SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Abstract

General Description The MAX917-MAX920 nanopower comparators in space-saving SOT23 packages feature Beyond-theRails ${ }^{\top \mathrm{M}}$ inputs and are guaranteed to operate down to +1.8 V . The MAX917/MAX918 feature an on-board $1.245 \mathrm{~V} \pm 1.5 \%$ reference and draw an ultra-low supply current of only 750nA, while the MAX919/MAX920 (without reference) require just 380nA of supply current. These features make the MAX917-MAX920 family of comparators ideal for all 2-cell battery applications, including monitoring/management. The unique design of the output stage limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX917/MAX919 have a push-pull output stage that sinks and sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8 mA . The MAX918/MAX920 have an open-drain output stage that makes them suitable for mixed-voltage system design.

2-Cell Battery Monitoring/Management
Ultra-Low-Power Systems
Mobile Communications
Notebooks and PDAs
Threshold Detectors/Discriminators
Sensing at Ground or Supply Line
Telemetry and Remote Systems
Medical Instruments

Selector Guide

PART	INTERNAL REFERENCE	OUTPUT TYPE	SUPPLY CURRENT (nA)
MAX917	Yes	Push-Pull	750
MAX918	Yes	Open-Drain	750
MAX919	No	Push-Pull	380
MAX920	No	Open-Drain	380

Typical Application Circuit appears at end of data sheet.

Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.

- Ultra-Low Supply Current 380nA per Comparator (MAX919/MAX920) 750nA per Comparator with Reference (MAX917/MAX918)
- Guaranteed to Operate Down to +1.8V
- Internal 1.245V $\pm 1.5 \%$ Reference (MAX917/MAX918)
- Input Voltage Range Extends 200mV Beyond-the-Rails
- CMOS Push-Pull Output with $\pm 8 m A$ Drive Capability (MAX917/MAX919)
- Open-Drain Output Versions Available (MAX918/MAX920)
- Crowbar-Current-Free Switching
- Internal Hysteresis for Clean Switching
- No Phase Reversal for Overdriven Inputs
- Space-Saving SOT23 Package

Ordering Information

PART	PIN-PACKAGE	TOP MARK	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX917EUK+T	5 SOT23	ADIQ	U5+1
MAX917ESA+	8 SO	-	S8+2
MAX918EUK+T	5 SOT23	ADIR	U5+1
MAX918ESA+	8 SO	-	S8+2
MAX919EUK+T	5 SOT23	ADIS	U5+1
MAX919EUK/V+T	5 SOT23	AFGP	U5+1
MAX919ESA+	8 SO	-	S8+2
MAX920EUK+T	5 SOT23	ADIT	U5+1
MAX920ESA+	8 SO	-	S8+2

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package. N denotes an automotive qualified part.

Pin Configurations

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)..6V	
Voltage Inputs (IN+, IN-, REF)	. $\left.\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}\right)$ to ($\left.\mathrm{VCC}+0.3 \mathrm{~V}\right)$
Current Into Input Pins ... $\pm 20 \mathrm{~mA}$	
Output Voltage	
MAX917/MAX919	. $\left.\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}\right)$ to ($\left.\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
MAX918/MAX920(VEE - 0.3 V) to +6V
Output Current	$\pm 50 \mathrm{~mA}$

Output Short-Circuit Duration
.10sec
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX917/MAX918

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{REF}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC	Inferred from the PSRR test		1.8		5.5	V
Supply Current	Icc	$\mathrm{V}_{C C}=1.8 \mathrm{~V}$		0.75			$\mu \mathrm{A}$
		$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.80	1.30	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.60	
IN+ Voltage Range	VIN+	Inferred from the output swing test		$V_{E E}-0.2$		+ 0.2	V
Input Offset Voltage	Vos	(Note 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	5	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	
Input-Referred Hysteresis	V_{HB}	(Note 3)		4			mV
Input Bias Current	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.15	1	nA
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				2	
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {CC }}=1.8 \mathrm{~V}$ to 5.5 V			0.1	1	mV/V
Output-Voltage Swing High	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$	MAX917 only, Vcc = 5 V , I SOURCE $=8 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		190	400	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			500	
		MAX917 only, $\mathrm{V}_{\mathrm{CC}}=$ 1.8 V , ISOURCE $=1 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		55	200	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			300	
Output-Voltage Swing Low	VOL	$\begin{aligned} & \mathrm{VCC}=5 \mathrm{~V}, \\ & \mathrm{I} \text { INK }=8 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		190	400	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			500	
		$\begin{aligned} & \mathrm{VCC}=1.8 \mathrm{~V}, \\ & \mathrm{ISINK}=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		55	200	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			300	
Output Leakage Current	ILEAK	MAX918 only, $\mathrm{V}_{\mathrm{O}}=5.5$			0.001	1	$\mu \mathrm{A}$
Output Short-Circuit Current	Isc	Sourcing, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}$	$V_{C C}=5 \mathrm{~V}$		95		mA
			$\mathrm{V}_{C C}=1.8 \mathrm{~V}$		8		
		Sinking, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		98		
			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		10		

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

ELECTRICAL CHARACTERISTICS—MAX917/MAX918 (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}}+=\mathrm{V}_{\mathrm{REF}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

ELECTRICAL CHARACTERISTICS—MAX919/MAX920

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC	Inferred from the PSRR test		1.8		5.5	V
Supply Current	ICC	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		0.38			$\mu \mathrm{A}$
		$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.45	0.80	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
Input Common-Mode Voltage Range	$V_{C M}$	Inferred from the CMRR test		$V_{\text {EE }}-0.2$		c +0.2	V
Input Offset Voltage	Vos	$\begin{aligned} & -0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \\ & \left(\mathrm{V}_{C C}+0.2 \mathrm{~V}\right)(\text { Note 2) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	5	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	
Input-Referred Hysteresis	V_{HB}	$-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq$ ($\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$) (Note 3)			4		mV
Input Bias Current	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.15	1	nA
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				2	

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

ELECTRICAL CHARACTERISTICS—MAX919/MAX920 (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Input Offset Current	los			10		pA
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {CC }}=1.8 \mathrm{~V}$ to 5.5 V		0.1	1	mV/V
Common-Mode Rejection Ratio	CMRR	$\left(\mathrm{V}_{\text {EE }}-0.2 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}\right)$		0.5	3	mV/V
Output-Voltage Swing High	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$	MAX919 only, $\mathrm{V}_{\mathrm{CC}}=$ 5 V , $\operatorname{ISOURCE}=8 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	190	400	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		500	
		$\begin{aligned} & \text { MAX919 only, VCC = } \\ & \text { 1.8V, ISOURCE }=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	55	200	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		300	
Output-Voltage Swing Low	Vol	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I} \mathrm{I} \mathrm{NK}=8 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	190	400	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		500	
		$\begin{aligned} & \mathrm{VCC}=1.8 \mathrm{~V}, \\ & \mathrm{I} \mathrm{SINK}=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	55	200	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		300	
Output Leakage Current	ILEAK	MAX920 only, $\mathrm{Vo}=5.5 \mathrm{~V}$		0.001	1	$\mu \mathrm{A}$
Output Short-Circuit Current	ISC	Sourcing, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}$	$V_{C C}=5 \mathrm{~V}$	95		mA
			$V_{C C}=1.8 \mathrm{~V}$	8		
		Sinking, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	98		
			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	10		
High-to-Low Propagation Delay (Note 4)	tpD-		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	17		$\mu \mathrm{S}$
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	22		
Low-to-High Propagation Delay (Note 4)	tpD+	MAX919 only	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	30		$\mu \mathrm{s}$
			$\mathrm{V}_{C C}=5 \mathrm{~V}$	95		
		MAX920 only	$\begin{aligned} & \mathrm{V}_{C C}=1.8 \mathrm{~V} \\ & \text { RPULLUP }=100 \mathrm{k} \Omega \end{aligned}$	35		
			$\begin{aligned} & \text { VCC }=5 \mathrm{~V} \\ & \text { RPULLUP }=100 \mathrm{k} \Omega \end{aligned}$	120		
Rise Time	trise	MAX919 only, $C_{L}=15 \mathrm{pF}$		6		$\mu \mathrm{s}$
Fall Time	tFALL	$C_{L}=15 \mathrm{pF}$		4		$\mu \mathrm{s}$
Power-Up Time	ton			1.2		ms

Note 1: All specifications are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specification limits over temperature ($T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$) are guaranteed by design, not production tested.
Note 2: V_{OS} is defined as the center of the hysteresis band at the input.
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., Vos) (Figure 2)
Note 4: Specified with an input overdrive (VOVERDRIVE) of 100 mV , and load capacitance of $C_{L}=15 \mathrm{pF}$. Voverdrive is defined above and beyond the offset voltage and hysteresis of the comparator input. For the MAX917/MAX918, reference voltage error should also be added.

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\text {OVERDRIVE }}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Typical Operating Characteristics (continued)
$\left(\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\text {OVERDRIVE }}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\text {OVERDRIVE }}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

vs. CAPACITIVE LOAD

MAX918/MAX920

MAX917/MAX919
PROPAGATION DELAY (tPD +) vs. TEMPERATURE

PROPAGATION DELAY (tpd-)
vs. INPUT OVERDRIVE

MAX918/MAX920
PROPAGATION DELAY (tpd+) vs. PULLUP RESISTANCE

PROPAGATION DELAY (tpd-)
vs. CAPACITIVE LOAD

MAX917/MAX919
PROPAGATION DELAY (tPD+) vs. INPUT OVERDRIVE

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\text {OVERDRIVE }}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$20 \mu \mathrm{~s} / \mathrm{div}$

MAX917/MAX919 PROPAGATION DELAY (tpd ${ }_{+}$)

20 $\mu \mathrm{s} / \mathrm{div}$

20 $\mu \mathrm{s} / \mathrm{div}$
$20 \mu \mathrm{~s} / \mathrm{div}$

MAX917/MAX919
1kHz RESPONSE (VCC = 5V)

200 $\mu \mathrm{s} / \mathrm{div}$

$40 \mu \mathrm{~s} / \mathrm{div}$

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Functional Diagrams

Pin Description

PIN				NAME	FUNCTION
MAX917/MAX918		MAX919/MAX920			
SOT23-5	SO	SOT23-5	SO		
1	6	1	6	OUT	Comparator Output
2	4	2	4	VEE	Negative Supply Voltage
3	3	3	3	IN+	Comparator Noninverting Input
-	-	4	2	IN-	Comparator Inverting Input
4	2	-	-	REF	1.245V Reference Output and Comparator Inverting Input
5	7	5	7	$V_{C C}$	Positive Supply Voltage
-	$1,5,8$	-	$1,5,8$	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX917/MAX918 feature an on-board 1.245V $\pm 1.5 \%$ reference, yet draw an ultra-low supply current of 750nA. The MAX919/MAX920 (without reference) consume just 380 nA of supply current. All four devices are guaranteed to operate down to +1.8 V . Their com-mon-mode input voltage range extends 200 mV beyond-the-rails. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to $\pm 8 \mathrm{~mA}$ loads.
The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX917/MAX919 have a push-pull
output stage that sinks as well as sources current. The MAX918/MAX920 have an open-drain output stage that can be pulled beyond V_{Cc} to an absolute maximum of 6 V above $\mathrm{V}_{\text {EE }}$. These open-drain versions are ideal for implementing wire-ORed output logic functions.

Input Stage Circuitry The input common-mode voltage range extends from $\mathrm{V}_{\mathrm{EE}}-0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$. These comparators operate at any differential input voltage within these limits. Input bias current is typically ± 0.15 nA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct.

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

The MAX917-MAX920 contain a unique break-beforemake output stage capable of rail-to-rail operation with up to $\pm 8 \mathrm{~mA}$ loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. In the Typical Operating Characteristics, the Supply Current vs. Output Transition Frequency graphs show the minimal supplycurrent increase as the output switching frequency approaches 1 kHz . This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. In batterypowered applications, this characteristic results in a substantial increase in battery life.

Reference (MAX917/MAX918)
The internal reference in the MAX917/MAX918 has an output voltage of +1.245 V with respect to VEE. Its typical temperature coefficient is $95 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The reference is a PNP emitter-follower driven by a 120nA current source (Figure 1). The output impedance of the voltage reference is typically $200 \mathrm{k} \Omega$, preventing the reference from driving large loads. The reference can be bypassed with a low-leakage capacitor. The reference is stable for any capacitive load. For applications requiring a lower output impedance, buffer the reference with a low-input-leakage op amp, such as the MAX406.

Applications Information

Abstract

Low-Voltage, Low-Power Operation The MAX917-MAX920 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX917-MAX920, assuming nominal conditions.

Figure 1. MAX917/MAX918 Voltage Reference Output Equivalent Circuit

Internal Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX917-MAX920 have internal hysteresis to counter parasitic effects and noise.
The hysteresis in a comparator creates two trip points: one for the rising input voltage ($\mathrm{V}_{\mathrm{THR}}$) and one for the falling input voltage (VTHF) (Figure 2). The difference between the trip points is the hysteresis (VHB). When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 2 illustrates the case in which IN- has a fixed voltage applied, and IN+ is varied. If the inputs were reversed, the figure would be the same, except with an inverted output.

Table 1. Battery Applications Using MAX917-MAX920

BATTERY TYPE	RECHARGEABLE	VFRESH (V)	VEND-OF-LIFE (V)	CAPACITY, AA SIZE (mA-h)	MAX917/MAX918 OPERATING TIME (hr)	MAX919/MAX920 OPERATING TIME (hr)
Alkaline (2 Cells)	No	3.0	1.8	2000	2.5×10^{6}	5×10^{6}
Nickel-Cadmium (2 Cells)	Yes	2.4	1.8	750	937,500	1.875×10^{6}
Lithium-lon $(1$ Cell)	Yes	3.5	2.7	1000	1.25×10^{6}	2.5×10^{6}
Nickel-Metal- Hydride $(2$ Cells)	Yes	2.4	1.8	1000	1.25×10^{6}	2.5×10^{6}

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Figure 2. Threshold Hysteresis Band
Additional Hysteresis (MAX917/MAX919)
The MAX917/MAX919 have a 4 mV internal hysteresis band (VHB). Additional hysteresis can be generated with three resistors using positive feedback (Figure 3). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values.

1) Select R3. Leakage current at $I N$ is under $2 n A$, so the current through R3 should be at least $0.2 \mu \mathrm{~A}$ to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF - Vout)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 $=V_{\text {REF }} / \mathrm{l} 3$ or $\mathrm{R} 3=$ (VCC - VREF)/IR3. Use the smaller of the two resulting resistor values. For example, when using the MAX917 ($V_{\text {REF }}=1.245 \mathrm{~V}$) and $\mathrm{V}_{C C}=5 \mathrm{~V}$, and if we choose $\mathrm{I}_{\mathrm{R} 3}=1 \mu \mathrm{~A}$, then the two resistor values are $1.2 \mathrm{M} \Omega$ and $3.8 \mathrm{M} \Omega$. Choose a $1.2 \mathrm{M} \Omega$ standard value for R3.
2) Choose the hysteresis band required (V_{HB}). For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=\mathrm{R} 3\left(\mathrm{~V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

For this example, insert the values

$$
\mathrm{R} 1=1.2 \mathrm{M} \Omega(50 \mathrm{mV} / 5 \mathrm{~V})=12 \mathrm{k} \Omega
$$

4) Choose the trip point for $V_{I N}$ rising ($V_{T H R}$) such that $\mathrm{V}_{\text {THR }}>\mathrm{V}_{\text {REF }} \cdot(\mathrm{R} 1+\mathrm{R} 3) / \mathrm{R} 3$ ($\mathrm{V}_{\text {THF }}$ is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3 V .
5) Calculate R2 as follows:
$R 2=1 /\left[V_{T H R} /\left(V_{\text {REF }} \cdot R 1\right)-(1 / R 1)-(1 / R 3)\right]$

Figure 3. MAX917/MAX919 Additional Hysteresis

$$
\begin{aligned}
\mathrm{R} 2= & 1 /[3.0 \mathrm{~V} /(1.2 \mathrm{~V} \cdot 12 \mathrm{k} \Omega)-(1 / 12 \mathrm{k} \Omega)- \\
& (1 / 1.2 \mathrm{M} \Omega)]=8.05 \mathrm{k} \Omega
\end{aligned}
$$

For this example, choose an $8.2 \mathrm{k} \Omega$ standard value.
6) Verify the trip voltages and hysteresis as follows:
$V_{\text {IN }}$ rising: $V_{\text {THR }}=V_{\text {REF }} \cdot R 1[(1 / R 1)+(1 / R 2)$
$+(1 / R 3)]$
VIN falling: $\mathrm{V}_{\text {THF }}=\mathrm{V}_{\text {THR }}-\left(\mathrm{R} 1 \cdot \mathrm{~V}_{\mathrm{CC}} / \mathrm{R} 3\right)$
Hysteresis $=\mathrm{V}_{\text {THR }}-\mathrm{V}_{\text {THF }}$

Additional Hysteresis (MAX918/MAX920)

The MAX918/MAX920 have a 4 mV internal hysteresis band. They have open-drain outputs and require an external pullup resistor (Figure 4). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX917/ MAX919. Use the following procedure to calculate resistor values.

1) Select $R 3$ according to the formulas $R 3=V_{R E F} / 1 \mu \mathrm{~A}$ or $R 3=\left(V_{C C}-V_{R E F}\right) / 1 \mu A-R 4$. Use the smaller of the two resulting resistor values.
2) Choose the hysteresis band required ($V_{H B}$).
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=(\mathrm{R} 3+\mathrm{R} 4)\left(\mathrm{V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

4) Choose the trip point for $V_{I N}$ rising ($V_{T H R}$) ($V_{T H F}$ is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point.
5) Calculate R2 as follows:

$$
\mathrm{R} 2=1 /\left[\mathrm{V}_{\mathrm{THR}} /\left(\mathrm{V}_{\mathrm{REF}} \cdot \mathrm{R} 1\right)-\left(\frac{1}{\mathrm{R} 1}\right)-\frac{1}{\mathrm{R} 3}\right]
$$

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

6) Verify the trip voltages and hysteresis as follows:

$$
\begin{gathered}
V_{I N} \text { rising }: V_{T H R}=V_{R E F} \times R 1\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}\right) \\
V_{I N} \text { falling }: V_{T H F}= \\
V_{R E F} \times R 1\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3+R 4}\right)-\frac{R 1}{R 3+R 4} \times V_{C C} \\
\text { Hysteresis }=V_{T H R}-V_{T H F}
\end{gathered}
$$

Board Layout and Bypassing
Power-supply bypass capacitors are not typically needed, but use 100 nF bypass capacitors close to the device's supply pins when supply impedance is high, supply leads are long, or excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance. A ground plane and sur-face-mount components are recommended.

Figure 4. MAX918/MAX920 Additional Hysteresis
Pin Configurations (continued)

Zero-Crossing Detector
Figure 5 shows a zero-crossing detector application. The MAX919's inverting input is connected to ground, and its noninverting input is connected to a $100 \mathrm{mVP}-\mathrm{P}$ signal source. As the signal at the noninverting input crosses OV , the comparator's output changes state.

Logic-Level Translator

The Typical Application Circuit shows an application that converts 5 V logic to 3 V logic levels. The MAX920 is powered by the +5 V supply voltage, and the pullup resistor for the MAX920's open-drain output is connected to the +3 V supply voltage. This configuration allows the full 5 V logic swing without creating overvoltage on the 3 V logic inputs. For 3 V to 5 V logic-level translations, simply connect the +3 V supply voltage to V_{CC} and the +5 V supply voltage to the pullup resistor.

Figure 5. Zero-Crossing Detector
Typical Application Circuit

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO	$\mathrm{S} 8+2$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\mathbf{9 0 - 0 0 9 6}}$
SOT 23	$\mathrm{U} 5+1$	$\underline{\mathbf{2 1 - 0 0 5 7}}$	$\underline{90-0174}$

TDP VIEW

FRDNT VIEW
NDTES:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.

FODT LENGTH MEASURED AT INTERCEPT PGINT BETWEEN
dATUM A \& LEAD SURFACE.
3. PACKAGE DUTLINE EXCLUSIVE DF MDLD FLASH \& METAL BURR. MLLD FLASH, PROTRUSION OR METAL BURR SHDULD NDT EXCEED 0.25 MM.
4. PACKAGE \quad UUTLINE INCLUSIVE FF SOLDER PLATING.
5. MEETS JEDEC MD178, VARIATION AA.
6. LEADS TO BE COPLANAR WITHIN 0.10 mm .
7. SOLDER THICKNESS MEASURED AT FLAT SECTIIN OF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

PRIPRIETARY INFIRMATIIN
TITLE:
PACKAGE OUTLINE, SOT-23, 5L

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$10 / 10$	Added lead-free and automotive qualified parts	1,2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G
LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT 5962-8765801PA MAX9024AUD+
LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX LTC1440IMS8\#PBF AZV331KSTR-G1
LTC1841IS8\#PBF LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB-1\#TRMPBF
LTC1042CN8\#PBF LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LTC1440IS8\#PBF S-89431ACNC-HBVTFG NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL TSX3704IYPT AD790JNZ

