MAXIAV

3A, 2MHz Step-Down Regulator with Integrated Switches

General Description

The MAX8643 high-efficiency switching regulator delivers up to 3 A load current at output voltages from 0.6 V to $(0.9 \times$ VIN $)$. The IC operates from 2.35 V to 3.6 V , making it ideal for on-board point-of-load and postregulation applications. Total output error is less than $\pm 1 \%$ over load, line, and temperature.
The MAX8643 features fixed-frequency PWM mode operation with a switching frequency range of 500 kHz to 2 MHz set by an external resistor. High-frequency operation allows for an all-ceramic capacitor design. The high operating frequency also allows for small-size external components.
The low-resistance on-chip nMOS switches ensure high efficiency at heavy loads while minimizing critical inductances, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs.
The MAX8643 comes with a high-bandwidth (> 14MHz) voltage-error amplifier. The voltage-mode control architecture and the voltage-error amplifier permit a type III compensation scheme to be utilized to achieve maximum loop bandwidth, up to 20% of the switching frequency. High loop bandwidth provides fast transient response, resulting in less required output capacitance and allowing for all-ceramic capacitor designs.
The MAX8643 provides two tri-state logic inputs to select one of nine preset output voltages. The preset output voltages allow customers to achieve $\pm 1 \%$ out-put-voltage accuracy without using expensive 0.1\% resistors. In addition, the output voltage can be set to any customer value by either using two external resistors at the feedback with 0.6 V internal reference or applying an external reference voltage to the REFIN input. The MAX8643 offers programmable soft-start time using one capacitor to reduce input inrush current. The MAX8643 is available in a lead-free, 24-pin, $4 \mathrm{~mm} \times$ 4mm thin QFN package.

Applications
POLs
ASIC/CPU/DSP Core and I/O Voltages
DDR Power Supplies
Base-Station Power Supplies
Telecom and Networking Power Supplies
RAID Control Power Supplies

Pin Configuration appears at end of data sheet.

Features

- Internal 37m Ω Rdson MOSFETs
- Continuous 3A Output Current
- $\pm 1 \%$ Output Accuracy Over Load, Line, and Temperature
- Operates from 2.35V to 3.6V Supply
- Adjustable Output from 0.6V to (0.9 x VIN)
- Soft-Start Reduces Inrush Supply Current
- 500kHz to 2MHz Adjustable Switching Frequency
- Compatible with Ceramic, Polymer, and Electrolytic Output Capacitors
- VID-Selectable Output Voltages
$0.6,0.7,0.8,1.0,1.2,1.5,1.8,2.0$, and 2.5 V
- Fully Protected Against Overcurrent and Overtemperature
- Sink/Source Current in DDR Application
- Lead-Free, 24-Pin, 4mm x 4mm Thin QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX8643ETG+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN-EP* $4 \mathrm{~mm} \times 4 \mathrm{~mm}$	T2444-4

+Denotes lead-free package.
${ }^{\star} E P=$ Exposed pad.
Typical Operating Circuit

3A, 2MHz Step-Down Regulator with Integrated Switches

ABSOLUTE MAXIMUM RATINGS

IN, VDD, PWRGD to GND-0.3V to +4.5V	
LX Current (Note 1)	4A to
BST to LX.	-0.3V to

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 24-Pin TQFN-EP (derated $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	2222.2mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	+30

Note 1: LX has internal clamp diodes to GND and IN. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted.) (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN/VDD						
IN and V ${ }_{\text {DD }}$ Voltage Range			2.35		3.60	V
IN Supply Current	fs $=1 \mathrm{MHz}$, no load (includes gate-drive current)	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		4	4.6	mA
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$		5.5		
VDD Supply Current	$\mathrm{fS}_{\mathrm{S}}=1 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		1.4	2.3	mA
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$		2		
Total Shutdown Current from IN and $V_{D D}$	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {BST }}-\mathrm{V}_{\text {LX }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$				13	$\mu \mathrm{A}$
VDD Undervoltage Lockout Threshold	LX starts/stops switching	VDD rising		2	2.1	V
		VDD falling	1.8	1.9		
		Deglitching		2		$\mu \mathrm{s}$
BST						
BST Supply Current	$\begin{aligned} & V_{B S T}=V_{D D}=V_{I N}=3.6 \mathrm{~V}, \\ & V_{L X}=3.6 \mathrm{~V} \text { or } O V, V_{E N}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		10		
PWM COMPARATOR						
PWM Comparator Propagation Delay	10 mV overdrive			20		ns
COMP						
COMP Clamp Voltage, High	V IN $=2.35 \mathrm{~V}$ to 3.6 V		2			V
COMP Slew Rate				1.4		V/us
PWM Ramp Amplitude				1		V
COMP Shutdown Resistance	From COMP to GND, $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$			8		Ω
ERROR AMPLIFIER						
Preset Output-Voltage Accuracy	REFIN $=$ SS		-1	Select from Table 1	+1	\%
FB Regulation Accuracy Using External Resistors	CTL1 = CTL2 = GND		0.594	0.600	0.606	V
FB to OUT Resistor	All VID settings except CTL1 = CTL2 = GND		5	8	11	$\mathrm{k} \Omega$

3A, 2MHz Step-Down Regulator with Integrated Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{F B}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted.) (Note 2)

3A, 2MHz Step-Down Regulator with Integrated Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{F B}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted.) (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ENABLE						
EN Input Logic-Low, Falling				1.2	0.7	V
EN Input Logic-High, Rising			1.7	1.4		V
EN Hysteresis				200		mV
EN, Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.01		
SS						
SS Charging Current	$\mathrm{V}_{S S}=0.45 \mathrm{~V}$		7	8	9	$\mu \mathrm{A}$
SS Discharge Resistance				500		Ω
THERMAL SHUTDOWN						
Thermal-Shutdown Threshold				+165		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis				20		${ }^{\circ} \mathrm{C}$
POWER-GOOD (PWRGD)						
Power-Good Threshold Voltage	$V_{\text {FB }}$ falling, 3mV hysteresis		87	90	93	\%
Power-Good Falling-Edge Deglitch				48		Clock cycles
PWRGD Output-Voltage Low	IPWRGD $=4 \mathrm{~mA}$			0.03	0.15	V
PWRGD Leakage Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{PWRGGD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.9 \mathrm{~V}$			0.01		$\mu \mathrm{A}$
OVERCURRENT LIMIT						
Current-Limit Startup Blanking				128		Clock cycles
Restart Time				1024		Clock cycles

Note 2: Specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.
Note 3: Guaranteed by design.

Typical Operating Characteristics

(Typical values are at $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $\mathrm{VOUT}=1.8 \mathrm{~V}, \operatorname{RFREQ}=50 \mathrm{k} \Omega$, IOUT $=3 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

\qquad

3A, 2MHz Step-Down Regulator with Integrated Switches

Typical Operating Characteristics (continued)
(Typical values are at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}$, RFREQ $=50 \mathrm{k} \Omega$, IOUT $=3 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3A, 2MHz Step-Down Regulator with Integrated Switches

(Typical values are at $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{R}_{\text {FREQ }}=50 \mathrm{k} \Omega$, $\operatorname{loUT}=3 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3A, 2MHz Step-Down Regulator with Integrated Switches

Pin Description

PIN	NAME	FUNCTION
1, 7	GND	Analog Circuit Ground
2	$V_{D D}$	Supply Voltage and Bypass Input. Connect $V_{D D}$ to IN with a 10Ω resistor. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from VDD to GND.
3, 4	$\begin{aligned} & \text { CTL1, } \\ & \text { CTL2 } \end{aligned}$	Preset Output Voltage Selection Input. CTL1 and CTL2 set the output voltage to one of nine preset voltages. See Table 1 for preset voltages.
5	REFIN	External Reference Input. Connect REFIN to SS to use the internal 0.6 V reference. Connecting REFIN to an external reference voltage forces FB to regulate the voltage applied to REFIN. REFIN is internally pulled to GND when the IC is in shutdown mode.
6	SS	Soft-Start Input. Connect a capacitor from SS to GND to set the startup time. See the Soft-Start and REFIN section for details on setting the soft-start time.
8	COMP	Output of the Voltage-Error Amplifier. Connect the necessary compensation network from COMP to FB. COMP is internally pulled to GND when the IC is in shutdown mode.
9	FB	Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to GND to set the output voltage from 0.6 V to 90% of V_{IN}. Connect FB through an RC network to the output when using CTL1 and CTL2 to select any of nine preset voltages.
10	OUT	Output Voltage Sense. Connect to the output. Leave OUT unconnected when an external resistor-divider is used.
11	FREQ	Oscillator Frequency Selection. Connect a resistor from FREQ to GND to select the switching frequency.
12	PWRGD	Power-Good Output. Open-drain output that is high impedance when $V_{F B} \geq 90 \%$ of $V_{\text {REFIN }}$ or 0.6 V . PWRGD is internally pulled low when $V_{\text {FB }}$ falls below 90% of its regulation point. PWRGD is internally pulled low when the IC is in shutdown mode, VDD or VIN is below the UVLO threshold, or the IC is in thermal shutdown.
13	BST	High-Side MOSFET Driver Supply. Bypass BST to LX with a $0.1 \mu \mathrm{~F}$ capacitor.
14, 15, 16	LX	Inductor Connection. All LX pins are internally connected together. Connect all LX pins to the output inductor. LX is high impedance when the IC is in shutdown mode.
17-20	PGND	Power Ground. Connect all PGND pins externally to the power ground plane.
21, 22, 23	IN	Power-Supply Input. Input supply range is from 2.35 V to 3.6 V . Bypass with $22 \mu \mathrm{~F}$ ceramic capacitance to PGND externally. See the Typical Application Circuit.
24	EN	Enable Input. Logic input to enable/disable the MAX8643.
-	EP	Exposed Paddle. Connect to a large ground plane to optimize thermal performance.

3A, 2MHz Step-Down Regulator with Integrated Switches

Block Diagram

3A, 2MHz Step-Down Regulator with Integrated Switches

Typical Application Circuit

Figure 1. 1 MHz , All-Ceramic Capacitor Design with Vout $=1.8 \mathrm{~V}$

Detailed Description

The MAX8643 high-efficiency, voltage-mode switching regulator is capable of delivering up to 3 A of output current. The MAX8643 provides output voltages from 0.6 V to ($0.9 \times \mathrm{V}$ IN $)$ from 2.35 V to 3.6 V input supplies, making it ideal for on-board point-of-load applications. The output voltage accuracy is better than $\pm 1 \%$ over load, line, and temperature.
The MAX8643 features a wide switching frequency range, allowing the user to achieve all-ceramic capacitor designs and fast transient responses. The high operating frequency minimizes the size of external components. The MAX8643 is available in a small (4 mm $\times 4 \mathrm{~mm})$, lead-free, 24 -pin thin QFN package. The REFIN function makes the MAX8643 an ideal candidate for DDR and tracking power supplies. Using internal lowRDSON ($37 \mathrm{~m} \Omega$) n-channel MOSFETs for both high- and low-side switches maintains high efficiency at both heavy-load and high-switching frequencies.
The MAX8643 employs voltage-mode control architecture with a high-bandwidth ($>14 \mathrm{MHz}$) error amplifier. The voltage-mode control architecture allows up to 2 MHz switching frequency, reducing board area. The op-amp voltage-error amplifier works with type 3 com-
pensation to fully utilize the bandwidth of the high-frequency switching to obtain fast transient response. Adjustable soft-start time provides flexibilities to minimize input startup inrush current. An open-drain, power-good (PWRGD) output goes high when VFB reaches 90% of VREFIN or 0.54 V .

Controller Function

The controller logic block is the central processor that determines the duty cycle of the high-side MOSFET under different line, load, and temperature conditions. Under normal operation, where the current-limit and temperature protection are not triggered, the controller logic block takes the output from the PWM comparator and generates the driver signals for both high-side and low-side MOSFETs. The break-before-make logic and the timing for charging the bootstrap capacitors are calculated by the controller logic block. The error signal from the voltage-error amplifier is compared with the ramp signal generated by the oscillator at the PWM comparator and, thus, the required PWM signal is produced. The high-side switch is turned on at the beginning of the oscillator cycle and turns off when the ramp voltage exceeds the VCoMP signal or the current-limit threshold is exceeded. The low-side switch is then turned on for the remainder of the oscillator cycle.

3A, 2MHz Step-Down Regulator with Integrated Switches

The internal, high-side MOSFET has a typical 5.5A peak current-limit threshold. When current flowing out of LX exceeds this limit, the high-side MOSFET turns off and the synchronous rectifier turns on. The synchronous rectifier remains on until the inductor current falls below the low-side current limit. This lowers the duty cycle and causes the output voltage to droop until the current limit is no longer exceeded. The MAX8643 uses a hiccup mode to prevent overheating during short-circuit output conditions.
During current limit if $V_{F B}$ drops below 420 mV and stays below this level for $12 \mu \mathrm{~s}$ or more, the part enters hiccup mode. The high-side MOSFET and the synchronous rectifier are turned off and both COMP and REFIN are internally pulled low. If REFIN and SS are connected together, then both are pulled low. The part remains in this state for 1024 clock cycles and then attempts to restart for 128 clock cycles. If the fault-causing current limit has cleared, the part resumes normal operation. Otherwise, the part reenters hiccup mode again.

Soft-Start and REFIN

The MAX8643 utilizes an adjustable soft-start function to limit inrush current during startup. An $8 \mu \mathrm{~A}$ (typ) current source charges an external capacitor connected to SS. The soft-start time is adjusted by the value of the external capacitor from SS to GND. The required capacitance value is determined as:

$$
\mathrm{C}=\frac{8 \mu \mathrm{~A} \times \mathrm{t}_{\mathrm{SS}}}{0.6 \mathrm{~V}}
$$

where tss is the required soft-start time in seconds. The MAX8643 also features an external reference input (REFIN). The IC regulates FB to the voltage applied to REFIN. The internal soft-start is not available when using an external reference. A method of soft-start when using an external reference is shown in Figure 2. Connect REFIN to SS to use the internal 0.6 V reference.

Figure 2. Typical Soft-Start Implementation with External Reference

Undervoltage Lockout (UVLO)

The UVLO circuitry inhibits switching when VDD is below 2V (typ). Once VDD rises above 2V (typ), UVLO clears and the soft-start function activates. A 100 mV hysteresis is built in for glitch immunity.

BST
The gate-drive voltage for the high-side, n-channel switch is generated by a flying-capacitor boost circuit. The capacitor between BST and LX is charged from the VIN supply while the low-side MOSFET is on. When the low-side MOSFET is switched off, the voltage of the capacitor is stacked above LX to provide the necessary turn-on voltage for the high-side internal MOSFET.

Frequency Select (FREQ)
The switching frequency is resistor programmable from 500 kHz to 2 MHz . Set the switching frequency of the IC with a resistor (RFREQ) connected from FREQ to GND. RFREQ is calculated as:

$$
R_{\text {FREQ }}=\frac{50 \mathrm{k} \Omega}{0.95 \mu \mathrm{~s}} \times\left(\frac{1}{\mathrm{f}_{\mathrm{S}}}-0.05 \mu \mathrm{~s}\right)
$$

where fs is the desired switching frequency in Hz .

Power-Good Output (PWRGD)

PWRGD is an open-drain output that goes high impedance when $V_{F B}$ is above $0.9 \times \mathrm{V}_{\text {REFIN }}$. PWRGD pulls low when $V_{F B}$ is below 90% of its regulation for at least 48 clock cycles. PWRGD is low during shutdown.

Programming the Output Voltage

(CTL1, CTL2)
As shown in Table 1, the output voltage is pin programmable by the logic states of CTL1 and CTL2. CTL1 and CTL2 are tri-level inputs: VDD, unconnected, and GND.

Table 1. CTL1 and CTL2 Output Voltage Selection

CTL1	CTL2	Vout (V)
GND	GND	0.6
VDD	VDD	0.7
GND	Unconnected	0.8
GND	VDD	1.0
Unconnected	GND	1.2
Unconnected	Unconnected	1.5
Unconnected	VDD	1.8
$V_{\text {DD }}$	GND	2.0
$V_{D D}$	Unconnected	2.5

3A, 2MHz Step-Down Regulator with Integrated Switches

The logic states of CTL1 and CTL2 should be programmed only before power-up. Once the part is enabled, CTL1 and CTL2 should not be changed. If the output voltage needs to be reprogrammed, cycle power or EN and reprogram before enabling.

Shutdown Mode

Drive EN to GND to shut down the IC and reduce quiescent current to less than $12 \mu \mathrm{~A}$. During shutdown, the LX is high impedance. Drive EN high to enable the MAX8643.

Thermal Protection

 Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds $\mathrm{T} J$ $=+165^{\circ} \mathrm{C}$, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by $20^{\circ} \mathrm{C}$, causing a pulsed output during continuous overload conditions. The soft-start sequence begins after recovery from a thermal-shutdown condition.
Applications Information

IN and Vdd Decoupling

To decrease the noise effects due to the high switching frequency and maximize the output accuracy of the MAX8643, decouple VIN with a $22 \mu \mathrm{~F}$ capacitor from V_{IN} to PGND. Also decouple VDD with a $1 \mu \mathrm{~F}$ from VDD to GND. Place these capacitors as close to the IC as possible.

Inductor Selection

Choose an inductor with the following equation:

$$
L=\frac{V_{\text {OUT }} \times\left(V_{\mathbb{I N}}-V_{\text {OUT }}\right)}{f_{S} \times V_{\mathbb{I N}} \times \operatorname{LIR} \times I_{\text {OUT }}(M A X)}
$$

where LIR is the ratio of the inductor ripple current to full load current at the minimum duty cycle. Choose LIR between 20% to 40% for best performance and stability.
Use an inductor with the lowest possible DC resistance that fits in the allotted dimensions. Powdered iron ferrite core types are often the best choice for performance. With any core material, the core must be large enough not to saturate at the current limit of the MAX8643.

Output-Capacitor Selection

The key selection parameters for the output capacitor are capacitance, ESR, ESL, and voltage-rating requirements. These affect the overall stability, output ripple voltage, and transient response of the DC-DC converter. The out-
put ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor's ESR, and the voltage drop due to the capacitor's ESL. Calculate the output voltage ripple due to the output capacitance, ESR, and ESL:

$$
\begin{gathered}
V_{\text {RIPPLE }}=V_{\text {RIPPLE(C) }}+ \\
V_{\text {RIPPLE(ESR })}+V_{\text {RIPPLE(ESL) }}
\end{gathered}
$$

where the output ripple due to output capacitance, ESR, and ESL is:

$$
\begin{aligned}
& V_{\text {RIPPLE }}(C)=\frac{l_{P-P}}{8 \times C_{O U T} \times f_{S}} \\
& V_{\text {RIPPLE(ESR })}=I_{P-P} \times E S R \\
& V_{R I P P L E(E S L)}=\frac{I_{P-P}}{t_{O N}} \times E S L \\
& V_{\text {RIPPLE(ESL) }}=\frac{I_{P-P}}{t_{O F F}} \times E S L
\end{aligned}
$$

or whichever is larger.
The peak inductor current (IP-P) is:

$$
I_{P-P}=\frac{V_{I N}-V_{\text {OUT }}}{f_{S} \times L} \times \frac{V_{\text {OUT }}}{V_{I N}}
$$

Use these equations for initial capacitor selection. Determine final values by testing a prototype or an evaluation circuit. A smaller ripple current results in less output voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output voltage ripple decreases with larger inductance. Use ceramic capacitors for low ESR and low ESL at the switching frequency of the converter. The ripple voltage due to ESL is negligible when using ceramic capacitors.
Load-transient response depends on the selected output capacitance. During a load transient, the output instantly changes by ESR $\times \Delta I$ LOAD. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time, the controller responds by regulating the output voltage back to its predetermined value. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, preventing the output from deviating further from its regulating value. See the Compensation Design section for more details.

3A, 2MHz Step-Down Regulator with Integrated Switches

Input-Capacitor Selection

The input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. The total input capacitance must be equal to or greater than the value given by the following equation to keep the input ripple voltage within specs and minimize the high-frequency ripple current being fed back to the input source:

$$
\mathrm{CIN}_{-} \mathrm{MIN}=\frac{\mathrm{D} \times \mathrm{ts} \times \text { louT }}{\text { VIN-RIPPLE }}
$$

where VIN-RIPPLE is the maximum allowed input ripple voltage across the input capacitors and is recommended to be less than 2% of the minimum input voltage. D is the duty cycle (VOUT / VIN), and ts is the switching period (1/fs).
The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source but are instead shunted through the input capacitor. High source impedance requires high input capacitance. The input capacitor must meet the ripple current requirement imposed by the switching currents. The RMS input ripple current is given by:

$$
I_{\text {RIPPLE }}=I_{\text {LOAD }} \times \sqrt{\frac{\mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right)}{\mathrm{V}_{\text {IN }}}}
$$

where IRIPPLE is the input RMS ripple current.

Compensation Design

The power transfer function consists of one double pole and one zero. The double pole is introduced by the output filtering inductor, L, and the output filtering capacitor, Co. The ESR of the output filtering capacitor determines the zero. The double pole and zero frequencies are given as follows:

$$
\begin{aligned}
f P 1 _L C=f P 2 _L C= & \frac{1}{2 \pi \times \sqrt{L \times C_{O} \times\left(\frac{R_{O}+E S R}{R_{O}+R_{L}}\right)}} \\
& \mathrm{Z}_{-} _E S R=
\end{aligned} \frac{1}{2 \pi \times \mathrm{ESR} \times \mathrm{CO}_{\mathrm{O}}} .
$$

where R_{L} is equal to the sum of the output inductor's DCR and the internal switch resistance, RDSON. A typical value for RDSON is $37 \mathrm{~m} \Omega$. Ro is the output load resistance, which is equal to the rated output voltage divided by the rated output current. ESR is the total equivalent series resistance of the output filtering capacitor. If there is more than one output capacitor of the same type in
parallel, the value of the ESR in the above equation is equal to that of the ESR of a single output capacitor divided by the total number of output capacitors.
The high switching frequency range of the MAX8643 allows the use of ceramic output capacitors. Since the ESR of ceramic capacitors is typically very low, the frequency of the associated transfer function zero is higher than the unity-gain crossover frequency, f_{C}, and the zero cannot be used to compensate for the double pole created by the output filtering inductor and capacitor. The double pole produces a gain drop of $40 \mathrm{~dB} /$ decade and a phase shift of $180^{\circ} /$ decade. The error amplifier must compensate for this gain drop and phase shift to achieve a stable high-bandwidth closed-loop system. Therefore, use type III compensation as shown in Figure 3 and Figure 4. Type III compensation possesses three poles and two zeros with the first pole, fP1_EA, located at zero frequency (DC). Locations of other poles and zeros of the type III compensation are given by:

$$
\mathrm{f}_{\mathrm{Z} 1_{-} \mathrm{EA}}=\frac{1}{2 \pi \times \mathrm{R} 1 \times \mathrm{C} 1}
$$

Figure 3. Type III Compensation Network

3A, 2MHz Step-Down Regulator with Integrated Switches

Figure 4. Type III Compensation IIlustration

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Z2}} \mathrm{EA}=\frac{1}{2 \pi \times \mathrm{R} 3 \times \mathrm{C} 3} \\
& \mathrm{fP}_{2} \mathrm{EA}=\frac{1}{2 \pi \times \mathrm{R} 1 \times \mathrm{C} 2} \\
& \mathrm{fP2} 2_{-} \mathrm{EA}=\frac{1}{2 \pi \times \mathrm{R} 2 \times \mathrm{C} 3}
\end{aligned}
$$

The above equations are based on the assumptions that C1>>C2, and R3>>R2, which are true in most applications. Placements of these poles and zeros are determined by the frequencies of the double pole and ESR zero of the power transfer function. It is also a function of the desired closed-loop bandwidth. The following section outlines the step-by-step design procedure to calculate the required compensation components for the MAX8643. When the output voltage of the MAX8643 is programmed to a preset voltage, R3 is internal to the IC and R4 does not exist (Figure 3b).
When externally programming the MAX8643 (Figure 3a), the output voltage is determined by:

$$
R 4=\frac{0.6 \times R 3}{(\text { VOUT }-0.6)}
$$

The zero-cross frequency of the closed-loop, f_{C}, should be between 10% and 20% of the switching frequency, fs. A higher zero-cross frequency results in faster transient response. Once f_{C} is chosen, C1 is calculated from the following equation:

$$
\mathrm{C} 1=\frac{1.5625 \mathrm{~V}_{\mathrm{IN}}}{2 \times \pi \times R 3 \times\left(1+\frac{R_{L}}{R_{O}}\right) \times f_{C}}
$$

Due to the underdamped nature of the output LC double pole, set the two zero frequencies of the type III compensation less than the LC double-pole frequency to provide adequate phase boost. Set the two zero frequencies to 80% of the LC double-pole frequency. Hence:

$$
\begin{aligned}
R 1 & =\frac{1}{0.8 \times C 1} \times \sqrt{\left.\frac{L \times C_{O} \times\left(R_{O}+E S R\right.}{}\right)} R_{L}+R_{O} \\
C 3 & =\frac{1}{0.8 \times R 3} \times \sqrt{\frac{L \times C_{O} \times\left(R_{O}+E S R\right)}{R_{L}+R_{O}}}
\end{aligned}
$$

Setting the second compensation pole, fp2_EA, at fZ_ESR yields:

$$
\mathrm{R} 2=\frac{\mathrm{CO}_{\mathrm{O}} \times \mathrm{ESR}}{\mathrm{C}_{3}}
$$

Set the third compensation pole at $1 / 2$ of the switching frequency to gain some phase margin. Calculate C2 as follows:

$$
\mathrm{C} 2=\frac{1}{\pi \times R 1 \times \mathrm{f}_{\mathrm{S}} \times 2}
$$

The above equations provide accurate compensation when the zero-cross frequency is significantly higher than the double-pole frequency. When the zero-cross frequency is near the double-pole frequency, the actual zero-cross frequency is higher than the calculated frequency. In this case, lowering the value of R1 reduces the zero-cross frequency. Also, set the third pole of the type III compensation close to the switching frequency if the zero-cross frequency is above 200 kHz to boost the phase margin. The recommended range for R3 is $2 k \Omega$ to $10 k \Omega$. Note that the loop compensation remains unchanged if only R4's resistance is altered to set different outputs.

3A, 2MHz Step-Down Regulator with Integrated Switches

PCB Layout Considerations and Thermal Performance

Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX8643 EV kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout:

1) Connect input and output capacitors to the power ground plane; connect all other capacitors to the signal ground plane.
2) Place capacitors on $V_{D D}, V_{I N}$, and SS as close as possible to the IC and its corresponding pin using direct traces. Keep power ground plane (connected to PGND) and signal ground plane (connected to GND) separate.
3) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors.
4) Connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency and long-term reliability.
5) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close to the IC as possible.
6) Route high-speed switching nodes, such as LX, away from sensitive analog areas (FB, COMP).

Pin Configuration

Chip Information
PROCESS: BiCMOS

3A, 2MHz Step-Down Regulator with Integrated Switches

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

3A, 2MHz Step-Down Regulator with Integrated Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 4, 5, 6, 13-16
Pages changed at Rev 3: 1, 2, 4, 8, 13, 15, 16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

