

MAXIAV

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

General Description

The MAX9247 digital video parallel-to-serial converter serializes 27 bits of parallel data into a serial-data stream. Eighteen bits of video data and 9 bits of control data are encoded and multiplexed onto the serial interface, reducing the serial-data rate. The data-enable input determines when the video or control data is serialized.
The MAX9247 pairs with the MAX9248/MAX9250 deserializers to form a complete digital video serial link. Interconnect can be controlled-impedance PCB traces or twisted-pair cable. Proprietary data encoding reduces EMI and provides DC balance. DC balance allows ACcoupling, providing isolation between the transmitting and receiving ends of the interface. The LVDS output is internally terminated with 100Ω. For operating frequencies less than 35 MHz , the MAX9247 can also pair with the MAX9218 deserializer.
ESD tolerance is specified for ISO 10605 with $\pm 10 \mathrm{kV}$ Contact Discharge and $\pm 30 \mathrm{kV}$ Air-Gap Discharge.
The MAX9247 operates from a +3.3 V core supply and features a separate input supply for interfacing to 1.8 V to 3.3 V logic levels. This device is available in a 48-lead LQFP package and is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Applications

Navigation System Displays
In-Vehicle Entertainment Systems
Video Cameras
LCDs

- Preemphasis Improves Eye Diagram and Signal Integrity at the Output
- Proprietary Data Encoding for DC Balance and Reduced EMI
- Control Data Sent During Video Blanking
- Five Control Data Inputs are Single-Bit-Error Tolerant
- Programmable Phase-Shifted LVDS Signaling Reduces EMI
- Output Common-Mode Filter Reduces EMI
- Greater Than 10m STP Cable Drive

Wide $\pm 2 \%$ Reference Clock Tolerance

- ISO 10605 and IEC 61000-4-2 Level 4 ESD Protection
- Separate Input Supply Allows Interface to 1.8V to 3.3V Logic
- +3.3V Core Supply
- Space-Saving LQFP Package
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operating Temperature Ranges

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9247ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9247ECM $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9247GCM +	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	48 LQFP
MAX9247GCM $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	48 LQFP

+Denotes a lead(Pb)-free/RoHS-compliant package. N denotes an automotive qualified part.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

ABSOLUTE MAXIMUM RATINGS

VCC_ to _GND.
-0.5 V to +4.0 V
Any Ground to Any Ground
-0.5 V to +0.5 V
OUT+, OUT-, CMF to LVDSGND
-0.5 V to +4.0 V
OUT+, OUT- Short Circuit to LVDSGND or VcclvDs
....Continuous
OUT+, OUT- Short Through $0.125 \mu \mathrm{~F}$ (or smaller), 25V Series Capacitor.
-0.5 V to +16 V
RGB_IN[17:0], CNTL_IN[8:0], DE_IN,
RNGO, RNG1, PRE, PCLK_IN,
PWRDWN to GND
-0.5 V to $\left(\mathrm{V}_{\mathrm{CCIN}}+0.5 \mathrm{~V}\right)$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
48-Lead LQFP (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .1666 .7 mW ESD Protection
Machine Model ($\mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{CS}=200 \mathrm{pF}$)

ISO 10605 ($\mathrm{RD}=2 \mathrm{k} \Omega, \mathrm{Cs}_{\mathrm{s}}=330 \mathrm{pF}$)
Contact Discharge (OUT+, OUT-) to LVDSGND $\pm 10 \mathrm{kV}$
Air-Gap Discharge (OUT+, OUT-) to LVDSGND $\pm 30 \mathrm{kV}$
IEC 61000-4-2 ($\mathrm{RD}_{\mathrm{D}}=330 \Omega$, $\left.\mathrm{Cs}=150 \mathrm{pF}\right)$
Contact Discharge (OUT+, OUT-) to LVDSGND $\pm 10 \mathrm{kV}$
Air-Gap Discharge (OUT+, OUT-) to LVDSGND $\pm 15 \mathrm{kV}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)................................. $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega \pm 1 \%, \overline{\mathrm{PWRDWN}}=$ high, PRE $=10 \mathrm{w}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUTS (RGB_IN[17:0], CNTL_IN[8:0], DE_IN, PCLK_IN, $\overline{\text { PWRDWN, RNG_, PRE) }}$							
High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\text {CCIN }}=1.71 \mathrm{~V}$ to $<3 \mathrm{~V}$ (Note 3)		$0.65 \times \mathrm{VCCIN}$		$\mathrm{V}_{\text {CCIN }}+0.3$	
		$\mathrm{V}_{\text {CCIN }}=3.0 \mathrm{~V}$ to 3.6 V		2		$0.3+V_{\text {CCIN }}$	
Low-Level Input Voltage	VIL	$\mathrm{V}_{\text {CCIN }}=1.71 \mathrm{~V}$ to $<3 \mathrm{~V}$ (Note 3)		-0.3		$0.3 \times \mathrm{VCCIN}$	V
		$\mathrm{V}_{\mathrm{CCIN}}=3.0 \mathrm{~V}$ to 3.6V		-0.3		+0.8	
Input Current	In	$\begin{aligned} & \text { VCCIN }=1.71 \mathrm{~V} \\ & \text { to } 3.6 \mathrm{~V}, \\ & \hline \text { PWRDWN }= \\ & \text { high or low } \end{aligned}$	$\begin{aligned} & V_{I N}=-0.3 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ & (\mathrm{MAX9247ECM),} \\ & \mathrm{V}_{\mathrm{IN}}=-0.15 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ & (\mathrm{MAX} 9247 \mathrm{GCM}) \end{aligned}$	-100		+20	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $(\mathrm{VCCIN}+0.3 \mathrm{~V})$	-20		+20	
Input Clamp Voltage	$V_{C L}$	$\mathrm{ICL}=-18 \mathrm{~mA}$				-1.5	V
LVDS OUTPUTS (OUT+, OUT-)							
Differential Output Voltage	VOD	Figure 1		250	335	450	mV
Change in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1				20	mV
Common-Mode Voltage	Vos	Figure 1		1.125	1.29	1.475	V
Change in Vos Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 1				20	mV
Output Short-Circuit Current	los	VOUT+ or VOUT- = OV or 3.6V		-15	± 8	+15	mA
Magnitude of Differential Output Short-Circuit Current	IOSD	$V_{O D}=0 \mathrm{~V}$			5.5	15	mA
Output High-Impedance Current	Ioz	$\begin{aligned} & \overline{\text { PWRDWN }}=\mathrm{low} \\ & \text { or } \mathrm{VCC}_{C}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { VOUT+ }=\text { OV, } \\ & \text { Vout- }=3.6 \mathrm{~V} \\ & \hline \text { VOUT }+3.6 \mathrm{~V}, \\ & \text { Vout- }=0 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}-=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega \pm 1 \%, \overline{\mathrm{PWRDWN}}=$ high, $\mathrm{PRE}=10 \mathrm{w}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Differential Output Resistance	Ro				78	110	147	Ω
Worst-Case Supply Current	Iccw	$\begin{aligned} & \mathrm{RL}=100 \Omega \pm 1 \%, \\ & C \mathrm{~L}=5 \mathrm{pF}, \\ & \text { continuous } 10 \\ & \text { transition words } \end{aligned}$	2.5 MHz	PRE $=0$		15	25	mA
				PRE $=1$			27	
			5 MHz	PRE $=0$		18	25	
				PRE $=1$			27	
			10MHz	PRE $=0$		23	28	
				PRE $=1$			30	
			20 MHz	PRE $=0$		33	39	
				PRE $=1$			42	
			35 MHz	PRE $=0$		50	65	
				PRE $=1$			69	
			42 MHz	PRE $=0$		60	70	
				PRE $=1$			75	
Power-Down Supply Current	ICCZ	(Note 4)					50	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

$\left(V C C _=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R \mathrm{R}=100 \Omega \pm 1 \%, \mathrm{CL}=5 \mathrm{pF}, \overline{\mathrm{PWRDWN}}=$ high, $\mathrm{PRE}=10 w, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
PCLK_IN TIMING REQUIREMENTS							
Clock Period	tT	Figure 2 ${ }^{\text {2 }}$	MAX9247ECM	23.8		400.0	ns
			MAX9247GCM	28.6		400.0	
Clock Frequency	${ }_{\text {f CLK }}$	MAX9247ECM		2.5		42.0	MHz
		MAX9247GCM		2.5		35.0	
Clock Frequency Difference from Deserializer Reference Clock	$\Delta f \mathrm{CLK}$			-2		+2	\%
Clock Duty Cycle	DC	thigh/t or tLow/tt, Figure 2		35	50	65	\%
Clock Transition Time		Figure 2				2.5	ns
SWITCHING CHARACTERISTICS							
Output Rise Time	trise	$\begin{array}{\|l\|} \hline 20 \% \text { to } 80 \%, \\ \text { VOD } \geq 250 \mathrm{mV} \text {, Figure } 3 \end{array}$	PRE = low		280	370	ps
			PRE $=$ high		240	320	
Output Fall Time	tFALL	80% to 20%, VOD $\geq 250 \mathrm{mV}$, Figure 3	PRE = low		280	370	ps
			PRE = high		240	320	
Input Setup Time	tset	Figure 4		3			ns
Input Hold Time	thold	Figure 4		3			ns

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{CL}=5 \mathrm{pF}, \overline{\mathrm{PWRDWN}}=$ high, $\mathrm{PRE}=10 \mathrm{w}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serializer Delay	tSD	Figure 5	$\begin{gathered} 3.10 x \\ t \top+2.0 \end{gathered}$		$\begin{gathered} 3.10 x \\ t_{T}+8.0 \end{gathered}$	ns
PLL Lock Time	tıock	Figure 6			$\begin{gathered} 17,100 x \\ t_{T} \end{gathered}$	ns
Power-Down Delay	tpD	Figure 7			1	$\mu \mathrm{s}$
Peak-to-Peak Output Jitter	tJITT	Measured with PRBS input pattern at 840Mbps data rate			150	ps
Peak-to-Peak Output Offset Voltage	VOS(P-P)	840Mbps data rate, CMF open, Figure 8		22	70	mV
		840Mbps data rate, CMF $0.1 \mu \mathrm{~F}$ to ground, Figure 8		12	50	

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground, except VOD, $\Delta \mathrm{V}$ OD, and $\Delta \mathrm{V}$ OS.
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: Parameters are guaranteed by design and characterization and are not production tested. Limits are set at ± 6 sigma.
Note 4: All LVTTL/LVCMOS inputs, except $\overline{\text { PWRDWN }}$ at $\leq 0.3 \mathrm{~V}$ or $\geq \mathrm{VCCIN}-0.3 \mathrm{~V}$. $\overline{\text { PWRDWN }}$ is $\leq 0.3 \mathrm{~V}$.

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Typical Operating Characteristics
$\left(V_{C C_{-}}=+3.3 V, R_{L}=100 \Omega, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

EYE DIAGRAM WITHOUT PREEMPHASIS

EYE DIAGRAM WITH PREEMPHASIS

CABLE LENGTH
vs. FREQUENCY BIT-ERROR RATE < $\mathbf{1 0}^{-9}$

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Pin Description

PIN	NAME	FUNCTION
1, 13, 37	GND	Input Buffer Supply and Digital Supply Ground
2	$V_{\text {ccin }}$	Input Buffer Supply Voltage. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
$\begin{aligned} & 3-10, \\ & 39-48 \end{aligned}$	$\begin{aligned} & \text { RGB_IN10- } \\ & \text { RGB_IN17, } \\ & \text { RGB_INO- } \\ & \text { RGB_IN9 } \end{aligned}$	LVTTL/LVCMOS Red, Green, and Blue Digital Video Data Inputs. Eighteen data bits are loaded into the input latch on the rising edge of PCLK_IN when DE_IN is high. Internally pulled down to GND.
11, 12, 15-21	$\begin{aligned} & \hline \text { CNTL_INO, } \\ & \text { CNTL_IN1, } \\ & \text { CNTL_IN2- } \\ & \text { CNTL_IN8 } \end{aligned}$	LVTTL/LVCMOS Control Data Inputs. Control data are latched on the rising edge of PCLK_IN when DE_IN is low. Internally pulled down to GND.
14,38	VCC	Digital Supply Voltage. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
22	DE_IN	LVTTL/LVCMOS Data-Enable Input. Logic-high selects RGB_IN[17:0] to be latched. Logic-low selects CNTL_IN[8:0] to be latched. DE_IN must be switching for proper operation. Internally pulled down to GND.
23	PCLK_IN	LVTTL/LVCMOS Parallel Clock Input. Latches data and control inputs and provides the PLL reference clock. Internally pulled down to GND.
24	I.C.	Internally Connected. Leave unconnected for normal operation.
25	PRE	Preemphasis Enable Input. Drive PRE high to enable preemphasis.
26	PLLGND	PLL Supply Ground
27	V CCPLL	PLL Supply Voltage. Bypass to PLLGND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
28	$\overline{\text { PWRDWN }}$	LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND.
29	CMF	Common-Mode Filter. Optionally connect a capacitor between CMF and LVDSGND to filter common-mode switching noise.
30, 31	LVDSGND	LVDS Supply Ground
32	OUT-	Inverting LVDS Serial-Data Output
33	OUT+	Noninverting LVDS Serial-Data Output
34	VCCLVDS	LVDS Supply Voltage. Bypass to LVDSGND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
35	RNG1	LVTTL/LVCMOS Frequency Range Select Input. Set to the frequency range that includes the PCLK_IN frequency as shown in Table 3. Internally pulled down to GND.
36	RNGO	LVTTL/LVCMOS Frequency Range Select Input. Set to the frequency range that includes the PCLK_IN frequency as shown in Table 3. Internally pulled down to GND.

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 1. LVDS DC Output Load and Parameters

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 2. Parallel Clock Requirements

Figure 3. Output Rise and Fall Times

Figure 4. Synchronous Input Timing

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 5. Serializer Delay

Figure 6. PLL Lock Time

Figure 7. Power-Down Delay

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 8. Peak-to-Peak Output Offset Voltage

Detailed Description

The MAX9247 DC-balanced serializer operates at a $2.5 \mathrm{MHz}-\mathrm{to}-42 \mathrm{MHz}$ parallel clock frequency, serializing 18 bits of parallel video data RGB_IN[17:0] when the data-enable input DE_IN is high, or 9 bits of parallel control data CNTL_IN[8:0] when DE_IN is low. The RGB video input data are encoded using 2 overhead bits, ENO and EN1, resulting in a serial word length of 20 bits (see Table 1). Control inputs are mapped to 19 bits and encoded with 1 overhead bit, ENO, also resulting in a 20 -bit serial word. Encoding reduces EMI and
maintains DC balance across the serial cable. Two transition words, which contain a unique bit sequence, are inserted at the transition boundaries of video-tocontrol and control-to-video phases.
Control data inputs CO to C 4 are mapped to 3 bits each in the serial control word (see Table 2). At the deserializer, 2 or 3 bits at the same state determine the state of the recovered bit, providing single-bit-error tolerance for $\mathrm{C0}$ to C4. Control data that may be visible if an error occurs, such as VSYNC and HSYNC, can be connected to these inputs. Control data inputs C5 to C8 are mapped to 1 bit each.

Table 1. Serial Video Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	EN1	SO	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10	S 11	S 12	S 13	S 14	S 15	S 16	S 17

Bit 0 is the LSB and is serialized first. EN[1:0] are encoding bits. S[17:0] are encoded symbols.
Table 2. Serial Control Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	C 0	C 0	C 0	C 1	C 1	C 1	C 2	C 2	C 2	C 3	C 3	C 3	C 4	C 4	C 4	C 5	C 6	C 7	C 8

Bit 0 is the LSB and is serialized first. C[8:0] are the control inputs.

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 9. Transition Timing

Transition Timing

The transition words require interconnect bandwidth and displace control data. Therefore, control data is not sampled (see Figure 9):

- Two clock cycles before DE_IN goes high
- During the video phase
- Two clock cycles after DE_IN goes low

The last sampled control data are latched at the deserializer control data outputs during the transition and video phases. Video data are latched at the deserializer RGB data outputs during the transition and control phases.

Applications Information

AC-Coupling Benefits

AC-coupling increases the common-mode voltage to the voltage rating of the capacitor. Two capacitors are sufficient for isolation, but four capacitors-two at the serializer output and two at the deserializer input-provide protection if either end of the cable is shorted to a high voltage. AC-coupling blocks low-frequency ground shifts and common-mode noise. The MAX9247 serializer can also be DC-coupled to the MAX9248/ MAX9250 deserializers.
Figures 10 and 12 show an AC-coupled serializer and deserializer with two capacitors per link. Figures 11 and

13 show the AC-coupled serializer and deserializer with four capacitors per link.

Selection of AC-Coupling Capacitors

See Figure 14 for calculating the capacitor values for AC-coupling depending on the parallel clock frequency. The plot shows capacitor values for two- and four-capacitor-per-link systems. For applications using less than 18 MHz clock frequency, use $0.1 \mu \mathrm{~F}$ capacitors.

Frequency-Range Setting RNG[1:0] The RNG[1:0] inputs select the operating frequency range of the MAX9247 serializer. An external clock within this range is required for operation. Table 3 shows the selectable frequency ranges and corresponding data rates for the MAX9247.

Table 3. Parallel Clock Frequency Range Select

RNG1	RNG0	PARALLEL CLOCK (MHz)	SERIAL-DATA RATE (Mbps)
0	0	2.5 to 5	50 to 100
0	1	5 to10	100 to 200
1	0	10 to 20	200 to 400
1	1	20 to 42	400 to 840

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 10. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Two Capacitors per Link

Figure 11. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Four Capacitors per Link

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 12. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Two Capacitors per Link

Figure 13. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Four Capacitors per Link

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Figure 14. AC-Coupling Capacitor Values vs. Clock Frequency of 18 MHz to 42 MHz

Termination

The MAX9247 has an integrated 100Ω output-termination resistor. This resistor damps reflections from induced noise and mismatches between the transmission line impedance and termination resistors at the deserializer input. With $\overline{\text { PWRDWN }}=$ low or with the supply off, the output termination is switched out and the LVDS output is high impedance.

Common-Mode Filter
The integrated 100Ω output termination is made up of two 50Ω resistors in series. The junction of the resistors is connected to the CMF pin for connecting an optional common-mode filter capacitor. Connect the filter capacitor to ground close to the MAX9247 as shown in Figure 15. The capacitor shunts common-mode switching current to ground to reduce EMI.

LVDS Output Preemphasis (PRE)

The MAX9247 features a preemphasis mode where extra current is added to the output and causes the amplitude to increase by 40% to 50% at the transition point. Preemphasis helps to get a faster transition, better eye diagram, and improve signal integrity. See the Typical Operating Characteristics. The additional current is turned on for a short time (360ps, typ) during data transition, and then turned off. Enable preemphasis by driving PRE high.

Power-Down and Power-Off
Driving $\overline{\text { PWRDWN }}$ low stops the PLL, switches out the integrated 100Ω output termination, and puts the output in high impedance to ground and differential. With PWRD$\overline{\mathrm{WN}} \leq 0.3 \mathrm{~V}$ and all LVTTL/LVCMOS inputs $\leq 0.3 \mathrm{~V}$ or \geq V CCIN -0.3 V , supply current is reduced to $50 \mu \mathrm{~A}$ or less.
Driving PWRDWN high starts PLL lock to PCLK_IN and switches in the 100Ω output termination resistor. The LVDS output is not driven until the PLL locks. The LVDS output is high impedance to ground and 100Ω differential. The 100Ω integrated termination pulls OUT+ and OUT- together while the PLL is locking so that $\mathrm{VOD}=\mathrm{OV}$. If $\mathrm{V}_{\mathrm{CC}}=0$, the output resistor is switched out and the LVDS outputs are high impedance to ground and differential.

PLL Lock Time
The PLL lock time is set by an internal counter. The lock time is 17,100 PCLK_IN cycles. Power and clock should be stable to meet the lock-time specification.

Input Buffer Supply

The single-ended inputs (RGB_IN[17:0], CNTL_IN[8:0], DE_IN, RNG0, RNG1, PRE, PCLK_IN, and PWRDWN) are powered from VCCIN. VCCIN can be connected to a 1.71 V to 3.6 V supply, allowing logic inputs with a nominal swing of VCCIN^{2}. If no power is applied to VCCIN^{2} when power is applied to VCC, the inputs are disabled and $\overline{\text { PWRDWN }}$ is internally driven low, putting the device in the power-down state.

Power-Supply Sequencing of MAX9247 and MAX9248/MAX9250 Video Link

 The MAX9247 and MAX9248/MAX9250 video link can be powered up in several ways. The best approach is to keep both MAX9247 and MAX9248 powered down while supplies are ramping up and PCLK_IN of the MAX9247 and REFCLK of the MAX9248/MAX9250 are stabilizing. After all of the power supplies of the MAX9247 and MAX9248/MAX9250 are stable, including PCLK_IN and REFCLK, do the following:1) Power up the MAX9247 first

Figure 15. Common-Mode Filter Capacitor Connection

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

2) Wait for at least tlock of MAX9247 (or $17100 \times \mathrm{t}$) to get activity on the link
3) Power up the MAX9248

Power-Supply Circuits and Bypassing

The MAX9247 has isolated on-chip power domains. The digital core supply (VCC) and single-ended input supply (VCCIN) are isolated but have a common ground (GND). The PLL has separate power and ground (VCCPLL and PLLGND) and the LVDS input also has separate power and ground (VCCLVDS and LVDSGND). The grounds are isolated by diode connections. Bypass each VCC, VCCIN, $V_{C C P L L}$, and $V_{C C L V D S ~}$ pin with high-frequency, surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.

LVDS Output

The LVDS output is a current source. The voltage swing is proportional to the termination resistance. The output is rated for a differential load of $100 \Omega \pm 1 \%$.

Cables and Connectors

Interconnect for LVDS typically has a differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.

Figure 16. IEC 61000-4-2 Contact Discharge ESD Test Circuit

Figure 17. Human Body ESD Test Circuit

Twisted-pair and shielded twisted-pair cables offer superior signal quality compared to ribbon cable and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver.

Board Layout

Separate the LVTTL/LVCMOS inputs and LVDS output to prevent crosstalk. A four-layer PCB with separate layers for power, ground, and signals is recommended.

ESD Protection

The MAX9247 ESD tolerance is rated for IEC 61000-42, Human Body Model, Machine Model, and ISO 10605 standards. IEC 61000-4-2 and ISO 10605 specify ESD tolerance for electronic systems. The IEC 61000-4-2 discharge components are $\mathrm{C}_{S}=150 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=$ 330Ω (Figure 16). For IEC 61000-4-2, the LVDS outputs are rated for $\pm 8 \mathrm{kV}$ Contact Discharge and $\pm 15 \mathrm{kV}$ AirGap Discharge. The Human Body Model discharge components are $\mathrm{CS}=100 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=1.5 \mathrm{k} \Omega$ (Figure 17). For the Human Body Model, all pins are rated for $\pm 3 \mathrm{kV}$ Contact Discharge. The ISO 10605 discharge components are $\mathrm{CS}=330 \mathrm{pF}$ and $\mathrm{RD}=2 \mathrm{k} \Omega$ (Figure 18). For ISO 10605, the LVDS outputs are rated for $\pm 10 \mathrm{kV}$ contact and $\pm 30 \mathrm{kV}$ air discharge. The Machine Model discharge components are Cs $=200 \mathrm{pF}$ and $R_{D}=0 \Omega$ (Figure 19).

Figure 18. ISO 10605 Contact Discharge ESD Test Circuit

Figure 19. Machine Model ESD Test Circuit

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
48 LQFP	C48+5	21-0054	90-0093

27-Bit, 2.5MHz-to-42MHz DC-Balanced LVDS Serializer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$5 / 08$	Corrected LQFP package, added $+105^{\circ} \mathrm{C}$ part, changed temperature limits for $+105^{\circ} \mathrm{C}$ rated part, and added Machine Model ESD text and diagram	$1-6,15-19$
3	$4 / 09$	Added N parts in the Ordering Information table and added new Power- Supply Sequencing of MAX9247 and MAX9248/MAX9250 Video Link section	1,14
4	$4 / 12$	Corrected errors in Absolute Maximum Ratings and Pin Description sections	2,6

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Serializers \& Deserializers - Serdes category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
MAX31953AUM DS90UR903QSQE/NOPB DS90UB925QSQ/NOPB SN65HVS881PWPR MAX9208EAI+ HG82C51N
MAX9260GCB/V + MAX9278AGTM + MAX9272AGTM/V + MAX96700GTJ/V + MAX31963AUM + MAX3680EAI + MAX3681EAG + MAX3882AETX + MAX9205EAI+ MAX9206EAI+T MAX9205EAI/V+ MAX9205EAI+T MAX9206EAI+ MAX9206EAI/V+

MAX9207EAI+ MAX9238EUM + MAX9275GTN/V+T MAX9280AGTN/V+ MAX96708GTJ+ MAX9218ECM+T MAX9217ECM + GS1572-IBE3 MAX3693ECJ FIN224CMLX WK2114-ISPG FM25M4AA-1AIB4R MAX9278GTM/VY+ MAX9248ECMV MAX9268GCM/V+ DS90UB941ASRTDTQ1 DS92LX2122SQE/NOPB LMH0030VS/NOPB LMH0031VS/NOPB LMH0041SQE/NOPB LMH0070SQ/NOPB LMH0071SQE/NOPB LMH0340SQE/NOPB LMH0341SQE/NOPB SCAN921025HSM/NOPB SN65LVDS301ZQE SN65LVDS315RGER SN65LVDS93BIDGGTQ1 SN65LVDS93DGG SN65LVDS95DGG

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

