Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

General Description

The MAX9021/MAX9022/MAX9024 single/dual/quad comparators are optimized for low-power consumption while still providing a fast output response. They are designed for single-supply applications from 2.5 V to 5.5 V , but can also operate from dual supplies. These comparators have a $3 \mu s$ propagation delay and consume $2.8 \mu \mathrm{~A}$ of supply current per comparator over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range. The combination of low-power, single-supply operation down to 2.5 V , and ultra-small footprint makes these devices ideal for portable applications.
The MAX9021/MAX9022/MAX9024 have 4 mV of built-in hysteresis to provide noise immunity and prevent oscillations even with a slow-moving input signal. The input common-mode range extends from the negative supply to within 1.1 V of the positive supply. The design of the comparator-output stage substantially reduces switching current during output transitions, eliminating powersupply glitches.
The MAX9021 single comparator is available in tiny 5pin SC70 and SOT23 packages. The MAX9022 dual comparator is available in 8 -pin SOT23, $\mu \mathrm{MAX}{ }^{\circledR}$, and SO packages, and the MAX9024 quad comparator is available in 14-pin TSSOP and SO packages.

Applications

Battery-Powered
Portable Systems
Mobile Communications
Sensor-Signal Detection
Photodiode Preamps

Digital Line Receivers Keyless Entry Systems Threshold Detectors/ Discriminators

- Low-Cost Solution Available in Space-Saving SC70 Packages (Half the Size of SOT23)
- Low 2.8 $\mu \mathrm{A}$ Supply Current
- $3 \mu \mathrm{~s}$ Propagation Delay
- Internal 4mV Comparator Hysteresis
- Comparator Output Swings Rail-to-Rail
- 2.5 to 5.5V Single-Supply Voltage Range
- No Phase Reversal for Overdriven Inputs
- Space-Saving Packages

5-Pin SC70 (MAX9021)
8-Pin SOT23 (MAX9022)
8-Pin μ MAX (MAX9022)
14-Pin TSSOP (MAX9024)
Ordering Information

PART	TEMP RANGE	PINPACKAGE	$\begin{aligned} & \hline \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX9021AXK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SC70-5	X5-1
MAX9021AUK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23-5	U5-1
MAX9022AKA-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23-8	K8-5
MAX9022AUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8-1
MAX9022ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	S8-2
MAX9024AUD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP	U14-1
MAX9024ASD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO	S14-2

Typical Application Circuit appears at end of data sheet.

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to VSS)	+6V
Voltage Inputs ($\mathrm{IN}+$, IN - to VSS).-0.3V	-0.3V to (VDD +0.3 V)
Differential Input Voltage ($\mathrm{IN}+$ to IN	.6.6V
Current into Input Pins	$\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration2s to E	2s to Either V ${ }_{\text {DD }}$ or $\mathrm{V}_{S S}$
Current into Any Pin	20 mA
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
5 -Pin SC70 (derate 3.1mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	$\left.70^{\circ} \mathrm{C}\right)247 \mathrm{~mW}$
5 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	$\left.+70^{\circ} \mathrm{C}\right)571 \mathrm{~mW}$
8-Pin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	$\left.+70^{\circ} \mathrm{C}\right)727 \mathrm{~mW}$

8-Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	362 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	W
14-Pin TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	C) 727 mW
14-Pin SO (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70 .	W
Operating Temperature Range	
Automotive Application...............................-40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	to $+150^{\circ} \mathrm{C}$
ead Temperature (soldering, 10s)	+ $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{C M}=0, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage Range	$V_{\text {DD }}$	Guaranteed by PSRR test		2.5		5.5	V
Supply Current Per Comparator	IDD				2.8	5	$\mu \mathrm{A}$
Input Offset Voltage	VOS	(Note 2)			± 1	± 8	mV
Input Offset Voltage Temperature Coefficient	TCVos				± 1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Hysteresis		(Note 3)		4			mV
Input Bias Current	IBIAS				3	80	nA
Input Offset Current	Ios				± 2	± 60	nA
Common-Mode Voltage Range	VCM	Guaranteed by CMRR test		VSS		$V_{D D}-1.1$	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{S S} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{DD}}-1.1 \mathrm{~V}\right)$, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		70	100		dB
Power-Supply Rejection Ratio	PSRR	$V_{D D}=2.5 \mathrm{~V}$ to 5.5 V		60	80		dB
Output-Voltage Swing	Vol, VOH	$\begin{aligned} & V_{O H}=V_{D D}-V_{O U T}, \\ & \left(V_{\text {IN }+}-V_{I N}-\right) \geq 20 \mathrm{mV} \end{aligned}$	ISOURCE $=10 \mu \mathrm{~A}$		2		mV
			ISOURCE $=4 \mathrm{~mA}$		160	400	
		$\begin{aligned} & \text { VOL }=\text { VOUT }-\mathrm{V}_{\text {SS }}, \\ & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {IN+ }}\right) \geq 20 \mathrm{mV} \end{aligned}$	ISINK $=10 \mu \mathrm{~A}$		2		
			ISINK $=4 \mathrm{~mA}$		180	400	
Output Short-Circuit Current	ISC				50		mA
Propagation Delay	$t_{\text {pd }}$, tpd $^{-}$	$\begin{aligned} & R \mathrm{R}=10 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{pF}(\text { Note } 4) \end{aligned}$	$\mathrm{V}_{\mathrm{OD}}=10 \mathrm{mV}$		8		$\mu \mathrm{s}$
			$V_{\text {OD }}=100 \mathrm{mV}$		3		
Rise and Fall Time	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Note 5)			20		ns
Power-On Time		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			150		ns
Maximum Capacitive Load	CL	No sustained oscillations			150		pF

Note 1: All devices are production tested at $25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Comparator Input Offset is defined as the center of the hysteresis zone.
Note 3: Hysteresis is defined as the difference of the trip points required to change comparator output states.
Note 4: V_{OD} is the overdrive voltage beyond the offset and hysteresis-determined trip points.
Note 5: Rise and fall times are measured between 10% and 90% at OUT.

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

Typical Operating Characteristics
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{CM}}=0, R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{OD}}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

INPUT OFFSET VOLTAGE vs. TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT
vs. TEMPERATURE

OUTPUT HIGH VOLTAGE
vs. SOURCE CURRENT

PROPAGATION DELAY vs. CAPACITIVE LOAD
($V_{D D}=2.7 \mathrm{~V}$)

SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY

OUTPUT LOW VOLTAGE
vs. SINK CURRENT

PROPAGATION DELAY vs. CAPACITIVE LOAD ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

Typical Operating Characteristics (continued)
$\left(V_{D D}=5 V, V_{S S}=0, V_{C M}=0, R_{L}=10 k \Omega, C_{L}=15 \mathrm{pF}, V_{O D}=100 \mathrm{mV}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

\qquad

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

PIN			NAME	FUNCTION
MAX9021	MAX9022	MAX9024		
1	-	-	IN+	Comparator Noninverting Input
2	4	11	$\mathrm{V}_{S S}$	Negative Supply Voltage
3	-	-	IN-	Comparator Inverting Input
4	-	-	OUT	Comparator Output
5	8	4	VDD	Positive Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
-	1	1	OUTA	Comparator A Output
-	2	2	INA-	Comparator A Inverting Input
-	3	3	INA+	Comparator A Noninverting Input
-	5	5	INB+	Comparator B Noninverting Input
-	6	6	INB-	Comparator B Inverting Input
-	7	7	OUTB	Comparator B Output
-	-	8	OUTC	Comparator C Output
-	-	9	INC-	Comparator C Inverting Input
-	-	10	INC+	Comparator C Noninverting Input
-	-	12	IND+	Comparator D Noninverting Input
-	-	13	IND-	Comparator D Inverting Input
-	-	14	OUTD	Comparator D Output

Detailed Description

The MAX9021/MAX9022/MAX9024 are single/dual/ quad, low-cost, low-power comparators that consume only $2.8 \mu \mathrm{~A}$ and provide a propagation delay, tpD, typically $3 \mu \mathrm{~s}$. They have an operating-supply voltage from 2.5 V to 5.5 V when operating from a single supply and from $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ when operating from dual power supplies. Their common-mode input voltage range extends from the negative supply to within 1.1 V of the positive supply. Internal hysteresis ensures clean output switching, even with slow-moving input signals.

Applications Information

Adding Hysteresis
Hysteresis extends the comparator's noise margin by increasing the upper threshold and decreasing the lower threshold. A voltage-divider from the compara-
tor's output sets the trip voltage. Therefore, the trip voltage is related to the output voltage.
These comparators have 4 mV internal hysteresis. Additional hysteresis can be generated with two resistors, using positive feedback (Figure 1). Use the following procedure to calculate resistor values:

1) Find the trip points of the comparator using these formulas:

$$
\begin{gathered}
V_{T H}=V_{\text {REF }}+\left(\left(V_{D D}-V_{\text {REF }}\right) R 2\right) /(R 1+R 2) \\
V_{T L}=V_{R E F}(1-(R 2 /(R 1+R 2))
\end{gathered}
$$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as VIN rises above the trip point. $V_{T L}$ is the threshold voltage at which the comparator switches its output from low to high as VIN drops below the trip point.

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

Figure 1. Additional Hysteresis
2) The hysteresis band will be:

$$
V_{H Y S}=V_{T H}-V_{T L}=V_{D D}(R 2 /(R 1+R 2))
$$

3) In this example, let $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}$.

$$
\mathrm{V}_{\mathrm{T}} \mathrm{H}=2.5 \mathrm{~V}+2.5 \mathrm{~V}(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2))
$$

and

$$
V_{T L}=2.5 \mathrm{~V}[(1-(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2))]
$$

4) Select R2. In this example, we will choose $1 \mathrm{k} \Omega$.
5) Select VHYS. In this example, we will choose 50 mV .
6) Solve for R1.

$$
\begin{gathered}
V_{\text {HYS }}=V_{D D}(R 2 /(R 1+R 2)) \\
0.050 \mathrm{~V}=5(1000 \Omega /(R 1+1000 \Omega)) V
\end{gathered}
$$

where $\mathrm{R} 1 \approx 100 \mathrm{k} \Omega$, $\mathrm{V}_{\mathrm{TH}}=2.525 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{TL}}=2.475 \mathrm{~V}$.
The above-described design procedure assumes rail-to-rail output swing. If the output is significantly loaded, the results should be corrected.

Figure 2. Time Averaging of the Input Signal for Data Recovery

Board Layout and Bypassing

Use 100 nF bypass as a starting point. Minimize signal trace lengths to reduce stray capacitance. Minimize the capacitive coupling between IN - and OUT. For slowmoving input signals (rise time > 1 ms), use a 1 nF capacitor between IN+ and IN-.

Biasing for Data Recovery

Digital data is often embedded into a bandwidth and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self-biases the threshold to the average input voltage for optimal noise margin. Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R1 and C1 so that:

$$
\mathrm{f}_{\mathrm{CAR}} \gg 1 /(2 \pi \mathrm{R} 1 \mathrm{C} 1)
$$

where fCAR is the fundamental carrier frequency of the digital data stream.

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

Typical Application Circuit
C_Chip Information

MAX9021 TRANSISTOR COUNT: 106 MAX9022 TRANSISTOR COUNT: 212 MAX9024 TRANSISTOR COUNT: 424
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Micropower, Ultra-Small, Single/Dual/Quad, Single-Supply Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 2, 6, 7, 8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G
LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA
LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX AZV331KSTR-G1 LT1716IS5\#TRMPBF
LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB-1\#TRMPBF LTC1042CN8\#PBF
LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LM2903WHYST TLV1701AIDRLR S-89431ACNC-HBVTFG LT1018CS8\#PBF NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL TSX3704IYPT

