
Abstract

General Description The MAX8647/MAX8648 drive up to six white LEDs or two sets of RGB LEDs with regulated constant current for display backlight and fun light applications. By utilizing an inverting charge pump and extremely lowdropout adaptive current regulators, these ICs achieve very high efficiency over the full 1-cell Li+ battery voltage range and even with large LED forward voltage mismatch. The 1 MHz fixed-frequency switching allows for tiny external components. The regulation scheme is optimized to ensure low EMI and low input ripple. The MAX8647/MAX8648 include thermal shutdown, openand short-circuit protection. The MAX8647 features an ${ }^{2} \mathrm{C}$ serial port, while the MAX8648 features a three-wire serial-pulse logic interface. Both devices support independent on/off and dimming for main and subbacklights. The dimming ranges are pseudo-logarithmic from 24 mA to 0.1 mA and off in 32 steps. Both devices include a temperature derating function to safely allow bright 24 mA full-scale output current setting while automatically reducing current to protect LEDs at high ambient temperatures above $+60^{\circ} \mathrm{C}$. The MAX8647/MAX8648 are available in a 16-pin, 3mm $x 3 \mathrm{~mm}$ thin QFN package (0.8 mm max height).

Applications

White LED Backlighting, Single or Dual Display
Wide-Gamut RGB LED Display Backlighting
Camera Flash or RGB Indicators
Cellular Phones and Smartphones
PDAs, Digital Cameras, and Camcorders
Pin Configuration

- Six Adaptive Current Regulators			
- Independent Voltage Supply for Each LED			
- Individual LED Brightness Control (MAX8647)			
24mA to 0.1mA Dimming Range I^{2} C Interface (MAX8647) Serial-Pulse Dimming Logic (MAX8648)			
- $\pm 2 \%$ Accuracy, $\pm 0.4 \%$ Matching (typ)			
- Low 70ヶA Quiescent Current			
- Low 1^A Shutdown Current			
- Inrush Current Limit			
- TA Derating Function Protects LEDs			
-16-Pin, 3mm x 3mm Thin QFN Package			
	ering	Or	ion
PART DIMMING	PIN PACKAGE	$\begin{aligned} & \text { TOP } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX8647ETE+ ${ }^{2} \mathrm{C}$ interface	16 Thin QFN-EP*	AFD	T1633-5
MAX8648ETE+ $+\begin{gathered}\text { Serial-pulse } \\ \text { logic }\end{gathered}$	16 Thin QFN-EP*	AFE	T1633-5

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.
+Denotes a lead-free package.
*EP = Exposed paddle.
Typical Operating Circuit

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Thin QFN

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 16-Pin Thin QFN $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).

1667 mW
Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{V D D}=\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN Operating Voltage			2.7		5.5	V
VDD Operating Voltage			1.7		5.5	V
Undervoltage-Lockout (UVLO) Threshold	VIN rising		2.35	2.45	2.55	V
Undervoltage-Lockout Hysteresis				100		mV
IN Shutdown Supply Current (All Outputs Off)	$\begin{aligned} & V_{S C L}=V_{S D A}=V_{D D}(M A X 8647), \\ & V_{E N-}=0 V(\text { MAX8648 }) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	2.5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.4		
VDD Shutdown Supply Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.1	1.0	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			0.1		
IN Operating Supply Current	Charge pump inactive, two LEDs enabled at 0.1 mA setting			70	100	$\mu \mathrm{A}$
	Charge pump active, 1 MHz switching, all LEDs enabled at 0.1 mA setting			1.6		mA
VDD Operating Supply Current	Charge pump inactive, two LEDs enabled at 0.1 mA setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.1	1.0	$\mu \mathrm{A}$
	Charge pump active, 1 MHz switching, all LEDs enabled at 0.1 mA setting, $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1			
Thermal-Shutdown Threshold				+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis				20		${ }^{\circ} \mathrm{C}$
I²C INTERFACE (MAX8647)						
Logic-Input High Voltage (SDA, SCL)	$\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ to 5.5 V , hysteresis $=0.2 \times \mathrm{V}_{\mathrm{DD}}$ (typ)		VDD			V
Logic-Input Low Voltage (SDA, SCL)	$\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ to 5.5 V , hysteresis $=0.2 \times \mathrm{V}_{\mathrm{DD}}$ (typ)				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Filtered Pulse Width (tsp)	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5V, $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ to 5.5 V (Note 2)				50	ns
Logic-Input Current (SDA, SCL)	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	+1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{V D D}=V_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{G N D}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SDA Output Low Voltage	ISDA $=3 \mathrm{~mA}$, for acknowledge ((ote 2)			0.03	0.40	V
${ }^{2} \mathrm{C}$ Clock Frequency					400	kHz
Bus Free Time Between START and STOP (tBUF)	(Note 2)		1.3			$\mu \mathrm{s}$
Hold Time Repeated START Condition (thD_STA)	(Note 2)		0.6	0.1		$\mu \mathrm{s}$
SCL Low Period (tLow)	(Note 2)		1.3	0.2		$\mu \mathrm{s}$
SCL High Period (thigh)	(Note 2)		0.6	0.2		$\mu \mathrm{s}$
Setup Time Repeated START Condition (tSU_STA)	(Note 2)		0.6	0.1		$\mu \mathrm{s}$
SDA Hold Time (thD_DAT)	(Note 2)		0	-0.01		$\mu \mathrm{s}$
SDA Setup Time (tsu_DAT)	(Note 2)		100	50		ns
Setup Time for STOP Condition (tsu_sto)	(Note 2)		0.6	0.1		$\mu \mathrm{s}$
SERIAL-PULSE LOGIC (EN_) (MAX8648)						
Logic-Input High Voltage	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V		1.4			V
Logic-Input Low Voltage	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V				0.4	V
Logic-Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	+1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		
EN Low Shutdown Delay tshdn	See Figure 3 and the Shutdown Mode section; EN_ needs to be longer than 4 ms to ensure LED is powered off		4			ms
tLo (Figure 3)			1		500	$\mu \mathrm{s}$
thi (Figure 3)			1			$\mu \mathrm{s}$
Initial tHI (Figure 3)	First EN_ high pulse		120			$\mu \mathrm{s}$
CHARGE PUMP						
Switching Frequency				1		MHz
Soft-Start Time				0.5		ms
Charge-Pump Regulation Voltage	($\left.\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {NEG }}\right)$		4.3	5.0		V
Open-Loop NEG Output Resistance	$\left(\mathrm{V}_{\mathrm{NEG}}-0.5 \times \mathrm{V}_{\text {IN }}\right) / \mathrm{I}_{\mathrm{NEG}}$			2.5	5	Ω
NEG Discharge Resistance in Shutdown or When the Charge Pump is Inactive	All LEDs off, EN_ = GND			10		k Ω
LED1-LED6 CURRENT REGULATOR						
Current Setting Range	Through an $\mathrm{I}^{2} \mathrm{C}$ or serial-pulse interface		0.1		24.0	mA
Current Accuracy	VLED_ $=0.5 \mathrm{~V}$ for charge-pump inactive,$\begin{aligned} & V_{\text {LED_ }}=-0.9 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NEG- }}=-1.4 \mathrm{~V} \end{aligned}$	24 mA setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	± 1	+2	\%
		24 mA setting, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to derating function start temperature (Note 2)	-5		+5	
		1.6 mA setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-15	± 5	+15	

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{VDD}}=\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Derating-Function Start Temperature				+60		${ }^{\circ} \mathrm{C}$
Derating-Function Slope	From derating-function start temperature			-2.5		\%/ ${ }^{\circ} \mathrm{C}$
LED_RDSON	Not utilizing the charge pump			3		
	Utilizing the charge pump			4		
LED_ Dropout	24 mA setting (Note 3)	Not utilizing the charge pump		60	120	
		Utilizing the charge pump		90	200	
LED_Current Regulator Switchover Threshold (Inactive to Active)	VLED_falling		125	150	175	mV
LED_Current Regulator Switchover Hysteresis				100		mV
LED_ Leakage in Shutdown	All LEDs off	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	5	
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		$\mu \mathrm{A}$

Note 1: Limits are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over the operating temperature range are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: LED dropout voltage is defined as the LED_ to GND voltage at which current into LED_drops 10% from the value at $\mathrm{V}_{\mathrm{LED}}=0.5 \mathrm{~V}$.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}\right.$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}\right.$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Pin Description

PIN		NAME	FUNCTION
MAX8647	MAX8648		
1	1	IN	Supply Voltage Input. The input voltage range is 2.7 V to 5.5 V . Bypass IN to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor as close as possible to the IC. IN is high impedance during shutdown. Connect IN to the anodes of all the LEDs.
2	2	GND	Ground. Connect GND to system ground and the input bypass capacitor as close as possible to the IC.
3	3	C1P	Transfer Capacitor 1 Positive Connection. Connect a 1μ F ceramic capacitor from C1P to C1N.
4	4	C2P	Transfer Capacitor 2 Positive Connection. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from C2P to C2N.
5	5	C2N	Transfer Capacitor 2 Negative Connection. Connect a 1μ F ceramic capacitor from C2P to C2N. An internal 10k Ω resistor pulls C2N to GND during shutdown.
6	6	C1N	Transfer Capacitor 1 Negative Connection. Connect a 1μ F ceramic capacitor from C1P to C1N.
7	7	NEG	Charge-Pump Negative Output. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from NEG to GND. In shutdown, an internal 10k Ω resistor pulls NEG to GND. Connect the exposed paddle to NEG directly under the IC.
8-13	8-13	LED6-LED1	LED Current Regulators. Current flowing into LED_ is based on the internal registers. Connect LED_ to the cathodes of the external LEDs. LED_ is high impedance during shutdown. For the MAX8647, program any unused LED_ to off and LED_ can be shorted to ground or left unconnected. For the MAX8648, short any unused LED_ to IN prior to power-up to disable the corresponding current regulator.
14	-	SDA	$1^{2} \mathrm{C}$ Data Input. Data is read on the rising edge of SCL.
15	-	SCL	$1^{2} \mathrm{C}$ Clock Input. Data is read on the rising edge of SCL.
16	-	$V_{D D}$	Logic-Input Supply Voltage. Connect to the supply voltage driving SDA and SCL. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
-	14, 15, 16	ENC, ENB, ENA	Enable and Serial-Pulse Dimming Control. ENA controls LED1, LED2, and LED3. ENB controls LED4 and LED5. ENC controls LED6. Drive EN_ logic-high to turn on the IC and enable the corresponding LED_ at 24 mA each. Drive an individual EN_ logic-low for greater than 4 ms to turn off the corresponding-current regulators or drive all three EN_ low to place the IC in shutdown. See the Serial-Pulse Dimming Control (MAX8648) section.
-	-	EP	Exposed Paddle. Connect to NEG.

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Abstract

Detailed Description The MAX8647/MAX8648 have an inverting charge pump and six current regulators capable of 24 mA each to drive six white LEDs or two sets of RGB LEDs. The current regulators are matched to within $\pm 0.4 \%$ (typ) providing uniform white LED brightness for LCD backlight applications. To maximize efficiency, the current regulators operate with as little as 0.15 V voltage drop. Individual white LED current regulators conduct current to GND or NEG to extend usable battery life. In the case of mismatched forward voltage of white LEDs, only the white LEDs requiring higher voltage are switched to pull current to NEG instead of GND, further raising efficiency and reducing battery current drain.

Current-Regulator Switchover

When VIN is higher than the forward voltage of the white LED plus the 0.15 V headroom of the current regulator, the LED current returns through GND. If this condition is satisfied for all six white LEDs, the charge pump remains inactive. When the input voltage drops so that the current-regulator headroom cannot be maintained for any of the individual white LEDs, the inverting charge pump activates and generates a voltage on the NEG pin that is no greater than 5 V below VIN. Each current regulator contains circuitry that detects when it is in dropout and switches that current-regulator return path from GND to NEG. Since this is done on an LED-by-LED basis, the LED current is switched for only the individual LED requiring higher voltage, thus minimizing power consumption.

Low LED Current Levels

The MAX8647/MAX8648 internally generate a PWM signal to obtain higher resolution at lower currents. See Single-Wire Pulse Dimming in the Typical Operating Characteristics section. As the lled setting is below 6.4 mA , the IC adjusts not only ILED DC current, but the duty cycle is controlled by the PWM signal. The frequency of the PWM dimming signal is set at 1 kHz with a minimum duty cycle of $1 / 16$ to avoid the LED flicking effect to human eyes. Table 1 shows the current level and the corresponding duty cycle.
$I^{2} C$ Interface (MAX8647)
An $1^{2} \mathrm{C} 2$-wire serial interface is provided on the MAX8647 to control the LEDs. The serial interface consists of a serial-data line (SDA) and a serial-clock line (SCL). Standard I2C write-byte commands are
used. Figure 2 shows a timing diagram for the ${ }^{2} \mathrm{C}$ protocol. The MAX8647 is a slave-only device, relying upon a master to generate a clock signal. The master (typically a microprocessor) initiates data transfer on the bus and generates SCL to permit data transfer. A master device communicates with the MAX8647 by transmitting the proper 8 -bit address (0x9A) followed by the 8-bit control byte. Each 8-bit control byte consists of a 3-bit command code and 5 bits of data (Table 1). Each transmit sequence is framed by a START (A) condition and a STOP (L) condition (Figure 2). Each word transmitted over the bus is 8 bits long and is always followed by an ACKNOWLEDGE CLOCK PULSE (K). The power-on default settings for D4 to D0 are all 0, which indicates that all LED_ are off.

Serial-Pulse Dimming Control (MAX8648)

When the LEDs are enabled by driving EN_ high, the MAX8648 ramps LED current to 24 mA . Dim the LEDs by pulsing EN_ low (1μ s to 500μ s pulse width). Each pulse reduces the LED current based on the LED dimming table, Table 3. After the current reaches 0.1 mA , the next pulse restores the current to 24 mA . Figure 3 shows a timing diagram for EN_. ENA controls LED1, LED2, and LED3. ENB controls LED4 and LED5. ENC controls LED6.
If dimming control is not required, EN_ work as simple 100% brightness or off controls. Drive EN_ high to enable the LEDs, or drive EN_ low to disable. The IC is shutdown when all three EN_ are low for 4 ms or longer.

Table 1. Internal PWM Duty Cycle vs. LED Set Current

ILED $\mathbf{(m A)}$	DUTY CYCLE $\mathbf{(n / 1 6)}$	ILED $\mathbf{(m A)}$	DUTY CYCLE $\mathbf{(n / 1 6)}$
6.4	16	1.2	12
5.6	14	1.0	10
4.8	12	0.8	8
4.0	10	0.7	7
3.2	16	0.6	6
2.8	14	0.5	5
2.4	12	0.4	4
2.0	10	0.3	3
1.6	16	0.2	2
1.4	14	0.1	1

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Figure 1. Block Diagram and Application Circuit

Shutdown Mode
The MAX8647 is shutdown when all LEDs are turned off through the $I^{2} \mathrm{C}$ port. In shutdown, the $\mathrm{I}^{2} \mathrm{C}$ port is still active and ready to receive a command.

The MAX8648 is shutdown when all three EN_ are held low for 4 ms or longer. In shutdown, NEG is pulled to GND with a $10 \mathrm{k} \Omega$ internal resistor.

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Table 2. $1^{2} \mathrm{C}$ Control Data Byte-Device Address 0x9A

FUNCTION	SDA CONTROL BYTE							
	COMMAND			DATA				
	C2	C1	CO	D4	D3	D2	D1	D0
Not used	0	0	0	-	-	-	-	-
LED1 current	0	0	1	24.0 mA to 0.1 mA and off in 32 steps				
LED2 current	0	1	0	24.0 mA to 0.1 mA and off in 32 steps				
LED3 current	0	1	1	24.0 mA to 0.1 mA and off in 32 steps				
LED4 current	1	0	0	24.0 mA to 0.1 mA and off in 32 steps				
LED5 current	1	0	1	24.0 mA to 0.1 mA and off in 32 steps				
LED6 current	1	1	0	24.0 mA to 0.1 mA and off in 32 steps				
Not used	1	1	1	-	-	-	-	-

Note: $C 2$ is MSB and DO is LSB. The power-on default settings for D4 to DO are all 0 , which indicates that all LED_ are off.
Table 3. MAX8647 $I^{2} \mathrm{C}$ Data vs. LED Currents

D4	D3	D2	D1	D0	mA
1	1	1	1	1	$\mathbf{2 4}$
1	1	1	1	0	$\mathbf{2 2 . 4}$
1	1	1	0	1	$\mathbf{2 0 . 8}$
1	1	1	0	0	$\mathbf{1 9 . 2}$
1	1	0	1	1	$\mathbf{1 7 . 6}$
1	1	0	1	0	$\mathbf{1 6}$
1	1	0	0	1	$\mathbf{1 4 . 4}$
1	1	0	0	0	$\mathbf{1 2 . 8}$
1	0	1	1	1	$\mathbf{1 1 . 2}$
1	0	1	1	0	$\mathbf{9 . 6}$
1	0	1	0	1	$\mathbf{8}$
1	0	1	0	0	$\mathbf{6 . 4}$
1	0	0	1	1	$\mathbf{5 . 6}$
1	0	0	1	0	$\mathbf{4 . 8}$
1	0	0	0	1	$\mathbf{4}$
1	0	0	0	0	$\mathbf{3 . 2}$

Temperature Derating Function

The MAX8647/MAX8648 contain a derating function that automatically limits the LED current at high temperatures to help protect the LEDs from damage. The derating function enables the safe usage of higher LED current at room temperature, thus reducing the number of LEDs required to backlight the display. The derating circuit lowers the LED current at approximately $2.5 \% /{ }^{\circ} \mathrm{C}$ once the IC is above $+60^{\circ} \mathrm{C}$. The typical derating function characteristic is shown in the Typical Operating Characteristics.

D4	D3	D2	D1	D0	mA
0	1	1	1	1	$\mathbf{2 . 8}$
0	1	1	1	0	$\mathbf{2 . 4}$
0	1	1	0	1	$\mathbf{2}$
0	1	1	0	0	$\mathbf{1 . 6}$
0	1	0	1	1	$\mathbf{1 . 4}$
0	1	0	1	0	$\mathbf{1 . 2}$
0	1	0	0	1	$\mathbf{1}$
0	1	0	0	0	$\mathbf{0 . 8}$
0	0	1	1	1	$\mathbf{0 . 7}$
0	0	1	1	0	$\mathbf{0 . 6}$
0	0	1	0	1	$\mathbf{0 . 5}$
0	0	1	0	0	$\mathbf{0 . 4}$
0	0	0	1	1	$\mathbf{0 . 3}$
0	0	0	1	0	$\mathbf{0 . 2}$
0	0	0	0	1	$\mathbf{0 . 1}$
0	0	0	0	0	$\mathbf{O F F}$

Power-Up LED Detection and Fault Protection
The MAX8648 contains special circuitry to detect shortcircuit conditions at power-up and disable the corresponding current regulator to avoid wasting battery current. Connect any unused LED_ to IN to disable the corresponding current regulator. If an LED fails short circuit, the current regulator continues the current regulated operation until power to the IC is cycled and the short circuit is detected. An open-circuit LED failure drives the voltage on the corresponding LED_ output

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Figure 2. Definition of Timing for $1^{2} C$ Bus

Table 4. MAX8648 Pulse Dimming Step vs. LED Currents

$\mathbf{m A}$	MAX8648 DIMMING STEPS
$\mathbf{2 4 . 0}$	Startup or EN_high
$\mathbf{2 2 . 4}$	1
$\mathbf{2 0 . 8}$	2
$\mathbf{1 9 . 2}$	3
$\mathbf{1 7 . 6}$	4
$\mathbf{1 6 . 0}$	5
$\mathbf{1 4 . 4}$	6
$\mathbf{1 2 . 8}$	7
$\mathbf{1 1 . 2}$	8
$\mathbf{9 . 6}$	9
$\mathbf{8 . 0}$	10
$\mathbf{6 . 4}$	11
$\mathbf{5 . 6}$	12
$\mathbf{4 . 8}$	13
$\mathbf{4 . 0}$	14
$\mathbf{3 . 2}$	15

below the switch over threshold enabling the inverting charge pump.
For the MAX8647, program any unused LED_ to off using the ${ }^{2}$ C interface. Unused LED_ can be connected to IN or left unconnected.

Thermal Shutdown
The MAX8647/MAX8648 includes a thermal-limit circuit that shuts down the IC above about $+160^{\circ} \mathrm{C}$. The IC turns on after it cools by approximately $20^{\circ} \mathrm{C}$.

$\mathbf{m A}$	MAX8648 DIMMING STEPS
$\mathbf{2 . 8}$	16
$\mathbf{2 . 4}$	17
$\mathbf{2 . 0}$	18
$\mathbf{1 . 6}$	19
$\mathbf{1 . 4}$	20
$\mathbf{1 . 2}$	21
$\mathbf{1 . 0}$	22
$\mathbf{0 . 8}$	23
$\mathbf{0 . 7}$	24
$\mathbf{0 . 6}$	25
$\mathbf{0 . 5}$	26
$\mathbf{0 . 4}$	27
$\mathbf{0 . 3}$	28
$\mathbf{0 . 2}$	29
$\mathbf{0 . 1}$	30
$\mathbf{2 4 . 0}$	31

Applications Information

Input Ripple

For LED drivers, input ripple is more important than output ripple. The amount of input ripple depends on the source supply's output impedance. Adding a lowpass filter to the input of the MAX8647/MAX8648 further reduces input ripple. Alternatively, increasing C_{IN} to $2.2 \mu \mathrm{~F}$ (or $4.7 \mu \mathrm{~F}$) cuts input ripple in half (or in fourth) with only a small increase in footprint.

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Figure 3. EN_ Timing Diagram

Capacitor Selection

Ceramic capacitors are recommended due to their small size, low cost, and low ESR. Select ceramic capacitors that maintain their capacitance over temperature and DC bias. Capacitors with X5R or X7R temperature characteristics generally perform well. Recommended values are shown in the Typical Operating Circuit. Using a larger value input capacitor helps to reduce input ripple (see the Input Ripple section).

Driving LEDs with Multiple Supplies

It is not necessary for the LED anodes to connect to IN. Figure 7 shows an example using separate supplies to power the LED_ groups of the MAX8648. In this example, the voltage source (V1) provides power for RGB LEDs (LED1, LED2, and LED3). V2 provides power for backlight LEDs (LED4 and LED5), and V3 provides power for a red charge indicator (LED6).

PCB Layout and Routing
The MAX8647/MAX8648 have a high-frequency, switched-capacitor voltage inverter. For best circuit performance, use a solid copper plane and place C1-C4 as close as possible to the MAX8647/MAX8648. Figure 4 shows the MAX8648 evaluation kit example layout.

Figure 4. MAX8648 Evaluation Kit Layout for C1-C4

Chip Information
PROCESS: BiCMOS

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Figure 5. MAX8647 Typical Application Circuit

Figure 6. MAX8648 Typical Application Circuit

Figure 7. Driving LEDs with Multiple Supplies

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Ultra-Efficient Charge Pumps for Six White/RGB LEDs in 3mm x 3mm Thin QFN

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 1:3,15

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

