+1.0V Micropower SOT23 Comparators

Abstract

General Description The MAX9100/MAX9101 micropower comparators are optimized for single-cell systems, and are fully specified for operation from a single supply of 1.0 V to 5.5 V . This ultra-low voltage operation, $5 \mu \mathrm{~A}$ quiescent current consumption, and small footprint make the MAX9100/MAX9101 ideal for use in battery-powered systems. A wide-input common-mode range that includes the negative rail and rail-to-rail output swing allows almost all of the power supply to be used for signal voltage. In addition, propagation delay is less than $4 \mu \mathrm{~s}$, and rise and fall times are 100ns. The MAX9100 features a push-pull CMOS output stage that sinks and sources current with large internal output drivers that allow rail-to-rail output swings with loads up to 5mA.The MAX9101 has an open-drain output stage that makes it suitable for mixed-voltage designs. The MAX9100/MAX9101 are available in tiny SOT23-5 packages.

Applications
Single-Cell Systems
Pagers
Closed Sensor Applications
Battery-Powered Instrumentation
Portable Electronic Equipment
Portable Communication Devices

Typical Operating Characteristic

- Ultra-Low Voltage: Guaranteed Down to 1.0V
- Low Quiescent Current: 5 A A
- Optimized for Single-Cell Battery-Powered Systems
- Wide Input Common-Mode Range
- CMOS Rail-to-Rail Output Swing (MAX9100)
- Open-Drain Output (MAX9101)
- $4 \mu \mathrm{~s}$ Propagation Delay
- High Output Drive Capability: 5mA Sink and Source (MAX9100)
- No Output Phase Reversal for Overdriven Inputs
- Available in Tiny SOT23-5 Package

Ordering Information

PART	PIN- PACKAGE	TOP MARK	PKG CODE
MAX9100EUK-T	5 SOT23-5	ADOR	U5-1
MAX9100ESA	8 SO	-	S8-2
MAX9101EUK-T	5 SOT23-5	ADOS	U5-1
MAX9101ESA	8 SO	-	S8-2

Note: All devices specified for over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

TOP VIEW

Pin Configurations continued at end of data sheet.

+1.0V Micropower SOT23 Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to GND) - 0.3 V to +6 VIN+ or IN- to GND............................ -0.3V to (VCC +0.3 V)	
Current Into Input Pins .. $\pm 20 \mathrm{~mA}$	
Output Voltages to GND	
MAX9100 .. -0.3V to (VCC + 0.3V)	
MAX9101 .. -0.3V to +6V	
Output Short-Circuit Duration (to VCC or GND)......... Continuous	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
5-Pin Plastic SOT23	
(derate $7.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	571 mW

8-Pin Plastic SO
(derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............................. 471 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+1.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Supply Voltage Range	$V_{C C}$	Inferred from the PSRR tests	1.0	5.5	V
Supply Current	Icc	$\mathrm{V}_{C C}=+1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5.0	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=+5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	6.0	13.0	
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	± 3	± 10	mV
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		± 20	
Input Hysteresis	VHYST		± 2		mV
Input Offset Current	Ios	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	± 0.1	± 5	nA
		$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$		± 10	
Input Bias Current	IB	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	± 5	± 15	nA
		$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$		± 30	
Input Resistance	RIN	Differential mode	200		$\mathrm{M} \Omega$
		Common mode	65		
Input Common-Mode Voltage Range (Note 2)	VCM	Inferred from CMRR test	0	$V_{\text {cc }}-0.2$	V
Common-Mode Rejection Ratio (Note 3)	CMRR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$54 \quad 68$		dB
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	46		
Power-Supply Rejection Ratio	PSRR	$1.0 \mathrm{~V} \leq \mathrm{V} \mathrm{CC} \leq 1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5466		dB
		$1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 68		
Output-Voltage High (MAX9100)	$\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\text {CC }}=+5.0 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$	90	180	mV
		V CC $=+1.2 \mathrm{~V}$, ISOURCE $=0.5 \mathrm{~mA}$	60	120	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+1.0 \mathrm{~V}, \text { ISOURCE }=0.1 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	25	75	
Output-Voltage Low	VoL	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$, ISINK $=5 \mathrm{~mA}$	100	180	mV
		$\mathrm{V}_{\mathrm{CC}}=+1.2 \mathrm{~V}, \mathrm{ISINK}=0.5 \mathrm{~mA}$	45	120	
		$\mathrm{V}_{\text {CC }}=+1.0 \mathrm{~V}, \mathrm{ISINK}=0.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	15	75	

+1.0V Micropower SOT23 Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+1.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Output Short-Circuit Current	Isc	Sourcing (MAX9100)	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	25		mA
			$\mathrm{V}_{\mathrm{CC}}=+1.2 \mathrm{~V}$	3		
		Sinking	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	28		
			$\mathrm{V}_{\mathrm{CC}}=+1.2 \mathrm{~V}$	3		
Output Open-Drain Leakage Current (MAX9101)	ILKG	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}$		0.02	0.2	$\mu \mathrm{A}$
Power-Up Time	tpu			250		ns
Input Capacitance	CIN			3		pF
Output Rise Time (MAX9100)	trise	$C_{L}=15 \mathrm{pF}$		100		ns
Output Fall Time (Note 4)	tfall	$C_{L}=15 \mathrm{pF}$		100		ns
Propagation Delay (Note 5)	$t_{\text {pd }}+$	VOVERDRIVE $=50 \mathrm{mV}$, $\mathrm{VCC}=+5.0 \mathrm{~V}$		3.4		$\mu \mathrm{s}$
	tpd-	VOVERDRIVE $=50 \mathrm{mV}$, $\mathrm{VCC}=+5.0 \mathrm{~V}$		4.5		
	$t_{\text {pd }}+$	VOVERDRIVE $=50 \mathrm{mV}$, V CC $=+1.0 \mathrm{~V}$		3.3		
	tpd-	VoVERDRIVE $=50 \mathrm{mV}$, V CC $=+1.0 \mathrm{~V}$		3.7		

Note 1: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Operation with $V_{C M}$ up to $V_{C C}$ is possible with reduced accuracy. See the Input Stage Circuitry and Rail-to-Rail Operation section.
Note 3: Tested over the specified Input Common-Mode Voltage Range and with $\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}$.
Note 4: Specified with $C_{L}=15 p F$ for MAX9100/MAX9101, and with RPULLUP $=5 \mathrm{k} \Omega$ for MAX9101.
Note 5: Input overdrive is defined above and beyond the offset voltage and hysteresis of the comparator input.

+1.0V Micropower SOT23 Comparators

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics

+1.0V Micropower SOT23 Comparators

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

+1.0V Micropower SOT23 Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION	
SOT23-5	SO-8			
1	6	OUT	Comparator Output	
2	4	GND	Ground	
3	3	IN+	Noninverting Input	
4	2	IN-	Inverting Input	
-	$1,5,8$	N.C.	No Connection	
5	7	VCC	Positive Supply Voltage	

Detailed Description

The MAX9100/MAX9101 are low-power and ultra-low single-supply voltage comparators. They have an operating supply voltage range between +1.0 V to +5.5 V and consume only $5 \mu \mathrm{~A}$ of quiescent supply current, while achieving $4 \mu s$ propagation delay.

Input Stage Circuitry and
 Rail-to-Rail Operation

The devices' input common-mode range is fully specified from 0 to (VCC - 0.2 V), although full rail-to-rail input range is possible with degraded performance. These comparators may operate at any differential input voltage within these limits. Input bias current is typically $\pm 5 \mathrm{nA}$ if the input voltage is within the specified com-mon-mode range. Comparator inputs are protected from overvoltage by internal diodes connected to the supply rails. As the input voltage exceeds the supply rails, these diodes become forward biased and begin
to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.
True rail-to-rail input operation is also possible. For input common-mode voltages from Vcc - 0.2V to VCC, the input bias current will typically increase to 800 nA . Additionally, the supply current will typically increase to $7 \mu \mathrm{~A}$. Otherwise, the device functions as within the specified common-mode range. See graphs in the Typical Operating Characteristics.

Output Stage Circuitry

The MAX9100/MAX9101 contain a unique output stage capable of rail-to-rail operation. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Output Transition Frequency shows the minimal supply-current increase as the output switching frequency approaches 100 kHz . This characteristic reduces the requirement for power-supply filter capacitors to reduce glitches created by comparator switching currents. This feature increases battery life in portable applications.

Push-Pull Output (MAX9100)
The MAX9100 has a push-pull CMOS output. The output stage swings rail-to-rail under no-load conditions. External load drive capability varies with supply voltage.

+1.0V Micropower SOT23 Comparators

Open-Drain Output (MAX9101)

The MAX9101 has an open-drain output, which can be pulled up to +6.0 V above ground independent of the supply voltage. This is typically used with an external pullup resistor, facilitating interface between mixed logic voltages. Alternatively, multiple open-drain comparator outputs can be connected in a wired-OR configuration.

Applications Information

Low-Voltage Operation: Vcc = 1 V

The minimum operating voltage is +1.0 V . At lower supply voltages, the input common-mode range remains rail-to-rail, but the comparator's output drive capability is reduced and propagation delay increases (see the Typical Operating Characteristics).

Internal Hysteresis

Hysteresis increases the comparators' noise margin by increasing the upper threshold and decreasing the lower threshold (Figure 1). This hysteresis prevents the comparator from providing multiple poles when driven with a very-slow-changing signal.

Additional Hysteresis

These comparators have 1.0 mV internal hysteresis. Additional hysteresis can be generated with two resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

1) Calculate the trip points of the comparator using these formulas:

$$
\begin{gathered}
V_{T H}=V_{R E F}+\left(\frac{\left(V_{C C}-V_{R E F}\right) R 2}{R 1+R 2}\right) \\
V_{T L}=V_{R E F}\left(1-\frac{R 2}{R 1+R 2}\right)
\end{gathered}
$$

Figure 1. Threshold Hysteresis Band
$\mathrm{V}_{\text {TH }}$ is the threshold voltage at which the comparator switches its output from high to low as VIN rises above the trip point. $V_{T L}$ is the threshold voltage at which the comparator switches its output from low to high as VIN drops below the trip point.
2) The hysteresis band will be:

$$
\mathrm{V}_{\mathrm{HYS}}=\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{TL}}=\mathrm{V}_{\mathrm{CC}}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}\right)
$$

3) In this example, let $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}$:

$$
\mathrm{V}_{\mathrm{TH}}=2.5+2.5\left(\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}\right)
$$

and

$$
\mathrm{V}_{\mathrm{TL}}=2.5\left(1-\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}\right)
$$

4) Select R2. In this example, we will choose $1 \mathrm{k} \Omega$.
5) Select VHYS. In this example, we will choose 50 mV .
6) Solve for R1:

$$
\begin{aligned}
& V_{H Y S}=V_{C C}\left(\frac{R 2}{R 1+R 2}\right) \\
& 0.050=5\left(\frac{1000}{R 1+1000}\right)
\end{aligned}
$$

where $\mathrm{R} 1 \approx 100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{TH}}=2.525 \mathrm{~V}$, and $\mathrm{V} \mathrm{TL}=2.475 \mathrm{~V}$.
Board Layout and Bypassing
A power-supply bypass capacitor is not normally required, but 100 nF bypass capacitors can be used when the supply impedance is high or when the supply

Figure 2. Additional Hysteresis (MAX9100)

+1.0V Micropower SOT23 Comparators

Figure 3. MAX9100 Logic-Level Translator
leads are long. Minimize signal lead lengths to reduce stray capacitance between the input and output that might cause instability.

Typical Application

Logic-Level Translator

 $3 V$ to 5 VFigure 3 shows an application that converts 3 V logic levels to 5V logic levels. The push-pull output MAX9100 is powered by the +5 V supply voltage, and the inverting input is biased to +1.5 V with two resistors. This configuration allows a full 5 V swing at the output, maximizing the noise margin of the receiving circuit.

1V to $3 V$
Figure 4 shows an application that converts 1 V logic levels to 3 V logic levels. The MAX9101 is powered by the +1 V supply voltage, and the pullup resistor for the output is connected to the +3 V supply voltage. The inverting input is biased to +0.5 V with two resistors.

Figure 4. MAX9101 Logic-Level Translator
Pin Configurations (continued)

Chip Information
TRANSISTOR COUNT: 393
PROCESS: BiCMOS

Revision History
Pages changed at Rev 1: 1-8
\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G
LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA
LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX AZV331KSTR-G1 LT1716IS5\#TRMPBF
LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB-1\#TRMPBF LTC1042CN8\#PBF
LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LM2903WHYST TLV1701AIDRLR S-89431ACNC-HBVTFG LT1018CS8\#PBF NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL TSX3704IYPT

