO_ DIS	SYSOVLO_ DEB_EN	TSHDN_DI S
Reset	-		0b000			0b0	0b0	0b0	0b1
Access Type	-		Write, Read Wi			te, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPTION				D	ECODE	
SPR_6_4	6:4								
LPM	3		Mode de is allowed for ERM comparator		SYS	SYSU SYSOV SYSOV THEF 1: Low-p Comp (depend	oower mode is JVLO compara DVLO compara LO_DIS. RM comparator oower mode is oarators are pe ling on SYSOV (disabled and c	tor is always O tor is controlled is controlled by allowed. riodically enabl LO_DIS/THER	i by y THRM_DIS. ed M_DIS
SYSOVLO_D IS	2	SYSOVLO	Disable			0: SYSOVLO comparator is enabled 1: SYSOVLO comparator is disabled			
SYSOVLO_D EB_EN	1	SYSOVLO	debounce (rising	g 100µs)			OVLO debounc OVLO debounc		
TSHDN_DIS	0	Internal Die Bit	Temperature S	hutdown Disat	ole	1: T _{SHDN} comparator is disabled. 0: T _{SHDN} comparator is enabled.			

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

SW_RESET (0x50)

SW-reset register

BIT	7	6	5	4	3	2	1	0					
Field		SWR_RST[7:0]											
Reset		0x00											
Access Type		Write, Read											
BITFIELD	BITS	BITS DESCRIPTION DECODE											
SWR_RST	7:0	Software Re	Software Reset. 0xA5: O-Type registers are reset.										

<u>SM_CTRL (0x51)</u>

SW-reset register

BIT	7	6	5	4	3	2	1	0			
Field				SPR_7_1[6:0]		I		EXTSM_T			
Reset				0x00				0b0			
Access Type		Write, Read									
BITFIELD	BITS		DESCRIPT	ION		l	DECODE				
SPR_7_1	7:1										
EXTSM_T	0	0 External Ship Mode Timer 0b0: 10ms 0b1: 0.1ms									

I2C_CNFG (0x40)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	RSVI	D[1:0]	PAIR		SPR_3_1[2:0] HS_E		
Reset	0b0	01	0b0 0b000			0b000		0b0
Access Type	Write, Read	Write,	Write, Read Write, Read			Write, Read		
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
SPR_7	7	Reserved						
RSVD	6:5	Reserved						
PAIR	4	Pair address burst operat		for register write	9 0 = Pa	iir address mode iir address mode is used.		
SPR_3_1	3:1							
HS_EXT_EN	0	Enable HS-I	Mode Extensio	n	Comp 0b1: F enable	IS-mode extension liant) IS-mode extension ed without HS-mode HS-mode during	on is enabled. I ode entrance c) HS-mode is ode and

CHARGER

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

ADDRESS	NAME	MSB							LSB
CHARGER	FUNC	l		1		1		1	
0x10	<u>CHG_INT[7:0]</u>	AICL_I	CHGIN_I	INLIM_I	CHG_I	BAT_I	RSVD_2	DISQBA T_I	BYP_I
0x11	CHG_INT_MASK[7:0]	AICL_M	CHGIN_ M	INLIM_M	CHG_M	BAT_M	SPR_2	DISQBA T_M	BYP_M
0x12	CHG_INT_OK[7:0]	AICL_O K	CHGIN_ OK	INLIM_O K	CHG_O K	BAT_OK	RSVD_2	DISQBA T_OK	BYP_OK
0x13	CHG_DETAILS_00[7:0]	RSVD_7	CHGIN_[DTLS[1:0]	RSVD_	4_3[1:0]	SPSN_C	TLS[1:0]	RSVD_0
0x14	CHG_DETAILS_01[7:0]	TREG	B	AT_DTLS[2:	:0]		CHG_D	TLS[3:0]	
0x15	CHG_DETAILS_02[7:0]	RSVD_7	THM_DTLS[2:0]				BYP_D	TLS[3:0]	
0x16	CHG_CNFG_00[7:0]		SPR_7	_4[3:0]			MOD	E[3:0]	
0x17	CHG_CNFG_01[7:0]	TKEN				SPR_3	F	CHGTIME[2	:0]
0x18	CHG_CNFG_02[7:0]	SPR_7		1	(CHG_CC[6:0)]		
0x19	CHG_CNFG_03[7:0]	SPR_7	Т	O_TIME[2:0)]		TO_IT	H[3:0]	
0x1A	CHG_CNFG_04[7:0]	SYS_TR ACK_DI S	RSVD_	6_5[1:0]		СНС	G_CV_PRM	[4:0]	
0x1B	CHG_CNFG_05[7:0]	Reserve d	Reserve d	Reserve d	RECYCL E_EN		Reserv	/ed[3:0]	
0x1C	CHG_CNFG_06[7:0]		SPR_7	_4[3:0]	1	CHGPROT[1:0] WDTCLR			LR[1:0]
0x1D	CHG_CNFG_07[7:0]	WD_QB ATOFF	SPR_6	DISIBS	SPSN_D ET_EN	QBEXT_ CTRL_E N	SPR_2	2_1[1:0]	FSHIP_ MODE
0x1E	CHG_CNFG_08[7:0]	RSVD_7	SPR_6	5[1:0]	FMBST	SPR_3	SLOWLX	FSW	DISKIP
0x1F	CHG_CNFG_09[7:0]	INLIM_0	CLK[1:0]			CHGIN_	ILIM[5:0]		
0x20	CHG_CNFG_10[7:0]	OTG_RE C_EN	SPR_6	5_5[1:0]		C	TG_ILIM[4:	0]	
0x21	CHG_CNFG_11[7:0]	SPR_7			V	BYPSET[6:	0]		
0x22	CHG_CNFG_12[7:0]	BYPDIS CHG_EN	DEEP_S USP_DI S	VCHGIN_REG[1:0]		:0] SPR_3_2[1:0]		BATRMV _MSK	DIS_AIC L
0x23	CHG_CNFG_13[7:0]	JEITA_E N	SPR_6	CHG_CV _COOL	CHG_C C_WAR M	AR REGTEMP[3:0]			
0x24	STAT_CNFG[7:0]	STAT_E N	S	SPR_6_4[2:0)]	STAT_C	URR[1:0]	SPR_1	STAT_M ODE

Register Details

CHG_INT (0x10)

Interrupt status register for the charger block.

BIT	7	6	5	4	3	2	1	0
Field	AICL_I	CHGIN_I	INLIM_I	CHG_I	BAT_I	RSVD_2	DISQBAT_I	BYP_I
Reset						0x0		
Access Type	Read Clears All							

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_I	7	AICL Interrupt	0b0: The AICL_OK bit has not changed since the last time this bit was read. 0b1: The AICL_OK bit has changed since the last time this bit was read.
CHGIN_I	6	CHGIN Interrupt	0b0: The CHGIN_OK bit has not changed since the last time this bit was read. 0b1: The CHGIN_OK bit has changed since the last time this bit was read.
INLIM_I	5	Input Current Limit Interrupt	0b0: The INLIM_OK bit has not changed since the last time this bit was read. 0b1: The INLIM_OK bit has changed since the last time this bit was read.
СНС_І	4	Charger Interrupt	0b0: The CHG_OK bit has not changed since the last time this bit was read. 0b1: The CHG_OK bit has changed since the last time this bit was read.
BAT_I	3	Battery Interrupt	0b0: The BAT_OK bit has not changed since the last time this bit was read. 0b1: The BAT_OK bit has changed since the last time this bit was read.
RSVD_2	2		
DISQBAT_I	1	DISQBAT Interrupt	0b0: The DISQBAT_OK bit has not changed since the last time this was read. 0b1: The DISQBAT_OK bit has changed since the last time this was read.
BYP_I	0	Bypass Node Interrupt	0b0: The BYP_OK bit has not changed since the last time this bit was read. 0b1: The BYP_OK bit has changed since the last time this bit was read.

CHG_INT_MASK (0x11)

Mask register to mask the corresponding charger interrupts.

BIT	7	6	5	4		3	2	1	0
Field	AICL_M	CHGIN_M	INLIM_M CHG_M B		В	AT_M	SPR_2	DISQBAT_ M	BYP_M
Reset	0b1	0b1	0b1	0b1		0b1	0x1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read Write, Read Write, Read Writ			te, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
AICL_M	7	AICL Interru	pt Mask			0b0: Un 0b1: Ma			
CHGIN_M	6	CHGIN Inter	rupt Mask			0b0: Un 0b1: Ma			
INLIM_M	5	Input Currer	it Limit Interrup	t Mask		0b0: Un 0b1: Ma			
CHG_M	4	Charger Inte	Charger Interrupt Mask				masked sked		
BAT_M	3	Battery Inter	Battery Interrupt Mask				masked sked		
SPR_2	2								

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
DISQBAT_M	1	DISQBAT Interrupt Mask	0b0: Unmasked 0b1: Masked
BYP_M	0	Bypass Interrupt Mask	0b0: Unmasked 0b1: Masked

CHG_INT_OK (0x12)

BIT	7	6	5	4		3	2	1	0
Field	AICL_OK	CHGIN_OK	INLIM_OK	CHG_OK	BA	ат_ок	RSVD_2	DISQBAT_ OK	BYP_OK
Reset	0x1	0x0	0x1	0x1		0x1	0x0	0x1	0x1
Access Type	Read Only	Read Only	Read Only Read Only Re			ad Only	Read Only	Read Only	Read Only
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
AICL_OK	7	AICL_OK St	atus				CL mode t in AICL mode		
CHGIN_OK	6	CHGIN Inpu	t Status Indica	tor		0b0: The CHGIN input is invalid. CHGIN_DTLS≠0x03 0b1: The CHGIN input is valid. CHGIN_DTLS=0x03			
INLIM_OK	5	Input Currer	it Limit Status I	ndicator		the curre	ent limit for at le e CHGIN input	current has be east 30ms. current has no	-
СНG_ОК	4	Charger Sta	tus Indicator			0b0: The charger has suspended charging or T_{REG} = 1. 0b1: The charger is okay or the charger is off.			
BAT_OK	3	Battery State	us Indicator			been su ≠0x07	spended. BAT	n issue or the c _DTLS≠0x03, ≠ y. BAT_DTLS	0x04 and
RSVD_2	2								
DISQBAT_O K	1	DISQBAT S	tatus Indicator			0b0: DISQBAT is high and Q _{BATT} is disabled. 0b1: DISQBAT is low and Q _{BATT} is not disabled.			
BYP_OK	0	Bypass Stat	us Indicator.			hit curre	nt limit. BYP_D	ed by the bypa 0TLS≠0x00 is okay. BYP_[

CHG_DETAILS_00 (0x13)

BIT	7	6	5	4	3	3 2		1	0
Field	RSVD_7	CHGIN_	CHGIN_DTLS[1:0]		RSVD_4_3[1:0]		SPSN_	DTLS[1:0]	RSVD_0
Reset	0x0				0x0				0b0
Access Type	Read Only	Read	Read Only		Only		Rea	d Only	Read Only
BITFIELD	BITS		DESCRIPTION				0	ECODE	
RSVD_7	7								

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHGIN_DTL S	6:5	CHGIN Details	0b00: VBUS is invalid. V _{CHGIN} rising: V _{CHGIN} V _{CHGIN} UVLOV _{CHGIN} falling: V _{CHGIN} < V _{CHGIN} REG (AICL)0b01: VBUS is invalid. V _{CHGIN} < V _{BATT} +V _{CHGIN2SYS} and V _{CHGIN} > V _{CHGIN_UVLO} 0b10: VBUS is invalid. V _{CHGIN} > V _{CHGIN_OVLO} 0b11: VBUS is valid. V _{CHGIN} > V _{CHGIN_UVLO} andV _{CHGIN} > V _{BATT} + V _{CHGIN2SYS} and V _{CHGIN} < V _{CHGIN_UVLO}
RSVD_4_3	4:3		
SPSN_DTLS	2:1	SP/SN Remonte Sense Battery Line Connection Status	0b00: SPSN remote sense line is connected. 0b01: SP remote sense line detected as opened. 0b10: SN remote sense line detected as opened. 0b11: SP and SN remote sense lines are both detected as opened.
RSVD_0	0	Spare Bit	

CHG_DETAILS_01 (0x14)

BIT	7	6	5	4	3	2	1	0
Field	TREG		BAT_DTLS[2:0]		CHG_D	TLS[3:0]	
Reset								
Access Type	Read Only		Read Only Read Only					
BITFIELD	BITS	DESCRIPTION DECODE						
TREG	7	Temperatur	e Regulation St	tatus	threshol current l 0b1: The threshol	e junction temp d set by REGT limit is available e junction temp d set by REGT y be folding bac ion.	EMP and the file. Perature is grea EMP and the c	ull charge ter than the charge current

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
BAT_DTLS	6:4	Battery Details	 0b000: Battery Removal A valid adpater is present and the battery is detached, detected on THM pin. 0b001: Battery Prequalification Voltage A valid adapter is present and the battery voltage is low: VBATT < VTRICKLE. Note: This condition is also reported in the CHG_DTLS as 0x00. 0b010: Battery Timer Fault A valid adapter is present and the battery has taken longer than expected to charge (exceeded tFC). This could be due to high system currents, an old battery, a damaged battery, or something else. Charging has suspended and the charger is in timer-fault mode. Note: This condition is also reported in the CHG_DTLS as 0x06. 0b011: Battery Regular Voltage A valid adapter is present and the battery voltage is greater than the minimum system regulation level but lower than overvoltage level: V_{SYSMIN} < VBATT < VBATTREG + VCOV VSYS is approximately equal to V_{BATT}. 0b100: Battery Low Voltage A valid adapter is present and the battery voltage is lower than prequalification voltage: V_{TRICKLE} VBATT < V_{SYSMIN} V_{SYS} is regulated at least equal to V_{SYSMIN}. 0b101: Battery Overvoltage A valid adapter is present and the battery voltage is greater than the minimum system regulation level but higher than prequalification voltage: V_{TRICKLE} V_{BATT} < V_{SYSMIN} V_{SYS} is regulated at least equal to V_{SYSMIN}. 0b101: Battery Overvoltage A valid adapter is present and the battery voltage is greater than the battery-overvoltage threshold (VBATTREG + V_{COV}) for the last 30ms. Note: This flag is only generated when there is a valid input. 0b110: Reserved 0b111: Battery Only No valid adapter is present The battery voltage and battery removal monitoring are not available. Note: In case of deep suspend, it is considered that no valid adapter is present.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHG_DTLS	3:0	Charger Details	0x00: Charger is in dead-battery prequalification or low-battery prequalification mode. CHG_OK = 1 and V _{BATT} < V _{PQLB} and T _J < T _{SHDN} 0x01: Charger is in fast-charge constant current mode. CHG_OK = 1 and V _{BATT} < V _{BATTREG} and T _J < T _{SHDN} 0x02: Charger is in fast-charge constant voltage mode. CHG_OK = 1 and V _{BATT} = V _{BATTREG} and T _J < T _{SHDN} 0x03: Charger is in top-off mode. CHG_OK = 1 and V _{BATT} = V _{BATTREG} and T _J < T _{SHDN} 0x04: Charger is in done mode. CHG_OK = 0 and V _{BATT} > V _{BATTREG} and T _J < T _{SHDN} 0x06: Charger is in timer-fault mode. CHG_OK = 0 and V _{BATT} > V _{BATTREG} - V _{RSTRT} and T _J < T _{SHDN} 0x05: Reserved 0x06: Charger is not timer-fault mode. CHG_OK = 0 and if BAT_DTLS=0b001 then V _{BATT} < V _{PQLB} or V _{BATT} < V _{PQDB} and T _J < T _{SHDN} 0x07: Charger is suspended because Q _{BATT} is disabled (DISQBAT = H or DISIBS = 1). CHG_OK = 0 0x08: Charger is off, charger input invalid and/or charger is disabled. CHG_OK = 1 0x08: Charger is off and the junction temperature is > T _{SHDN} . CHG_OK = 0 0x0C: Charger is suspended or charge current or voltage is reduced based on JEITA control. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0D: Charger is suspended because battery removal is detected on THM pin. This condition is also reported in THM_DTLS. CHG_OK = 0 0x0D: Charger is suspended because SUSPEND pin is high. CHG_OK = 0 0x0F: Reserved

CHG_DETAILS_02 (0x15)

BIT	7	6	5	4	3	2	1	0		
Field	RSVD_7	-	THM_DTLS[2:0]			BYP_DTLS[3:0]				
Reset										
Access Type	Read Only		Read Only			Read	l Only			

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD_7	7		
THM_DTLS	6:4	Thermistor Details	0b000: Low temperature and charging suspended (COLD) 0b001: Low temperature charging (COOL) 0b010: Normal temperature charging (NORMAL) 0b011: High temperature charging (WARM) 0b100: High temperaure and charging suspended (HOT) 0b101: Battery removal detected on THM pin 0b110: Thermistor monitoring is disabled 0b111: RSVD
BYP_DTLS	3:0	Bypass Node Details	0x0: The bypass node is okay. 0x1: OTG_ILIM when CHG_CNFG_00.MODE=0xA or 0xE or 0xFThe BYP to CHGIN switch (OTG switch) current limit was reached within the last 37.5ms. BYP_DTLS[0] status bit is latched until CHG_DETAILS_02 register read access is performed by AP. 0x2: BSTILIMThe BYP reverse boost converter has hit its current limit and condition persisted for 30ms. 0x4: BCKNegILIMThe BYP_DTLS[2] status bit is latched until CHG_DETAILS_02 register read access is performed by AP. 0x2: BSTILIMThe BYP reverse boost converter has hit its current limit and condition persisted for 30ms. 0x4: BCKNegILIM The BYP buck converter has hit the max negative demand current limit BYP_DTLS[2] status bit is latched until CHG_DETAILS_02 register read access is performed by AP. 0x8: BST_SWON_DONE (This status bit is only available in CHG_CNFG_00.MODE=0x9) The BYP reverse boost converter switch-on is done and V _{BYP} reached the V _{BYPSET} target.

CHG_CNFG_00 (0x16)

BIT	7	6	5	4	3	2	1	0	
Field		SPR_7	_4[3:0]			MODE[3:0]			
Reset		0:	к0		0x4				
Access Type		Write,	Read		Write, Read				
BITFIELD	BITS		DESCRIPTION			DECODE			
SPR_7_4	7:4	Spare Bit							

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
MODE	3:0	Smart Power Selector Configuration	0x0: Charger = off, OTG = off, buck = off, boost = off. The Q _{BATT} switch is on to allow the battery to support the system. BYP may or may not be biased based on the CHGIN availability. 0x1: Same as 0b0000 0x2: Same as 0b0000 0x4: Charger = off, OTG = off, buck = on, boost = off. When there is a valid input, the buck converter regulates the system voltage to be the maximum of (Vminsys and V _{BATT} +4%). V _{BYP} is equal to V_{CHGIN} minus the resistive drops. 0x5: Charger = on, OTG = off, buck = on, boost = off. When there is a valid input, the battery is charging. V _{SYS} is the larger of V _{SYSMIN} and ~V _{BATT} + IBATT x RBAT2SYS. V _{BYP} is equal to V _{CHGIN} minus the resistive drops. 0x6: Same as 0b0101 0x7: Same as 0b0101 0x8: Reserved 0x9: Charger = off, OTG = off, buck = off, boost = on. The Q _{BATT} switch is on to allow the battery to support the system, the charger's DC-DC operates as a boost converter. BYP voltage is regulated to V _{BYPSET} . QCHGIN is on allowing it to source current up to ICHGIN.OTG LIM. 0x8: Reserved 0x2: Charger = off, OTG = on, buck = off, boost = on. The Q _{BATT} switch is on to allow the battery to support the system, the charger's DC-DC operates as a boost converter. BYP voltage is regulated to V _{BYPSET} . QCHGIN is on allowing it to source current up to ICHGIN.OTG.LIM. 0x8: Reserved 0xC: Reserved 0xC: Reserved 0xC: Reserved 0xE: Reserved 0xE: Reserved 0xF: Reserved 0xF: Reserved 0xF: Reserved 0xF: Reserved

CHG_CNFG_01 (0x17)

BIT	7	6	5	4		3	2	1	0
Field	TKEN	WDTEN	CHG_RSTRT[1:0]		S	SPR_3 FCHGTIME[2:0]]	
Reset	0b1	0b0	0b	01		0b0		0b011	
Access Type	Write, Read	Write, Read	Write, Read		Writ	e, Read	Write, Read		
BITFIELD	BITS		DESCRIPTION				D	ECODE	
TKEN	7	Trickle Char	Frickle Charge Enable				narge voltage r FC· ckle charge is e	disabled: When ange, charge c enabled: When ange, charge c	vrrent target V _{BATT} is in

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
WDTEN	6	Watchdog Timer Enable Bit	0b0: Watchdog timer disabled. 0b1: Watchdog timer enabled.
CHG_RSTR T	5:4	Charger-Restart Threshold	0b00: 100mV below the value programmed by CHG_CV_PRM. 0b01: 150mV below the value programmed by CHG_CV_PRM. 10: 200mV below the value programmed by CHG_CV_PRM. 11: Disabled
SPR_3	3	Spare Bit	
FCHGTIME	2:0	Fast-Charge Timer Setting (t _{FC} , hrs)	0b000: Disable 0b001: 3 0b010: 4 0b011: 5 0b100: 6 0b101: 7 0b110: 8 0b111: Do not configure

CHG_CNFG_02 (0x18)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7		CHG_CC[6:0]					
Reset	0b0		0x09					
Access Type	Write, Read		Write, Read					
BITFIELD	BITS	DESCRIPTION DECODE						
SPR_7	7	Spare Bit						

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHG_CC	6:0	Fast-Charge Current Selection (mA). When the charger is enabled, the charge current limit is set by these bits. These bits range from 0.10A (0x00) to 5.5A (0x6E) in 50mA step. Note that the first three codes are all 100mA. Note that the thermal-foldback loop can reduce the battery charger's target current by ATJREG. Note that the fast-charge current is clamped at 3.5A from 0x46 to 0x7F in MAX77975.	Value: Decode 0x00: 100 0x01: 100 0x02: 100 0x03: 150 0x04: 200 0x05: 250 0x06: 300 0x07: 350 0x08: 400 0x08: 500 0x07: 550 0x08: 550 0x00: 600 0x0F: 750 0x0F: 750 0x11: 850 0x12: 900 0x13: 950 0x14: 1000 0x17: 1150 0x18: 1200 0x17: 1450 0x18: 1200 0x17: 1450 0x18: 1200 0x17: 1450 0x18: 1200 0x19: 1250 0x14: 1300 0x17: 1450 0x18: 1200 0x21: 1650 0x22: 1700 0x23: 1750 0x24: 1800 0x25: 1850 0x26:

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3A: 2900
			0x3B: 2950
			0x3C: 3000
			0x3D: 3050
			0x3E: 3100
			0x3F: 3150
			0x40: 3200
			0x41: 3250
			0x42: 3300
			0x43: 3350
			0x44: 3400
			0x45: 3450
			0x46: 3500
			0x47: 3550
			0x48: 3600
			0x49: 3650
			0x4A: 3700
			0x4B: 3750
			0x4C: 3800
			0x4D: 3850
			0x4E: 3900
			0x4F: 3950
			0x50: 4000
			0x51: 4050
			0x52: 4100
			0x53: 4150
			0x54: 4200
			0x55: 4250
			0x56: 4300
			0x57: 4350
			0x58: 4400
			0x59: 4450
			0x5A: 4500
			0x5B: 4550
			0x5C: 4600
			0x5D: 4650
			0x5E: 4700
			0x5F: 4750
			0x60: 4800
			0x61: 4850
			0x62: 4900
			0x63: 4950
			0x64: 5000
			0x65: 5050
			0x66: 5100
			0x67: 5150
			0x68: 5200
			0x69: 5250
			0x6A: 5300
			0x6B: 5350
			0x6C: 5400
			0x6D: 5450
			0x6E: 5500
			0x6F: 5500
			0x70: 5500
			0x71: 5500
			0x72: 5500
			0x73: 5500
			0x74: 5500

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE	
			0x75: 5500	
			0x76: 5500	
			0x77: 5500	
			0x78: 5500	
			0x79: 5500	
			0x7A: 5500	
			0x7B: 5500	
			0x7C: 5500 0x7D: 5500	
			0x7E: 5500	
			0x7F: 5500	

CHG_CNFG_03 (0x19)

Charger configuration 3

BIT	7	6	5	4	3	2	1	0		
Field	SPR_7		TO_TIME[2:0]			TO_ITH[3:0]				
Reset	0b0		0b011			0b0010				
Access Type	Write, Read		Write, Read			Write, Read				
BITFIELD	BITS		DESCRIPTI	ON		DECODE				
SPR_7	7	Spare Bit								
TO_TIME	6:4	Top-Off Tim	er Setting (min))	0b001: 0b010: 0b011: 0b100: 0b101: 0b101:	0b000: 30sec 0b001: 10 0b010: 20 0b011: 30 0b100: 40 0b101: 50 0b110: 60 0b111: 70				
то_ітн	3:0	transitions fi voltage mod charger curr programmed generates a CHG_DTLS This transitio	rent Threshold om its fast char le to its top-off r ent decays to th d by this registe CHG_I interrup register to repo on also starts th d by TO_TIME.	rge constant mode when the he value er. This transition of and causes ort top-off mod	rger 0b0001 0b0010 0b0100 0b0101 0b0100 0b0111 0b1000 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b1010 0b01110 0b1010 0b0111 0b1000 0b0111 0b1000 0b0111 0b1000 0b0111 0b1000 0b0111 0b1000 0b111 0b1000 0b1110 0b1010 0b1110 0b1010 0b1100 0b110 0b10 0b110 0b110): Disable): 150mA): 200mA): 250mA): 350mA): 350mA): 400mA 1: 450mA): 550mA 1: 550mA 1: 650mA 1: 650mA 1: 750mA 1: 750mA 1: 880mA				

CHG_CNFG_04 (0x1A)

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0		
Field	SYS_TRAC K_DIS	RSVD_	6_5[1:0]		CHG_CV_PRM[4:0]					
Reset	0b0	0b	0b10			0x05				
Access Type	Write, Read	Write,	Write, Read			Write, Read				
BITFIELD	BITS		DESCRIPTION			C	ECODE			
SYS_TRACK _DIS	7	BUCK SYS	BUCK SYS tracking disable control.			0x0: SYS tracking is enabled. In Buck mode, SYS is regulated to MAX of (V_{BATT} +4%, V_{MINSYS}). This is also valid in charge Done state. 0x1: SYS tracking is disabled. In Buck mode, SYS is regulated to $V_{BATTERM}$.				
RSVD_6_5	6:5	Spare Bit								
CHG_CV_P RM	4:0	Charge Terr	nination Volta	ige Setting(V)	Value: 0x00: 4 0x01: 4 0x02: 4 0x02: 4 0x03: 4 0x04: 4 0x05: 4 0x06: 4 0x07: 4 0x08: 4 0x10: 4 0x11: 4 0x11: 4 0x11: 4 0x18: 4 0x18	1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.42 1.43 1.44 1.45				

CHG_CNFG_05 (0x1B)

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0		
Field	Reserved	Reserved	Reserved RECYCLE_ Reserved[3:0]							
Reset	0b0	0b0	0b0	0b0		0	x0			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
Reserved	7	Reserved			Reserve	ed				
Reserved	6	Reserved			Reserve	ed				
Reserved	5	Reserved			Reserve	Reserved				
RECYCLE_E N	4	DISIBS Eve	nt Recycle Opt	ion	(OFF) a after 15 present 0b1: In (OFF) a	0b0: In case of DISIBS events, buck is disabled (OFF) and Q _{BATT} FET is opened. System recycles after 150ms (min) only in case a valid charger is present. 0b1: In case of DISIBS events, buck is disabled (OFF) and Q _{BATT} FET is opened. System recycles after 150ms (min).				
Reserved	3:0	Reserved			Reserve	Reserved				

CHG_CNFG_06 (0x1C)

Charger configuration 6

BIT	7	6	5	4	3	2	1	0		
Field		SPR_7	_4[3:0]	•	CHGP	CHGPROT[1:0] WDTCLR[1:0]				
Reset		0)	(0	0	b00	0b	00			
Access Type		Write,	Read		Write	Write, Read Write, Read				
BITFIELD	BITS		DESCRIPT	ΓΙΟΝ		DECODE				
SPR_7_4	7:4	Spare Bit								
CHGPROT	3:2	Writing "11" capability for with CHGPF	r the registers	on Bit inlocks the write who are "Protec any value beside	cted 0b01: \ es 0b10: \	0b00: Write capability locked 0b01: Write capability locked 0b10: Write capability locked 0b11: Write capability unlocked				
WDTCLR	1:0	these bits cl	Watchdog Timer Clear Bit. Writing "01" to these bits clears the watchdog timer when the watchdog timer is enabled.			0b00: The watchdog timer is not cleared. 0b01: The watchdog timer is cleared. 0b10: The watchdog timer is not cleared. 0b11: The watchdog timer is not cleared.				

CHG_CNFG_07 (0x1D)

BIT	7	6	5	4	3	2	1	0
Field	WD_QBAT OFF	SPR_6	DISIBS	SPSN_DET _EN	QBEXT_CT RL_EN	SPR_2	_1[1:0]	FSHIP_MO DE
Reset	0b0	0b0	0b0	0b0	0b0	0b	00	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write,	Read	Write, Read

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
WD_QBATO FF	7	Q _{BATT} FET Control Under Watchdog Condition	0b0: When watchdog timer expires, turn off only the charger. 0b1: When watchdog timer expires, turn off buck, charger, and Q _{BATT} switch for 150ms.
SPR_6	6	Spare Bit	
DISIBS	5	BATT to SYS FET Disable Control	0b0: BATT to SYS FET is controlled by the power- path state machine. 0b1: BATT to SYS FET is forced off.
SPSN_DET_ EN	4	SPSN Remote Sense Line Detection Enable. Enable SPSN remote sense line detection only when MODE = 0x0 (<i>detection is</i> <i>discarded if not</i>). End of SPSN detction triggers a BAT_I interrupt. Detection result available in dedicated status bit field SPSN_DTLS[1:0].	0b0: SPSN remote sense line detection disabled. 0b1: SPSN remote sense line detection enabled.
QBEXT_CTR L_EN	3		0b0: External Q _{BATT} control is disabled. 0b1: External Q _{BATT} control is enabled.
SPR_2_1	2:1	Spare Bit	
FSHIP_MOD E	0	Factory-Ship Mode. When asserted to "1", system enters into factory-ship mode. This bit can be reset by battery removal or on a valid charger input plug.	0b0: Not factory-ship mode. 0b1: Factory-ship mode.

CHG_CNFG_08 (0x1E)

Charger configuration 8

BIT	7	6	5	4		3	2	1	0	
Field	RSVD_7	SPR_6	SPR_6_5[1:0]		S	PR_3	SLOWLX	FSW	DISKIP	
Reset	0x0	01	00	0b0		0b0	0b0	0b1	0b0	
Access Type	Write, Read	Write,	Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPTION				D	ECODE		
RSVD_7	7	Reserved Bi	t							
SPR_6_5	6:5	Spare Bit								
FMBST	4	Factory Moc	Factory Mode Boost				0b0: When DISQBAT = high, any mode change is not possible. 0b1: When DISQBAT = high, this bit makes mode change (Boost mode) possible.			
SPR_3	3	Spare Bit								
SLOWLX	2	LX Slope Co	LX Slope Control Options			0b0: Fastest LX slope without control. 0b1: Slowest LX slope.				
FSW	1	Switching Fi	Switching Frequency Options (MHz)			0b0: 2.6 0b1: 1.3				
DISKIP	0	Charger Ski	Charger Skip Mode Disable				to skip mode. able skip mode).		

CHG_CNFG_09 (0x1F)

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0		
Field	INLIM_0	CLK[1:0]	CHGIN_ILIM[5:0]							
Reset	0b	10		0x09						
Access Type	Write,	Read			Write,	Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE				
INLIM_CLK	7:6	Input Currer	Input Current Limit Soft Start Clock(µsec)			56)24)96				

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHGIN_ILIM	5:0	CHGIN Input Current Limit (mA) 6 Bit adjustment from100mA to 3.2A in 50mA steps. Note that the first two codes are all 100mA.	0x00: 100 0x01: 100 0x02: 150 0x03: 200 0x04: 250 0x05: 300 0x06: 350 0x07: 400 0x08: 450 0x09: 500 0x02: 650 0x02: 650 0x02: 750 0x0F: 800 0x10: 850 0x11: 900 0x12: 950 0x13: 1000 0x14: 1050 0x15: 1100 0x14: 1050 0x17: 1200 0x18: 1250 0x19: 1300 0x14: 1350 0x17: 1200 0x18: 1250 0x17: 1200 0x18: 1250 0x17: 1200 0x18: 1350 0x17: 1500 0x12: 1550 0x17: 1600 0x22: 1750 0x23: 1800 0x24: 1850 0x25: 1900 0x26: 1950 0x27: 2000 0x28: 2050 0x29: 2100 0x24: 2150 0x28: 2250 0x31: 2500 0x32: 2

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3B: 3000 0x3C: 3050 0x3D: 3100 0x3E: 3150 0x3F: 3200

CHG_CNFG_10 (0x20)

BIT	7	6	5	4	3	2	1	0		
Field	OTG_REC_ EN	SPR_6	SPR_6_5[1:0]			OTG_ILIM[4:0]				
Reset	0b0	01	0b0			0x00				
Access Type	Write, Read	Write,	Read	Write, Read						
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OTG_REC_E N	7	OTG OCP E	OTG OCP Event Recycle Option			 1b0: In case of OTG OCP, OTG FET is disabled (OFF = opened). System does not recycle OTG output. 1b1: In case of OTG OCP, OTG FET is disabled (OFF = opened). OTG recycles after T_{OTG}, retry. 				
SPR_6_5	6:5	Spare Bit	Spare Bit							

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
OTG_ILIM	4:0	CHGIN OTG Output Current Limit (mA) When the boost-OTG mode (MODE = 0xA) is enabled, the OTG output current limit is set by these bits. These bits range from 0.50A (0x00) to 3.1A (0x1A) in 100mA steps. Note that the OTG output current limit is clamped at 2.4A from 0x13 to 0x1F in MAX77975.	Value: Decode 0x00: 500 0x01: 600 0x02: 700 0x03: 800 0x04: 900 0x05: 1000 0x06: 1100 0x07: 1200 0x08: 1300 0x09: 1400 0x08: 1500 0x08: 1600 0x0C: 1700 0x0C: 1700 0x0C: 1700 0x0F: 2000 0x10: 2100 0x11: 2200 0x12: 2300 0x13: 2400 0x14: 2500 0x15: 2600 0x15: 2600 0x15: 2600 0x16: 2700 0x17: 2800 0x18: 2900 0x18: 2900 0x18: 3100 0x1C: 3100 0x1C: 3100 0x1E: 3100 0x1E: 3100 0x1F: 3100

CHG_CNFG_11 (0x21)

Charger configuration 11

BIT	7	6	5	4	3	2	1	0		
Field	SPR_7		VBYPSET[6:0]							
Reset	0b0		0x1							
Access Type	Write, Re	ad	Write, Read							
BITFIE	ELD	BITS	DESCRIPTION							
SPR_7		7	Spare	Spare Bit						
VBYPSET	6:0		MOD	V_{BYP} Target Output Voltage(V). Bypass target output voltage in boost mode. MODE = 0x9/0xA. 5.0V to 12.0V with 100mV step.						

CHG_CNFG_12 (0x22)

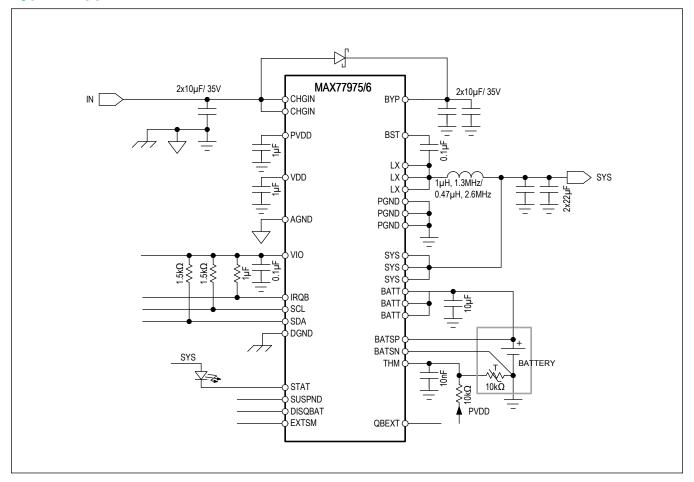
19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4		3	2	1	0
Field	BYPDISCH G_EN	DEEP_SUS P_DIS	VCHGIN_REG[1:0]		SPR_3	5_2[1:0]	BATRMV_ MSK	DIS_AICL	
Reset	0b0	0b0	Ob	01		0b	00	0b0	0b0
Access Type	Write, Read	Write, Read	Write	, Read		Write, Read		Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
BYPDISCHG _EN	7	When enabl target, a soft discharge B	Boost BYP Discharge after Overshoot When enabled, if BYP is seen to be above target, a soft pulldown is activated to discharge BYP back to target, even if auto- skip mode is active.			0b0: Disabled 0b1: Enabled			
DEEP_SUSP _DIS	6		When SUSPND pin pulls high or in MODE 0, input FET is enabled or disabled by this bit.			0b0: Disabled 0b1: Enabled			
VCHGIN_RE G	5:4	(VCHGIN_RE GND minimu	CHGIN Voltage Regulation Threshold (V _{CHGIN_REG}) Adjustment. The CHGIN to GND minimum turn-on threshold (V _{CHGIN_UVLO}) also scales with this adjustment.				CHGIN_REG = 4 CHGIN_REG = 4 CHGIN_REG = 4 CHGIN_REG = 4	1.6V and V _{CHG} 4.7V and V _{CHG}	IN_UVLO =
SPR_3_2	3:2	Spare Bit	Spare Bit						
BATRMV_M SK	1		Battery Removal Detection Masking When masked, battery removal detection is ignored.			0b0: Unmasked 0b1: Masked			
DIS_AICL	0	AICL Disable	Disable Feature			0b0: AICL feature is not disabled. 0b1: AICL feature is disabled.			

CHG_CNFG_13 (0x23)

BIT	7	6	5	4		3	2	1	0	
Field	JEITA_EN	SPR_6	CHG_CV_C OOL	CHG_CC_ WARM		REGTEMP[3:0]				
Reset	0b0	0b0	0b0	0b0			0	x6		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read				
BITFIELD	BITS	DESCRIPTION				DECODE				
JEITA_EN	7	JEITA Enab	JEITA Enable JEITA Enable				on thermistor te	mperature.		
SPR_6	6	Spare Bit	Spare Bit							
CHG_CV_C OOL	5	when thermi	JEITA controlled battery termination voltage when thermistor temperature is between T_{COLD} and T_{COOL} .			0x0: Battery termination voltage is set by CHG_CV_PRM. 0x1: Battery termination voltage is set by (CHG_CV_PRM - 150mV).			2	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD


BITFIELD	BITS	DESCRIPTION	DECODE
CHG_CC_W ARM	4	JEITA controlled battery fast charge current when thermistor temperature is between T_{WARM} and $T_{HOT}.$	0x0: Battery fast-charge current is set by CHG_CC. 0x1: Battery fast-charge current is to 50% of CHG_CC.
REGTEMP	3:0	Junction Temperature Thermal Regulation (°C). The charger's target current limit starts to foldback and the T _{REG} bit is set if the junction temperature is greater than the REGTEMP setpoint.	0x0: 85 0x1: 90 0x2: 95 0x3: 100 0x4: 105 0x5: 110 0x6: 115 0x7: 120 0x8: 125 0x9: 130

STAT_CNFG (0x24)

BIT	7	6	5	4		3	2	1	0	
Field	STAT_EN	SPR_6_4[2:0]			STAT_CURR[1:0]		SPR_1	STAT_MOD E		
Reset	0b1		0b0			0×	:00	0b0	0b0	
Access Type	Write, Read	Write, Read			Write	, Read	Write, Read	Write, Read		
BITFIELD	BITS	DESCRIPTION				DECODE				
STAT_EN	7	STAT Charg Bit	STAT Charging Status Indication LED Enable Bit			0x0: Disable 0x1: Enable				
SPR_6_4	6:4	Spare Bit	Spare Bit							
STAT_CURR	3:2	STAT LED [STAT LED Driving Current (mA)			0b00: 5 0b01: 10 0b10: 13 0b11: 20	5			
SPR_1	1	Spare Bit								
STAT_MOD E	0	STAT LED Behaviour Selection Bit					D mode 1 D mode 2			

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Typical Application Circuits

Note: The Schottky diode between CHGIN and BYP is required when using a fixed voltage adaptor higher than 15V. It is needed for USB Type-C PD high voltage applications in some cases. See the <u>Design Consideration to Protect</u> <u>Against Hot Plug Event</u> section for details.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Ordering Information

PART NUMBER	TEMP RANGE	MAX FAST CHARGE CURRENT(A)	BUCK INDUCTOR CURRENT LIMIT (A)	REVERSE BOOST INDUCTOR CURRENT LIMIT (A)	REVERSE BOOST POWER CEILING (W)	PIN-PACKAGE
MAX77975EFD+	-40°C to +85°C	3.5	7	7	12	32 FC2QFN
MAX77975EFD+T	-40°C to +85°C	3.5	7	7	12	32 FC2QFN
MAX77976EFD+	-40°C to +85°C	5.5	9.5	9.5	18	32 FC2QFN
MAX77976EFD+T	-40°C to +85°C	5.5	9.5	9.5	18	32 FC2QFN

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION			
0	10/20	Initial release	_		
1	11/20	Updated Pin Description table, Design Considerations to Protect Against Hot Plug Event section, Typical Applications Circuits section, and Ordering Information table	23, 46, 77, 78		
2	7/21	Updated Benefits and Features, Absolute Maximum Ratings, Electrical Characteristics, Pin Description, Functional Diagram, Detailed Description, Battery Differential Voltage Sense, and Battery Overcurrent Protection, removed Main-Battery Overcurrent Protection Due to Fault section, updated External Q _{BATT} Control I/O, Table 6, added I ² C Start and Stop Conditions and I ² C System Configuration sections, updated I ² C Acknowledge, Master Reads after Setting Register Address (Write Register Address and Read Data), Master Reads Register Data Without Setting Register Address (Read Mode), and Register Map	1, 7, 11, 15, 23–26, 36, 37, 43, 45, 47, 48, 53, 56, 61, 66		

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Chargers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

CH0011 CB1210A PS-034052 GP X411 AA/AAA + 4X R6 2700MAH RECYKO CB243A CB123A CB12245A HEP-600C-48 MC2 MC1 VP4 PLUS DRAGON LCD MULTI CHARGER MINI-CHARGER 5V 2.1A PB320 PB50 PB550 + 4XAA 2700MAH VC4 POCKET-CHARGER + 4XAA 2100MAH PB-300P-12 VC2 MINI CHARGER + 2XAA 2100MAH HEP-600C-12 HEP-600C-24 CHFC3 GC30U-5P1J TSP-BCM48 SBP-001 PB-300N-12 PA-120N-27C GC30B-11P1J GC220A12-AD1 RRC-SMB-MBC PSC-122000A-C PSC-124000A-C TSP-BCM12 TSP-BCMU360 TSP-BCM48A H-TRONIC AL 2000PLUS H-TRONIC HTDC 5000 ES360A LS-CR45-PQ LS-CR45-PD WHITE 5V 1A MC3 PB2 BLUE SC1 SC2 VC2S X2