Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 Ω Drive

Abstract

General Description The MAX9153/MAX9154 low-jitter, low-voltage differential signaling (LVDS) repeaters are ideal for applications that require high-speed data or clock distribution while minimizing power, space, and noise. The devices accept a single LVDS input (MAX9153) or single LVPECL input (MAX9154) and repeat the signal at 10 LVDS outputs. Each differential output drives 100Ω, allowing point-topoint distribution of signals on transmission lines with 100Ω termination at the receiver input. Ultra-low 90psp-p (max) added deterministic jitter and $1 \mathrm{pS}_{\text {RMS }}$ (max) added random jitter ensure reliable communication in high-speed links that are highly sensitive to timing error, especially those incorporating clock-anddata recovery or serializers and deserializers. The highspeed switching performance guarantees 800Mbps data rate and less than 60ps (max) skew between channels while operating from a single +3.3 V supply. Supply current at 800 Mbps is 118 mA and reduces to $2 \mu \mathrm{~A}$ in power-down mode. LVDS inputs and outputs conform to the ANSI/EIA/TIA -644 standard. A fail-safe feature on the MAX9153 sets the output high when the input is undriven and open, terminated, or shorted. The MAX9153/MAX9154 are available in a 28 -pin TSSOP package and are specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. Refer to the MAX9150 data sheet for a pin-compatible 10-port LVDS repeater capable of driving a double-terminated (50) LVDS link. Refer to the MAX9110/MAX9112 and MAX9111/MAX9113 data sheets for LVDS line drivers and receivers.

Applications

Cellular Phone Base-Stations
Add/Drop Muxes
Digital Cross-Connects
Network Switches/Routers
Backplane Interconnect
Clock Distribution

Pin Configuration appears at end of data sheet.

- Ultra-Low 90psp-p (max) Added Deterministic Jitter at 800Mbps ($2^{23}-1$) PRBS Pattern
- 1psRms (max) Added Random Jitter
- 60ps (max) Skew Between Channels
- Guaranteed 800Mbps Data Rate
- LVDS (MAX9153) or LVPECL (MAX9154) Input Versions
- Fail-Safe Circuit Sets Output High for Undriven Inputs (MAX9153)
- High-Impedance Differential Input when VCC $=0$
- $2 \mu \mathrm{~A}$ Power-Down Supply Current
- Conforms to ANSI/EIA/TIA-644 LVDS Standard
- Pin-Compatible Upgrade to DS90LV110

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	INPUT
MAX9153EUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	LVDS
MAX9154EUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	LVPECL

Typical Application Circuit

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 Ω Drive

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to G	V to +4.0 V
RIN+, RIN- to GND.	-0.3V to +4.0V
PWRDN to GND.	.-0.3V to (VCC + 0.3V)
DO_+, DO_- to GND-0.3V to +4.0V
Short-Circuit Duratio	Continuous
Continuous Power Dis	
28-Pin TSSOP (de	$\left.+70^{\circ} \mathrm{C}\right) \ldots . .1026 \mathrm{mw}$

Storage Temperature... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ESD Protection
Human Body Model (RIN+, RIN-, DO_+, DO_-) $\pm 8 \mathrm{kV}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%$, differential input voltage IV ID $=0.05 \mathrm{~V}$ to 1.2 V , MAX9153 LVDS input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $2.4 \mathrm{~V}-\mathrm{I} \mathrm{V}_{\mathrm{ID}} / 21, \mathrm{MAX} 9154 \mathrm{LVPECL}$ input voltage range $=0$ to $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{PW}} \mathrm{CDN}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}_{\text {ID }}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1 and 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROL INPUT ($\overline{\text { PWRDN }}$)						
Input High Voltage	V_{IH}		2.0		$\mathrm{V}_{\text {cc }}$	V
Input Low Voltage	VIL		GND		0.8	V
Input Current	IIN	$\overline{\text { PWRDN }}=$ high or low	-20		20	$\mu \mathrm{A}$
DIFFERENTIAL INPUT (RIN+, RIN-)						
Differential Input High Threshold	$\mathrm{V}_{\text {TH }}$			-3	50	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$		-50	-3		mV
Input Current (MAX9153)	IRIN+, IRIN-	$0.05 \mathrm{~V} \leq \mid \mathrm{V}_{\text {ID }} \mathrm{I} \leq 0.6 \mathrm{~V}, \overline{\mathrm{PWRDN}}=$ high or low (Figure 1)	-15	-3	15	$\mu \mathrm{A}$
		$0.6 \mathrm{~V}<\mid \mathrm{V}_{\text {ID }} \mathrm{I} \leq 1.2 \mathrm{~V}, \overline{\mathrm{PWRDN}}=$ high or low (Figure 1)	-20	-4	20	
Power-Off Input Current (MAX9153)	$\begin{array}{\|l} \text { IRIN+ (OFF), } \\ \text { IRIN- (OFF) } \end{array}$	$\begin{aligned} & 0.05 \mathrm{~V} \leq \mathrm{I} \mathrm{~V}_{\text {ID }} \mathrm{I} \leq 0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \text { or open, } \\ & \text { PWRDN }=0 \text { or open (Figure 1) } \end{aligned}$	-15	3	15	$\mu \mathrm{A}$
		$\begin{aligned} & 0.6 \mathrm{~V}<\mathrm{I} \mathrm{~V}_{\text {ID }} \mathrm{I} \leq 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \text { or open, } \\ & \text { PWRDN }=0 \text { or open (Figure 1) } \end{aligned}$	-20	4	20	
Input Resistor 1 (MAX9153)	RiN1	$\overline{\text { PWRDN }}=$ high or low (Figure 1)	103			k Ω
		$\mathrm{V}_{\mathrm{CC}}=0$ or open, $\overline{\mathrm{PWRDN}}=0$ or open (Figure 1)	103			
Input Resistor 2 (MAX9153)	RIN2	$\overline{\text { PWRDN }}=$ high or low (Figure 1)	154			k Ω
		$\mathrm{V}_{\mathrm{CC}}=0$ or open, $\overline{\text { PWRDN }}=0$ or open(Figure 1)	154			
Input Current (MAX9154)	IRIN+, IRIN-	$\mathrm{V}_{\text {RIN }+}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {RIN }-}=3.6 \mathrm{~V}$ or $0, \overline{\text { PWRDN }}=$ high or low (Figure 2)	-10	3	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {RIN }+}=0, \mathrm{~V}_{\text {RIN }}=3.6 \mathrm{~V}$ or $0, \overline{\mathrm{PWRDN}}=$ high or low (Figure 2)	-10	± 3	10	
Power-Off Input Current (MAX9154)	IRIN+ (OFF), IRIN- (OFF)	$\mathrm{V}_{\mathrm{RIN}+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{RIN}}=0, \mathrm{~V}_{\mathrm{CC}}=0$ or open, $\overline{\text { PWRDN }}=0$ or open (Figure 2)	-10	3	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {RIN }+}=0, \mathrm{~V}_{\text {RIN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0$ or open, $\overline{\text { PWRDN }}=0$ or open (Figure 2)	-10	3	10	

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 10 Drive

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%$, differential input voltage $\mathrm{IV} \mathrm{VID}=0.05 \mathrm{~V}$ to 1.2 V , MAX9153 LVDS input common-mode voltage $V_{C M}=\left|V_{I D} / 2\right|$ to $2.4 \mathrm{~V}-\mathrm{IV} \operatorname{ID} / 21$, MAX9154 LVPECL input voltage range $=0$ to $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{PWRDN}}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1 and 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Resistor 3 (MAX9154)	Rin3	$\overline{\text { PWRDN }}$ = high or low (Figure 2)		360			
		$\mathrm{V}_{\mathrm{CC}}=0$ or open, $\overline{\text { PWRDN }}=0$ or open (Figure 2)		360			$\mathrm{k} \Omega$
LVDS OUTPUT (DO_+, DO_-)							
Differential Output Voltage	Vod	Figure 3		250	380	450	mV
Charge in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 3			1	25	mV
Offset (Common-Mode) Voltage	Vos	Figure 3		1.125	1.26	1.375	V
Change in Vos Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 3			3	25	mV
Output High Voltage	V OH	Figure 3				1.6	V
Output Low Voltage	VOL	Figure 3		0.9			V
Differential Output Resistance	RODIFF	$\overline{\text { PWDRN }}=$ high or low		150	238	330	Ω
		$V_{C C}=0 \overline{\text { PWDRN }}=0$ or open		150	238	330	Ω
Differential High Output Voltage in Fail-Safe	VOD+	RIN+, RIN- undriven with short, open, or 100Ω termination (MAX9153)		250		450	mV
		RIN+, RIN- open (MAX9154)		250		450	
Single-Ended Output ShortCircuit Current	loz	$\overline{\text { PWDRN }}=$ low; $\mathrm{V}_{\text {DO_+ }}=3.6 \mathrm{~V}$ or 0, DO_- + open; or $\mathrm{VDO}_{\mathrm{DO}}-=3.6 \mathrm{~V}$ or $0, \mathrm{DO}_{-}+=$open		-1		1	
		$\mathrm{V}_{\mathrm{CC}}=0, \overline{\mathrm{PWRDN}}=0$ or open; $\mathrm{V}_{\text {DO_+ }}=3.6 \mathrm{~V}$ or 0, DO_- $^{2}=3.6 \mathrm{~V}$ or $\mathrm{V}_{\text {DO_- }}=3.6 \mathrm{~V}$ or 0 , DO_+ = open		-1		1	$\mu \mathrm{A}$
Single-Ended Output Short-Circuit Current	Ios	$\mathrm{V}_{\mathrm{ID}}=+50 \mathrm{mV}, \mathrm{~V}_{\mathrm{DO}}+=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{DO}}-=0$ or V_{CC}		-15		15	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=-50 \mathrm{mV}, \mathrm{~V}_{\text {DO_+ }}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {DO_- }}=0 \\ & \text { or } \mathrm{V}_{C C} \end{aligned}$					
Differential Output Short-Circuit Current (Note 3)	IOSD	$\mathrm{V}_{\text {ID }}=+50 \mathrm{mV}, \mathrm{V}_{\mathrm{OD}}=0$		-15		15	m
		$\mathrm{V}_{\text {ID }}=-50 \mathrm{mV}, \mathrm{V}_{\text {OD }}=0$				15	mA
SUPPLY							
Supply Current	Icc	$D C, R L=100 \Omega$ (Figure 4)			70	95	mA
		200 MHz (400Mbps), $\mathrm{RL}=100 \Omega$	Figure 4 (Note 3)		90	115	
		400 MHz (800Mbps), $\mathrm{RL}=100 \Omega$			118	145	
Power-Down Supply Current	Iccz	$\overline{\text { PWDRN }}=$ low			2	20	$\mu \mathrm{A}$

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 2 Drive

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R_{L}=100 \Omega \pm 1 \%, C_{L}=5 \mathrm{pF}$, differential input voltage $\mathrm{IV}_{\mathrm{ID}}=0.15 \mathrm{~V}$ to $1.2 \mathrm{~V}, \mathrm{MAX9153}$ LVDS input commonmode voltage $\mathrm{V}_{\mathrm{CM}}=\mathrm{I} \mathrm{V}_{\mathrm{ID}} / 2 \mid$ to $2.4 \mathrm{~V}-\mathrm{IV} \mathrm{ID} / 2 \mathrm{I}, \mathrm{MAX9154} \mathrm{LVPECL}$ input voltage range $=0$ to $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{PW}} \mathrm{PDN}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3, 4,5)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Rise Time	tLHT	Figures 4, 5		150	220	450	ps
Fall Time	thLT			150	220	450	ps
Added Deterministic Jitter (Note 6)	tDJ	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, 2^{23}-1 \\ & \text { PRBS data, } \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V} \end{aligned}$	400Mbps (NRZ)		13	50	$\begin{gathered} \text { ps } \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$
			800Mbps (NRZ)		24	90	
Added Random Jitter (Note 6)	tRJ	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, 50 \%$ duty cycle input, $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$	200 MHz			1	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$
			400 MHz			1	
Differential Propagation Delay Low to High	tPLHD	Figures 4, 5		1.6	2.3	3.3	ns
Differential Propagation Delay High to Low	tPHLD			1.6	2.3	3.3	
Pulse Skew I tpLHD - tPHLD 1	tSKEW	Figures 4, 5			27	80	ps
Channel-to-Channel Skew (Note 7)	tccs	Figures 4, 5			35	60	ps
Differential Part-to-Part Skew 1 (Note 8)	tPPS1	Figures 4, 5				1.2	ns
Differential Part-to-Part Skew 2 (Note 9)	tpPS2					1.7	ns
Maximum Input Frequency (Note 10)	$f_{\text {max }}$	Figures 4, 5		800			Mbps
Power-Down Time	tpd	Figures 6, 7			10	20	ns
Power-Up Time	tpu				20	40	$\mu \mathrm{s}$

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except $\mathrm{V}_{T H}, \mathrm{~V}_{\mathrm{TL}}, \mathrm{V}_{\text {ID }}, \mathrm{V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\mathrm{OD}}$.
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: Guaranteed by design and characterization.
Note 4: C_{L} includes scope probe and test jig capacitance.
Note 5: Signal generator conditions unless otherwise noted: frequency $=400 \mathrm{MHz}, 50 \%$ duty cycle, Ro $=50 \Omega$, tr $=0.6 \mathrm{~ns}$, and $\mathrm{t}=0.6 \mathrm{~ns}(0 \%$ to $100 \%)$.
Note 6: Device jitter added to the input signal.
Note 7: tcCs is the magnitude difference in differential propagation delay between outputs for a same-edge transition.
Note 8: tPPS1 is the magnitude difference of any differential propagation delays between devices operating over rated conditions at the same supply voltage, input conditions, and ambient temperature.
Note 9: TPPS2 is the magnitude difference of any differential propagation delays between devices operating over rated conditions.
Note 10: Device meets VOD DC specification, and AC specifications while operating at f_{MA}.

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100Ω Drive

Typical Operating Characteristics

$\left(V_{C C}=+3.3 V, R_{L}=100 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{IV}_{I D} \mid=200 \mathrm{mV}, \mathrm{V}_{C M}=1.2 \mathrm{~V}, \mathrm{f}_{\mathrm{I}} \mathrm{N}=200 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. .

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 10 Drive

Typical Operating Characteristics (continued)

$\left(V_{C C}=+3.3 V, R_{L}=100 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{IV}_{I D} \mathrm{I}=200 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=200 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN	NAME	FUNCTION
$\begin{aligned} & 1,3,11,13, \\ & 16,18,20, \\ & 24,26,28 \end{aligned}$	$\begin{gathered} \mathrm{DO} 2+, \mathrm{DO} 1+, \mathrm{DO} 10+, \\ \mathrm{DO9+}, \mathrm{DO8+,} \mathrm{DO}+, \\ \mathrm{DO6+,} \text {, DO5+, } \mathrm{DO} 4+, \text { DO3+ } \end{gathered}$	Differential LVDS Outputs
$\begin{gathered} 2,4,12,14, \\ 15,17,19 \\ 23,25,27 \end{gathered}$	$\begin{gathered} \hline \text { DO2-, DO1-, DO10-, DO9-, } \\ \text { DO8-, DO7-, } \\ \text { DO6-, DO5-, DO4-, DO3- } \end{gathered}$	
5	$\overline{\text { PWRDN }}$	Power Down. Drive $\overline{\text { PWRDN }}$ low to disable all outputs and reduce supply current to $2 \mu \mathrm{~A}$. Drive $\overline{\mathrm{PWRDN}}$ high for normal operation.
6, 9, 21	GND	Ground
10, 22	VCC	Power. Bypass each V_{CC} pin to GND with $0.1 \mu \mathrm{~F}$ and 1nF ceramic capacitors.
7	RIN+	LVDS (MAX9153) or LVPECL (MAX9154) Differential Inputs. RIN+ and RIN- are high-impedance inputs. Connect a resistor from RIN+ to RIN- to terminate the input signal.
8	RIN-	

Detailed Description

LVDS is a signaling method for point-to-point data communication over a controlled-impedance medium as defined by the ANSI/TIA/EIA-644 and IEEE 1596.3 standards. LVDS uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption, while reducing EMI emissions and system susceptibility to noise.
The MAX9153/MAX9154 are 800Mbps, 10-port repeaters for high-speed, point-to-point, low-power
applications. The MAX9153 accepts an LVDS input and has a fail-safe input circuit. The MAX9154 accepts an LVPECL input. Both devices repeat the input at 10 LVDS outputs. The devices detect differential signals as low as 50 mV and as high as 1.2 V within the 0 to 2.4 V input voltage range as specified in the LVDS standards.
The MAX9153/MAX9154 outputs use a current-steering configuration to generate a 2.5 mA to 4.5 mA output current. This current-steering approach induces less ground bounce and no shoot-through current, enhancing noise margin and system speed performance. The outputs are short-circuit current limited and are high

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100Ω Drive

impedance (to ground) when $\overline{\text { PWRDN }}=$ low or the device is not powered. The outputs have a typical differential resistance of 238Ω. The internal differential output resistance terminates induced noise and reflections from the primary termination located at the LVDS receiver.

The MAX9153/MAX9154 current-steering output requires a resistive load to terminate the signal and complete the transmission loop. Because the devices switch the direction of current flow and not voltage levels, the output voltage swing is determined by the value of the termination resistor multiplied by the output current. With a typical 3.8 mA output current, the MAX9153/MAX9154 produce a 380mV output voltage when driving a transmission line terminated with a 100Ω resistor $(3.8 \mathrm{~mA} \times 100 \Omega=380 \mathrm{mV}$). Logic states are determined by the direction of current flow through the termination resistor.

Table 1. Input/Output Function Table

INPUT, VID		OUTPUTS, VOD
+50 mV	MAX9153	High
		Low
-50mV	High	
Open		High
Undriven short	MAX9153	High
Undriven terminated	MAX9153	

Note: $V_{I D}=R I N+-R I N-, V_{O D}=D O_{-}+-D O_{-}$
High $=450 \mathrm{mV}>V_{O D}>250 \mathrm{mV}$
Low $=-250 \mathrm{mV}>V_{O D}>-450 \mathrm{mV}$

Fail-Safe
The fail-safe feature of the MAX9153 sets the outputs high when the differential input is:

- Open
- Undriven and shorted
- Undriven and terminated

Without a fail-safe circuit, when the input is undriven, noise at the input may switch the outputs and it may appear to the system that data is being sent. Open or undriven terminated input conditions can occur when a cable is disconnected or cut, or when an LVDS driver output is in high impedance. A shorted input can occur because of a cable failure.
When the input is driven with signals meeting the LVDS standard, the input common-mode voltage is less than VCC -0.3 V and the fail-safe circuit is not activated. If

Figure 1. MAX9153 Input Fail-Safe Circuit

Figure 2. MAX9154 Input Bias Resistors
the input is open, undriven and shorted, or undriven and parallel terminated, an internal resistor in the failand parallel terminated, an internal resistor in the fail-
safe circuit pulls both inputs above VCC -0.3 V , activating the fail-safe circuit and forcing the outputs high (Figure 1).
The MAX9154 is essentially the MAX9153 without the fail-safe circuit. The MAX9154 accepts input voltages from 0 to VCC (vs. 0 to 2.4 V for the MAX9153), which allows interfacing to LVPECL input signals while retaining a good common-mode tolerance.
ing a good common-mode tolerance.

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 10 Drive

Applications Information

Supply Bypassing

Bypass each VCC with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and 1 nF capacitors in parallel as close to the device as possible, with the smaller value capacitor closest to the VCC pin.

Traces, Cables, and Connectors
The characteristics of input and output connections affect the performance of the MAX9153/MAX9154. Use controlled-impedance traces, cables, and connectors with matched characteristic impedance.
Ensure that noise couples as common mode by running the traces of a differential pair close together. Reduce within-pair skew by matching the electrical length of the traces of a differential pair. Excessive skew can result in a degradation of magnetic field cancellation. Maintain the distance between traces of a differential pair to avoid discontinuities in differential impedance. Minimize the number of vias to further prevent impedance discontinuities.
Avoid the use of unbalanced cables, such as ribbon cable. Balanced cables, such as twisted pair, offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.

Termination

The MAX9153/MAX9154 are specified for 100Ω differential characteristic impedance but can operate with 90Ω to 132Ω to accommodate various types of interconnect. The termination resistor should match the differential characteristic impedance of the interconnect and be located close to the LVDS receiver input. Use a $\pm 1 \%$ surface-mount termination resistor.
The output voltage swing is determined by the value of the termination resistor multiplied by the output current. With a typical 3.8 mA output current, the MAX9153/MAX9154 produce a 380 mV output voltage when driving a transmission line terminated with a 100Ω resistor $(3.8 \mathrm{~mA} \times 100 \Omega=$ 380 mV).

Chip Information
TRANSISTOR COUNT: 1394 PROCESS: CMOS

Figure 3. Driver-Load Test Circuit

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100Ω Drive

Test Circuits and Timing Diagrams (continued)

Figure 4. Propagation Delay and Transition Time Test Circuit

Figure 5. Propagation Delay and Transition Time Waveforms

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 10 Drive

Figure 6. Power-Up/Down Delay Test Circuit

Figure 7. Power-Up/Down Delay Waveforms

Low-Jitter, 800Mbps, 10-Port LVDS Repeaters with 100 Drive

Pin Configuration

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Signal Buffers, Repeaters category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
PI6ULS5V9509UEX PI3HDMI101-BZHEX PI3EQX12904AZHEX PI6ULS5V9306WEX PI3EQX1004EZTFEX PI6ULS5V9509WEX 48705-3001R2 48705-6501R2 DS280BR820ZBLT PCA9617ADPJ PI6ULS5V9515AWEX PI3HDMI101ZHE P82B715TD. 112
LTC4315CDE\#PBF LTC4300-1CMS8\#PBF DS110DF1610FB/NOPB LTC4301LCDD\#PBF LTC4303IDD\#PBF LTC4315IMS\#TRPBF
LTC4304IMS\#PBF DS280DF810ABVT LTC4313IDD-3\#PBF LTC4315IDE\#PBF LTC4300-1IMS8\#PBF LTC4313IMS8-3\#TRPBF
LTC4300-2IMS8\#PBF LTC4300A-1CMS8\#PBF P82B96TDS900,118 PCA9515AD,118 LTC4307CMS8-1\#TRPBF LTC4304CDD\#PBF PI3EQX1002B1ZLEX LTC4301LIMS8 LTC4313IDD-3\#TRPBF LTC4309IGN\#PBF LTC4309CGN\#PBF MAX9169EUE+ LTC4302IMS2\#PBF LTC4302CMS-1\#PBF PI6ULS5V9306UEX LTC4300A-1CMS8\#TRPBF P82B715TD,112 PCA9507DP,118 PCA9509DP,118 PCA9509GM,125 PCA9515ADP,118 PCA9517AD,118 PCA9517ADP,118 PCA9517DP,118 P82B715TD,118

