AUAXI/V

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

General Description

The MAX8523 dual-phase gate driver, along with the MAX8524*/MAX8525 multiphase controllers, provides flexible 2- to 8 -phase CPU core-voltage supplies. The $0.5 \Omega / 0.95 \Omega$ driver resistance allows up to 30A output current per phase.
Each MOSFET driver in the MAX8523 is capable of driving 3000pF capacitive loads with only 15ns propagation delay and 11ns typical rise and fall times, allowing operations up to 1.2 MHz per phase. Adaptive dead time controls low-side MOSFET turn-on, and user-programmable dead time controls high-side MOSFET turnon. This maximizes converter efficiency while allowing operation with a variety of MOSFETs and controller ICs. An undervoltage lockout (UVLO) circuit allows proper power-on sequencing. PWM_ signal inputs are both TTL and CMOS compatible.
The MAX8523 is available in a space-saving 16-pin QSOP package, and specified for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation.

Applications

Core Voltage Supplies for Pentium ${ }^{\text {TM }}$ IV
Microprocessors
Servers and Workstations
Desktop Computers
Voltage Regulator Modules (VRMs)
DC-to-DC Regulator Modules
Switches, Routers, and Storage

Features

- 6A Peak Gate-Drive Current
- Up to 1.2MHz Operation
- Up to 6.5V Gate-Drive Voltage
- 0.5 $/ 0.95 \Omega$ Low-Side Drivers
- Capable of 30A Output per Phase
- Adaptive Shoot-Through Protection
- User-Programmable Delay Time
- TTL and CMOS Input Compatible
- UVLO for Proper Sequencing
- Flexible 2- to 8-Phase Implementation with MAX8524 and MAX8525
- Space-Saving ($4.9 \mathrm{~mm} \times 6 \mathrm{~mm}$) 16-Pin QSOP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX8523EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

*Future product. Contact factory for availability.

Typical Operating Circuit

Pentium is a trademark of Intel Corp.

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

ABSOLUTE MAXIMUM RATINGS	
BST_ to PGND_.	-0.3V to +26V
LX_ to PGND_	-1V to +14 V
DH_ to PGND_	0.3V to (BST_ + 0.3V)
DH_ to LX	-0.3 V to +7 V
BST_ to LX	-0.3V to +7V
DL_ to PGND_	-0.3V to (PV_+0.3V)
PV_{-}to PGND_	$\ldots-0.3 V ~ t o ~+7 V ~$
PGND2 to PGND	-0.3V to +0.3V
Vcc to PGND1.	.-0.3V to +7V
DLY to PGND1.	-0.3V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$

PWM_ to PGND1 ...-0.3V to (PV2 + 0.3V)
VCC to PV1_...-7V to +0.3V
DH_, DL_ Continuous Current $\pm 200 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots \ldots \ldots667 \mathrm{~mW}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{VCC}}=\mathrm{V}_{\mathrm{PV} 1}=\mathrm{V}_{\mathrm{PV} 2}=\mathrm{V}_{\mathrm{BST} 1}=\mathrm{V}_{\mathrm{BST}}=\mathrm{V}_{\mathrm{DLY}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PGND} 1}=\mathrm{V}_{\mathrm{PGND} 2}=\mathrm{V}_{\mathrm{LX} 1}=\mathrm{V}_{\mathrm{LX} 2}=0 \mathrm{~V} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
UNDERVOLTAGE PROTECTION				
Supply Voltage Range		4.5	6.5	V
UVLO	VCC rising	$3.25-3.5$	3.8	V
	VCC falling	3.0	3.5	
Ivcc	DLY = VCC	50	100	$\mu \mathrm{A}$
	Dynamic, RDLY $=50 \mathrm{k} \Omega$	0.5	1	mA
IPV_	PWM $=$ = GND	1	10	$\mu \mathrm{A}$
	PWM ${ }_{-}=V_{C C}$	1.2	2	mA
${ }^{\text {IBST}}$ -	PWM_ = GND	0.1	10	$\mu \mathrm{A}$
	PWM ${ }_{-}=V_{C C}$	1.2	2	mA
$\mathrm{I}_{\text {BST1 }}+\mathrm{IPV} 1^{+} \mathrm{I}_{\text {BST2 }}+\mathrm{IPV} 2$	250 kHz	4	8	mA
DRIVER SPECIFICATIONS				
DH_ Driver Resistance	PWM_ = PGND1, V $\mathrm{V}_{\text {BST }}=4.5 \mathrm{~V}$	0.65	1.2	Ω
	PWM_ $=\mathrm{V}_{\text {CC, }}, \mathrm{V}_{\text {BST }}$ - $=4.5 \mathrm{~V}$	0.8	1.35	
DL_ Driver Resistance	PWM_ = PGND1, $\mathrm{VPV}_{-}=4.5 \mathrm{~V}$	0.95	1.6	Ω
	PWM $=\mathrm{V}_{C C}, \mathrm{~V}_{\mathrm{PV}}=4.5 \mathrm{~V}$	0.5	0.9	
DH_ Rise Time	$P W M_{-}=V_{C C}, V_{B S T}=5 \mathrm{~V}, 3 \mathrm{nF}$ load	11		ns
DH_ Fall Time	PWM_ = PGND1, V $\mathrm{BSST}^{\text {a }}$ 5V, 3nF load	9.5		ns
DL_ Rise Time	PWM_ = VCC, $\mathrm{V}_{\text {PV }}=5 \mathrm{~V}$, 3nF load	8.5		ns
DL_ Fall Time	PWM $=$ PGND1, VPV $=5 \mathrm{~V}, 3 \mathrm{nF}$ load	6.5		ns
DH_ Propagation Delay	PWM_falling, $\mathrm{V}_{\mathrm{BST}}=5 \mathrm{~V}$	15		ns
DL_ Propagation Delay	PWM_rising, $\mathrm{V}_{\text {BST }}=5 \mathrm{~V}$	8		ns
PWM_INPUT				
Input Current	VPWM_ = 0 V or 6.5 V	0.01	1	$\mu \mathrm{A}$
Input Voltage High		2.5		V
Input Voltage Low			0.8	V

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

ELECTRICAL CHARACTERISTICS

$\left(V_{V C C}=V_{P V 1}=V_{P V 2}=V_{B S T 1}=V_{B S T 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{LX} 1}=\mathrm{V}_{\mathrm{LX} 2}=0 \mathrm{~V} ; \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}\right.$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. $)$ (Note 1)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
UNDERVOLTAGE PROTECTION				
Supply Voltage Range		4.5	6.5	V
UVLO	VCC rising	3.25	3.8	V
	$V_{\text {CC }}$ falling	3.0	3.5	
Ivcc	DLY $=\mathrm{V}_{C C}$		100	$\mu \mathrm{A}$
	Dynamic, RDLY $=50 \mathrm{k} \Omega$		1	mA
IPV_	PWM $=$ = GND		10	$\mu \mathrm{A}$
	PWM ${ }_{-}=\mathrm{V}_{C C}$		2	mA
${ }_{\text {IBST_ }}$	PWM $=$ = GND		10	$\mu \mathrm{A}$
	PWM $=\mathrm{V}_{\text {CC }}$		2	mA
IBST1 + IPV1 + IBST2 + IPV2	250kHz		8	mA
DRIVER SPECIFICATIONS				
DH_ Driver Resistance	PWM ${ }_{-}=$PGND1, $\mathrm{V}_{\text {BST }}=4.5 \mathrm{~V}$		1.2	Ω
	PWM ${ }_{-}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {BST }}=4.5 \mathrm{~V}$		1.35	
DL_ Driver Resistance	PWM ${ }_{-}=$PGND1, $\mathrm{V}_{\text {PV_ }}=4.5 \mathrm{~V}$		1.6	Ω
	PWM ${ }_{-}=\mathrm{V}_{C C}, \mathrm{~V}_{\text {PV }}=4.5 \mathrm{~V}$		0.9	

PWM_INPUT

Input Current	$V_{\text {PWM }}=0 \mathrm{~V}$ or 6.5V	1	$\mu \mathrm{~A}$
Input Voltage High		2.5	V
Input Voltage Low			V

Note 1: Specifications at $-40^{\circ} \mathrm{C}$ guaranteed by design.

Typical Operating Characteristics

$\left(P V 1=P V 2=V_{C C}=V_{D L Y}=5 \mathrm{~V}, 3 n F\right.$ capacitive load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Typical Operating Characteristics (continued)

$\left(P V 1=P V 2=V_{C C}=V_{D L Y}=5 \mathrm{~V}, 3 \mathrm{nF}\right.$ capacitive load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TYPICAL SWITCHING WAVEFORMS

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Pin Description

PIN	NAME	FUNCTION
1	BST1	Boost Flying Capacitor Connection, Phase 1. Connect a $0.22 \mu \mathrm{~F}$ or higher ceramic capacitor between BST1 and LX1.
2	DH1	High-Side Gate-Driver Output, Phase 1
3	LX1	Switching Node (Inductor) Connection, Phase 1
4	PV1	Gate-Drive Supply for DL1. Bypass to PGND1 with a $2.2 \mu \mathrm{~F}$ or higher capacitor. Connect PV1 and PV2 together.
5	DL1	Low-Side Gate-Driver Output, Phase 1
6	PGND1	Power Ground for DL1. Connect PGND1 and PGND2 together. Internal analog ground is connected to PGND1.
7	VCC	Supply Voltage. Bypass VCC to PGND1 with a $0.1 \mu \mathrm{~F}$ (min) capacitor.
8	DLY	Connect a resistor from DLY to PGND1 to set dead time between DL_ falling and DH_ rising. Connect to $V_{C C}$ for default 20ns delay.
9	PWM1	Phase 1 PWM Logic Input. DH1 is high when PWM1 is high; DL1 is high when PWM1 is low.
10	PWM2	Phase 2 PWM Logic Input. DH2 is high when PWM2 is high; DL2 is high when PWM2 is low.
11	PGND2	Power Ground for DL2
12	DL2	Low-Side Gate-Driver Output, Phase 2
13	PV2	Gate-Drive Supply for DL2. Bypass to PGND2 with a $2.2 \mu \mathrm{~F}$ or higher capacitor. Connect PV1 and PV2 together.
14	LX2	Switching Node (Inductor) Connection, Phase 2
15	DH2	High-Side Gate-Driver Output, Phase 2
16	BST2	Boost Flying Capacitor Connection, Phase 2. Connect a $0.22 \mu \mathrm{~F}$ or higher ceramic capacitor between BST2 and LX2.

Detailed Description

The MAX8523 dual-phase gate driver, along with the MAX8524/MAX8525 multiphase controllers, provides flexible 2- to 8 -phase CPU core-voltage supplies. The $0.5 \Omega / 0.95 \Omega$ driver resistance allows up to 30 A output current per phase.
Each MOSFET driver in the MAX8523 is capable of driving 3000 pF capacitive loads with only 15 ns propagation delay and 11ns typical rise and fall times, allowing operations up to 1.2 MHz per phase. Adaptive dead time controls low-side MOSFET turn-on, and user-programmable dead time controls high-side MOSFET turn-on. This maximizes converter efficiency, while allowing operation with a variety of MOSFETs and PWM controller ICs. A UVLO circuit allows proper power-on sequencing. PWM_ signal inputs are both TTL and CMOS compatible.

Principle of Operation

MOSFET Gate Drivers (DH_, DL_) The high-side drivers (DH_{-}) have typical 0.8Ω sourcing resistance and 0.65Ω sinking resistance, resulting in 6A peak sourcing current and 7A peak sinking current with 5 V supply voltage. The low-side drivers (DL_) have typical 0.95Ω sourcing resistance and 0.5Ω sinking resistance, yielding 5A peak sourcing current and 10A peak sinking current. This reduces switching losses, making the MAX8523 ideal for both high-frequency and high-output-current applications.

Shoot-Through Protection
Adaptive shoot-through protection is incorporated for the switching transition after the high-side MOSFET is turned off and before the low-side MOSFET is turned on. The low-side driver is turned on only when the LX voltage falls below 1.8 V . Furthermore, the delay time between the low-side MOSFET turn-off and high-side MOSFET turn-on can be adjusted by selecting the value of R2 (see the RDLy Selection section).

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Figure 1. MAX8523 Functional Diagram

Undervoltage Lockout (UVLO)
When V_{CC} is below the UVLO threshold (3.5 V typ), DH_{-} and DL_ are held low. Once V_{cc} is above the UVLO threshold and PWM_ is low, DL_ is kept high and DH_ is kept low. This prevents output from rising before a valid PWM signal is applied.

Vcc Decoupling
Vcc provides the supply voltage for the internal logical circuit. To avoid malfunctions due to the switching noise on the D_{-}, DL_{-}, and LX_{-}pins, RC decoupling is recommended for the $V_{C C}$ pin. Place a 10Ω resistor (R1) from the supply voltage to the V_{cc} pin and a $0.1 \mu \mathrm{~F}$ (C7) capacitor from the VCC pin to PGND1.

Boost Capacitor Selection
The MAX8523 uses a bootstrap circuit to generate the floating supply voltages for the high-side drivers (DH_). The selected high-side MOSFET determines appropriate boost capacitance values, according to the following equation:

$$
\mathrm{C}_{\mathrm{BST}}=\frac{\mathrm{Q}_{\mathrm{GATE}}}{\Delta \mathrm{~V}_{\mathrm{BST}}}
$$

where QGATE is the total gate charge of the high-side MOSFET and $\Delta V_{B S T}$ is the voltage variation allowed on the high-side MOSFET drive. Choose $\Delta \mathrm{V}$ BST $=0.1 \mathrm{~V}$ to 0.2 V when determining the CbSt. Low-ESR ceramic capacitors should be used for C_{3} and C_{4}.

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Figure 2. Typical Application Circuit

PV_Decoupling
PV_ provides the supply voltages for the low-side drivers (DL_). The decoupling capacitors at PV_ also charge the BST capacitors during the time period when DL_ is high. Therefore, the decoupling capacitor C 2 for PV_ should be large enough to minimize the ripple voltage during switching transitions. C2 should be chosen according to the following equation:

$$
\mathrm{C} 2=10 \times \mathrm{C}_{\mathrm{BST}}
$$

Rdly Selection Connect DLY to VCC for the default delay time, typically 20ns. Add a delay resistor, RDLY, between DLY and PGND1 to increase the delay between the low-side MOSFET drive turn-off and the high-side MOSFET turnon. See the Typical Operating Characteristics to select RDLY.

Avoiding dV/dt-Induced Low-Side

 MOSFET Turn-OnAt high input voltages, fast turn-on of the high-side MOSFET could momentarily turn on the low-side MOSFET due to the high dV/dt appearing at the drain of the low-side MOSFET. The high dV/dt causes a current flow through the Miller capacitance (CRSS) and the input capacitance (CISS) of the low-side MOSFET. Improper selection of the low-side MOSFET that has a high ratio of Crss/CIss makes the problem more severe. To avoid the problem, give special attention to the ratio of CRSS/CISS when selecting the low-side MOSFET. Adding a resistor between the BST and the CBST can slow the high-side MOSFET turn-on. Similarly, adding a capacitor from the gate to the source of the high-side MOSFET has the same effect. However, both methods are at the expense of increasing the switching losses.

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Table 1. Typical Component Values (250kHz Operation, 20A/Phase Output Current)

COMPONENT	DESCRIPTION	PART NUMBER
C1	$5 \times 330 \mu \mathrm{~F} / 25 \mathrm{~V}, 23 \mathrm{~m} \Omega$ (max) ESR input filtering capacitor	Sanyo 25MV330WX
C2	$2.2 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor	Taiyo Yuden JMK107BJ225MA
C3, C4	$0.22 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitors	Taiyo Yuden GMK212BJ224MG
C5, C6	$3 \times 820 \mu \mathrm{~F} / 4 \mathrm{~V}, 12 \mathrm{~m} \Omega$ (max) ESR electrolytic capacitors	Sanyo 4SP820M
C7	$0.1 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor	Taiyo Yuden UMK212BJ104MG
D1	Dual Schottky diode	Central Semiconductor CMPSH-3A
L1, L2	$0.66 \mu \mathrm{H} / 29 \mathrm{~A}, 2.1 \mathrm{~m} \Omega$ (typ), $2.5 \mathrm{~m} \Omega$ (max) RDC inductors	Sumida CDEP134-H
Q1, Q2	High-side MOSFETs	Siliconix SUB70N03-09BP
Q3, Q4	Low-side MOSFETs	Fairchild FDB7045L
R1	$10 \Omega \pm 5 \%$ resistor (0603)	VCc decoupling resistor
R2	$2 \mathrm{k} \Omega$ to $125 \mathrm{k} \Omega \pm 1 \%$ dead-time delay programming resistor (0603)	-

Table 2. Typical Component Values (800kHz Operation, 20A/Phase Output Current)

COMPONENT	DESCRIPTION	PART NUMBER
C1	$5 \times 10 \mu \mathrm{~F} / 25 \mathrm{~V}, 10 \mathrm{~m} \Omega$ (max) ESR input filtering capacitor (1812)	Taiyo Yuden TMK432BJ106MM
C2	$2.2 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor	Taiyo Yuden JMK107BJ225MA
C3, C4	$0.22 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitors	Taiyo Yuden GMK212BJ224MG
C5, C6	$3 \times 680 \mu \mathrm{~F} / 2 \mathrm{~V}, 5 \mathrm{~m} \Omega$ (max) ESR SP capacitors	Sanyo 2RSTPD680M5
C7	$0.1 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor	Taiyo Yuden UMK212BJ104MG
D1	Dual Schottky diode	Central Semiconductor CMPSH-3A
L1, L2	$0.23 \mu \mathrm{H} / 30 \mathrm{~A}, 1.1 \mathrm{~m} \Omega$ (max) RDc inductors	TDK SPM12535T-R23M300
Q1, Q2	High-side MOSFETs	IR IRF7801
Q3, Q4	Low-side MOSFETs	IR 2XIRF7822
R1	$10 \Omega \pm 5 \%$ resistor (0603)	VCC decoupling resistor
R2	$2 \mathrm{k} \Omega$ to $125 \mathrm{k} \Omega \pm 1 \%$ dead-time delay programming resistor (0603)	-

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Applications Information

Power Dissipation
Power dissipation in the IC package comes mainly from switching the MOSFETs. Therefore, it is a function of both switching frequency and the total gate charge of the selected MOSFETs. The total power dissipation when both drivers are switching is given by:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{IC}}=2 \times \mathrm{f}_{S} \times\left(\mathrm{N} \times \mathrm{Q}_{\mathrm{G}_{-} \text {TOTAL_HS }} \times\right. \\
& \left.\frac{R_{H S}}{R_{H S}+\left(R_{G_{-}} H S\right.} / \mathrm{N}\right) \\
& \left.\frac{R_{\mathrm{LS}}}{R_{L S}+\left(R_{G_{-} L S} / M\right)}\right) \times \mathrm{Q}_{\mathrm{G}_{-} \text {TOTAL_LS }} \times \\
& V_{\mathrm{PV}_{-}}+V_{V C C} \times I_{V C C}
\end{aligned}
$$

where fs is the switching frequency, QG_TOTAL_HS is the total gate charge of the selected high-side MOSFET, QG_TOTAL_LS is the total gate charge of the selected low-side MOSFET, N is the total number of the high-side MOSFETs in parallel, M is the total number of the low-side MOSFETs in parallel, VPV_ is the voltage at the $P V_{-}$pin, RHS is the on-resistance of the high-side driver, RLS is the on-resistance of the low-side driver, RG_HS is the gate resistance of the selected high-side MOSFET, RG_LS is the gate resistance of the selected low-side MOSFETs, $\mathrm{V}_{V C C}$ is the voltage at the $\mathrm{V}_{C C}$ pin, and IVCC is the supply current at the VCC pin.

Pin Configuration

PC Board Layout Considerations
The MAX8523 MOSFET driver sources and sinks large currents to drive MOSFETs at high switching speeds. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. The following PC board layout guidelines are recommended when designing with the MAX8523:

1) Place all decoupling capacitors (C2, C3, C4, C7) as close to their respective pins as possible.
2) Minimize the high-current loops from the input capacitor, upper-switching MOSFET, and low-side MOSFET back to the input capacitor negative terminal.
3) Provide enough copper area at and around the switching MOSFETs and inductors to aid in thermal dissipation.
4) Connect the PGND1 and PGND2 pins of the MAX8523 as close as possible to the source of the low-side MOSFETs.
5) Keep $L X 1$ and $L X 2$ away from sensitive analog components and nodes. Place the IC and analog components on the opposite side of the board from the power-switching node if possible.

High-Speed, Dual-Phase Gate Driver for Multiphase, Step-Down Converters

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	. 061	. 068	1.55	1.73
A1	. 004	. 0098	0.102	0.249
A2	. 055	. 061	1.40	1.55
B	. 008	. 012	0.20	0.31
C	. 0075	. 0098	0.191	0.249
D	SEE VARIATIDNS			
E	. 150	. 157	3.81	3.99
e	. 025 BSC		0.635 BSC	
H	. 230	. 244	5.84	6.20
h	. 010	. 016	0.25	0.41
L	. 016	. 035	0.41	0.89
N	SEE VARIATIDNS			
α	0°	8°	0°	8°

VARIATIDNS:					N
	INCHES		MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	
D	. 189	. 196	4.80	4.98	16 AA
S	. 0020	. 0070	0.05	0.18	
D	. 337	. 344	8.56	8.74	$20 \mid A B$
S	. 0500	. 0550	1.270	1.397	
D	. 337	. 344	8.56	8.74	$24 \mid A C$
S	. 0250	. 0300	0.635	0.762	
D	. 386	. 393	9.80	9.98	$28 / \mathrm{AD}$
S	. 0250	. 0300	0.635	0.762	

NOTES:
1). D \& E DU NDT INCLUDE MILD FLASH GR PROTRUSIONS.
2). MULD FLASH \quad R PROTRUSIUNS NAT TI EXCEED .006" PER SIDE,
3). CONTROLLING DIMENSIDNS: INCHES.
4). MEETS JEDEC MD137.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

