# CMAXIN 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers 

## General Description

The MAX9311/MAX9313 are low-skew, 1-to-10 differential drivers designed for clock and data distribution. These devices allow selection between two inputs. The selected input is reproduced at 10 differential outputs. The differential inputs can be adapted to accept singleended inputs by connecting the on-chip VBB supply to one input as a reference voltage.
The MAX9311/MAX9313 feature low part-to-part skew (30ps) and output-to-output skew (12ps), making them ideal for clock and data distribution across a backplane or a board. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25 V to +3.8 V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5 V or +3.3 V supply. For differential LVECL operation, these devices operate from a -2.25 V to -3.8 V supply.
The MAX9311 features an on-chip VBB reference output of 1.425 V below the positive supply voltage. The MAX9313 offers an on-chip $V_{B B}$ reference output of 1.32 V below the positive supply voltage.

Both devices are offered in space-saving, 32-pin $5 \mathrm{~mm} \times$ 5 mm TQFP, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN, and industry-standard 32-pin $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ LQFP packages.
Precision Clock Distribution
Low-Jitter Data Repeater

Precision Clock Distribution
Low-Jitter Data Repeater
Features
+2.25V to +3.8V Differential HSTL/LVPECL
Operation
-2.25V to -3.8V LVECL Operation
30ps (typ) Part-to-Part Skew
12ps (typ) Output-to-Output Skew
312ps (typ) Propagation Delay
— 300 mV Differential Output at 3GHz
On-Chip Reference for Single-Ended Inputs
Output Low with Open Input
Pin Compatible with MC100LVEP111 (MAX9311)
and MC100EP111 (MAX9313)
Offered in Tiny QFN* Package (70\% Smaller
Footprint than LQFP)

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX9311ECJ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 LQFP $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ |
| MAX9311EGJ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 QFN $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ |
| MAX9311EHJ* | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 TQFP $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ |
| MAX9313ECJ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 LQFP $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ |
| MAX9313EGJ* | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 QFN $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ |
| MAX9313EHJ* | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 TQFP $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ |

*Future product-contact factory for availability.
Pin Configuration


## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

## ABSOLUTE MAXIMUM RATINGS



Junction-to-Case Thermal Resistance
$7 \mathrm{~mm} \times 7 \mathrm{~mm}$ LQFP
$+12^{\circ} \mathrm{C} / \mathrm{W}$

Junction Temperature .................. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $\qquad$ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection
Human Body Model (CLKSEL, CLK_, $\overline{C L K}$,
$Q_{-}, \bar{Q}_{-}, V_{B B}$ ).
Soldering Temperature (10s)........................................... $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, CLKSEL $=$ high or low, unless otherwise noted.) (Notes 1-4)

| PARAMETER | SYMBOL | CONDITIONS |  | $-40^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  | $+85^{\circ} \mathrm{C}$ |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |
| SINGLE-ENDED INPUT (CLKSEL) |  |  |  |  |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | Internal <br> VBB <br> threshold | MAX9311 | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.23 \\ \hline \end{gathered}$ | VCC | $\begin{gathered} \text { VCC } \\ -1.23 \\ \hline \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.23 \\ \hline \end{gathered}$ | VCC | V |
|  |  |  | MAX9313 | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC |  |
| Input Low Voltage | VIL | Internal <br> $V_{B B}$ <br> threshold | MAX9311 | VEE | $\begin{gathered} V_{C C} \\ -1.62 \end{gathered}$ | $V_{\text {EE }}$ | $\begin{gathered} V_{C C} \\ -1.62 \end{gathered}$ | VEE | $\begin{gathered} V_{C C} \\ -1.62 \end{gathered}$ | V |
|  |  |  | MAX9313 | VEE | $\begin{gathered} V_{C C} \\ -1.475 \end{gathered}$ | VEE | $\begin{gathered} \text { VCC } \\ -1.475 \end{gathered}$ | VEE | $\begin{gathered} \text { VCC } \\ -1.475 \end{gathered}$ |  |
| Input High Current | IIH |  |  |  | 150 |  | 150 |  | 150 | $\mu \mathrm{A}$ |
| Input Low Current | IIL |  |  | -10 | +10 | -10 | +10 | -10 | +10 | $\mu \mathrm{A}$ |
| DIFFERENTIAL INPUTS (CLK_, $\mathbf{C L K}_{-}$) |  |  |  |  |  |  |  |  |  |  |
| Single-Ended Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $V_{B B}$ connected to $\overline{\text { CLK_ }}$ (VIL for $V_{B B}$ connected to CLK_), Figure 1 | MAX9311 | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.23 \end{gathered}$ | Vcc | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.23 \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.23 \end{gathered}$ | VCC | V |
|  |  |  | MAX9313 | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC | $\begin{gathered} V_{C C} \\ -1.165 \end{gathered}$ | VCC |  |

## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

## DC ELECTRICAL CHARACTERISTICS (continued)

( $V_{C C}-V_{E E}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{CLKSEL}=$ high or low, unless otherwise noted.) (Notes 1-4)

| PARAMETER | SYMBOL | CONDITIONS |  | $-40^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  | $+85^{\circ} \mathrm{C}$ |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |
| Single-Ended Input Low Voltage | VIL | VBB connected to $\overline{\text { CLK_ }}$ ( $\mathrm{V}_{\text {IH }}$ for $\mathrm{V}_{\mathrm{BB}}$ connected to CLK_), Figure 1 | MAX9311 | VEE | $\begin{gathered} \mathrm{V}_{C C} \\ -1.62 \end{gathered}$ | VEE | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.62 \end{gathered}$ | VEE | $\begin{aligned} & V_{C C} \\ & -1.62 \end{aligned}$ | V |
|  |  |  | MAX9313 | Vee | $\begin{gathered} V_{C C} \\ -1.475 \end{gathered}$ | Vee | $\begin{gathered} V_{C C} \\ -1.475 \end{gathered}$ | Vee | $\begin{gathered} V_{C C} \\ -1.475 \end{gathered}$ |  |
| High Voltage of Differential Input | VIHD |  |  | $V_{\text {EE }}+1.2$ | VCC | $V_{E E}+1.2$ | VCC | $V_{E E}+1.2$ | VCC | V |
| Low Voltage of Differential Input | VILD |  |  | $V_{\text {EE }}$ | $\begin{gathered} V_{C C} \\ -0.095 \end{gathered}$ | $V_{\text {EE }}$ | $\begin{gathered} V_{C C} \\ -0.095 \end{gathered}$ | VEE | $\begin{gathered} V_{C C} \\ -0.095 \end{gathered}$ | V |
| Differential Input Voltage | $\begin{aligned} & \mathrm{V}_{\text {IHD }}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$ | For $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{EE}}<3.0 \mathrm{~V}$ |  | 0.095 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -\mathrm{V}_{\mathrm{EE}} \end{aligned}$ | 0.095 | $\begin{aligned} & \mathrm{V}_{C C} \\ & -\mathrm{V}_{\mathrm{EE}} \end{aligned}$ | 0.095 | $V_{C C}$ <br> - VEE | V |
|  |  | For $V_{C C}-V_{E E} \geq 3.0 \mathrm{~V}$ |  | 0.095 | 3.0 | 0.095 | 3.0 | 0.095 | 3.0 |  |
| Input High Current | IIH |  |  |  | 150 |  | 150 |  | 150 | $\mu \mathrm{A}$ |
| CLK_ Input Low Current | IILCLK |  |  | -10 | +10 | -10 | +10 | -10 | +10 | $\mu \mathrm{A}$ |
| CLK_ Input Low Current | IILCLK |  |  | -150 |  | -150 |  | -150 |  | $\mu \mathrm{A}$ |
| OUTPUTS (Q_, $\overline{\mathbf{Q}_{-}}$) |  |  |  |  |  |  |  |  |  |  |
| Single-Ended Output High Voltage | VOH | Figure 1 |  | $\begin{gathered} V_{C C} \\ -1.025 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -0.900 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.025 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -0.900 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.025 \end{gathered}$ | $\begin{gathered} \text { VCC } \\ -0.900 \end{gathered}$ | V |
| Single-Ended Output Low Voltage | VoL | Figure 1 |  | $\begin{gathered} \mathrm{V}_{C C} \\ -1.93 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.695 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.93 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.695 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.93 \end{gathered}$ | $\begin{gathered} V_{C c} \\ -1.695 \end{gathered}$ | V |
| Differential Output Voltage | $\mathrm{VOH}-$ <br> VOL | Figure 1 |  | 670 | 950 | 670 | 950 | 670 | 950 | mV |
| REFERENCE (VBb) |  |  |  |  |  |  |  |  |  |  |
| Reference Voltage Output (Note 5) | VBB | $\begin{aligned} & \mathrm{I} \mathrm{BB}= \\ & \pm 0.5 \mathrm{~mA} \end{aligned}$ | MAX9311 | $\begin{gathered} V_{C C} \\ -1.525 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.325 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.525 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.325 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.525 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.325 \end{gathered}$ | V |
|  |  |  | MAX9313 | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.38 \end{gathered}$ | $\begin{gathered} V_{C C} \\ -1.26 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.38 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.26 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.38 \end{gathered}$ | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -1.26 \end{gathered}$ |  |
| POWER SUPPLY |  |  |  |  |  |  |  |  |  |  |
| Supply Current (Note 6) | IeE |  |  |  | 75 |  | 82 |  | 95 | mA |

## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

## AC ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.25 \mathrm{~V}$ to 3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V} C \mathrm{C}-2 \mathrm{~V}$, input frequency $=1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$ ( $20 \%$ to $80 \%$ ), CLKSEL $=$ high or low, $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}, ~ \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}-0.15 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to the smaller of 3 V or $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.) (Note 7)

| PARAMETER | SYMBOL | CONDITIONS | $-40^{\circ} \mathrm{C}$ |  |  | $+25^{\circ} \mathrm{C}$ |  |  | $+85^{\circ} \mathrm{C}$ |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MA | MIN | TYP | MAX |  |
| Differential Input-toOutput Delay | tPLHD, tPHLD | Figure 2 | 220 | 321 | 380 | 220 | 312 | 410 | 260 | 322 | 400 | ps |
| Output-to- <br> Output Skew <br> (Note 8) | tSKOO |  |  | 12 | 46 |  | 12 | 46 |  | 10 | 35 | ps |
| Part-to-Part Skew (Note 9) | tSKPP |  |  | 30 | 160 |  | 30 | 190 |  | 30 | 140 | ps |
| Added <br> Random Jitter <br> (Note 10) | tr J | $\mathrm{fin}=1.5 \mathrm{GHz}$ <br> Clock pattern |  | 1.2 | 2.5 |  | 1.2 | 2.5 |  | 1.2 | 2.5 | ps (RMS) |
|  |  | $\mathrm{fin}=3.0 \mathrm{GHz},$ <br> Clock pattern |  | 1.2 | 2.6 |  | 1.2 | 2.6 |  | 1.2 | 2.6 |  |
| Added <br> Deterministic Jitter (Note 10) | tDJ | $\begin{aligned} & \text { 3Gbps, } \\ & 2^{23}-1 \text { PRBS } \\ & \text { pattern } \end{aligned}$ |  | 80 | 95 |  | 80 | 95 |  | 80 | 95 | $\begin{gathered} \text { ps } \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$ |
| Switching Frequency | $\mathrm{fmax}^{\text {m }}$ | $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq$ 350mV, Clock pattern, Figure 2 | 2.0 |  |  | 2.0 | 3.0 |  | 2.0 |  |  | GHz |
|  |  | $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq$ 500mV, Clock pattern, Figure 2 | 1.5 |  |  | 1.5 |  |  | 1.5 |  |  |  |
| Output <br> Rise/Fall Time (20\% to 80\%) | $\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$ | Figure 2 | 100 | 112 | 140 | 100 | 116 | 140 | 100 | 121 | 140 | ps |

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: Single-ended input operation using $V_{B B}$ is limited to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$ to 3.8 V for the MAX9311 and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.7 \mathrm{~V}$ to 3.8 V for the MAX9313.
Note 4: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Guaranteed by design and characterization over the full operating temperature range.
Note 5: Use $\mathrm{V}_{\mathrm{BB}}$ only for inputs that are on the same device as the $\mathrm{V}_{\mathrm{BB}}$ reference.
Note 6: All pins open except $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.
Note 7: Guaranteed by design and characterization. Limits are set at $\pm 6$ sigma.
Note 8: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition
Note 10:Device jitter added to the input signal.

# 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers 

Typical Operating Characteristics
$\left(V_{C C}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-0.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.25 \mathrm{~V}\right.$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, fiN $=1.5 \mathrm{GHz}$, outputs loaded with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| $\begin{aligned} & 1,9,16, \\ & 25,32 \end{aligned}$ | VCC | Positive Supply Voltage. Bypass from $\mathrm{V}_{C C}$ to $\mathrm{V}_{E E}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device. |
| 2 | CLKSEL | Clock Select Input (Single-Ended). Drive low to select the CLKO, $\overline{\text { CLKO }}$ input. Drive high to select the CLK1, $\overline{\mathrm{CLK} 1}$ input. The CLKSEL threshold is $\mathrm{V}_{\mathrm{BB}}$. If CLKSEL is not driven by a logic signal, use a $1 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\mathrm{EE}}$ to select CLK0, $\overline{\mathrm{CLKO}}$, or a $1 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{\mathrm{CC}}$ to select CLK1, $\overline{\mathrm{CLK} 1}$. |
| 3 | CLKO | Noninverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pulldown resistor. |
| 4 | $\overline{\text { CLKO }}$ | Inverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pullup and pulldown resistors. |
| 5 | VBB | Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $\mathrm{V}_{\mathrm{CC}}$; otherwise, leave open. |
| 6 | CLK1 | Noninverting Differential Clock Input 1. Internal $75 \mathrm{k} \Omega$ pulldown resistor. |
| 7 | CLK1 | Inverting Differential Clock Input 1. Internal $75 \mathrm{k} \Omega$ pullup and pulldown resistors. |
| 8 | VEE | Negative Supply Voltage |
| 10 | Q9 | Inverting Q9 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 11 | Q9 | Noninverting Q9 Output. Typically terminate with $50 \Omega$ resistor to VCC-2V. |
| 12 | Q8 | Inverting Q8 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$. |
| 13 | Q8 | Noninverting Q8 Output. Typically terminate with $50 \Omega$ resistor to V $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$. |
| 14 | Q7 | Inverting Q7 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$. |
| 15 | Q7 | Noninverting Q7 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 17 | Q6 | Inverting Q6 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 18 | Q6 | Noninverting Q6 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 19 | $\overline{\text { Q5 }}$ | Inverting Q5 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 20 | Q5 | Noninverting Q5 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2 V . |
| 21 | Q4 | Inverting Q4 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 22 | Q4 | Noninverting Q4 Output. Typically terminate with $50 \Omega$ resistor to V $\mathrm{CC}-2 \mathrm{~V}$. |
| 23 | Q3 | Inverting Q3 Output. Typically terminate with $50 \Omega$ resistor to VCC-2V. |
| 24 | Q3 | Noninverting Q3 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$. |
| 26 | Q2 | Inverting Q2 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$. |
| 27 | Q2 | Noninverting Q2 Output. Typically terminate with $50 \Omega$ resistor to V $\mathrm{CC}-2 \mathrm{~V}$. |
| 28 | Q1 | Inverting Q1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 29 | Q1 | Noninverting Q1 Output. Typically terminate with $50 \Omega$ resistor to V $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$. |
| 30 | $\overline{\text { Q0 }}$ | Inverting Q0 Output. Typically terminate with $50 \Omega$ resistor to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$. |
| 31 | Q0 | Noninverting Q0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2 V . |

# 1：10 Differential LVPECL／LVECL／HSTL Clock and Data Drivers 

## Detailed Description

The MAX9311／MAX9313 are low skew，1－to－10 differen－ tial drivers designed for clock and data distribution．
A 2：1 mux selects between the two differential inputs， CLKO，$\overline{\mathrm{CLKO}}$ and CLK1，$\overline{\mathrm{CLK} 1 .}$ ．The 2：1 mux is switched by the single－ended CLKSEL input．A logic low selects the CLKO，$\overline{C L K O}$ input．A logic high selects the CLK1， $\overline{\text { CLK1 }}$ input．The logic threshold for CLKSEL is set by an internal VBB voltage reference．The CLKSEL input can be driven to VCC and VEE or by a single－ended LVPECL／ LVECL signal．The selected input is reproduced at 10 differential outputs．
For interfacing to differential HSTL and LVPECL signals， these devices operate over $\mathrm{a}+2.25 \mathrm{~V}$ to +3.8 V supply range，allowing high－performance clock or data distribu－ tion in systems with a nominal +2.5 V or +3.3 V supply． For differential LVECL operation，these devices operate from a -2.25 V to -3.8 V supply．
The differential inputs can be configured to accept sin－ gle－ended inputs when operating at approximately $\mathrm{V}_{\mathrm{CC}}$－ $\mathrm{V}_{\mathrm{EE}}=+3.0 \mathrm{~V}$ to +3.8 V for the $\mathrm{MAX9311}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=$ +2.7 V to +3.8 V for the MAX9313．This is accomplished by connecting the on－chip reference voltage， $\mathrm{V}_{\mathrm{BB}}$ ，to an input as a reference．For example，the differential CLKO， CLKO input is converted to a noninverting，single－ended input by connecting $V_{B B}$ to $\overline{C L K O}$ and connecting the single－ended input to CLKO．Similarly，an inverting input is obtained by connecting $V_{\mathrm{BB}}$ to CLKO and connecting the single－ended input to CLKO．With a differential input configured as single－ended（using $V_{B B}$ ），the single－ ended input can be driven to VCC and VEE or with a sin－ gle－ended LVPECL／LVECL signal．
When a differential input is configured as a single－ended input（using $V_{B B}$ ），the approximate supply range is $\mathrm{V}_{\mathrm{CC}}-$ $\mathrm{V}_{\mathrm{EE}}=+3.0 \mathrm{~V}$ to +3.8 V for the $\mathrm{MAX9311}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=$ +2.7 V to +3.8 V for the MAX9313．This is because one of the inputs must be $\mathrm{V}_{E E}+1.2 \mathrm{~V}$ or higher for proper oper－ ation of the input stage． $\mathrm{V}_{\mathrm{BB}}$ must be at least $\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}$ because it becomes the high－level input when the other （single－ended）input swings below it．Therefore，mini－ mum $\mathrm{V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}$ ．
The minimum $V_{B B}$ output for the MAX9311 is $V_{C C}$－ 1.525 V and the minimum $\mathrm{V}_{\mathrm{BB}}$ output for the MAX9313 is $V_{C C}-1.38 \mathrm{~V}$ ．Substituting the minimum $V_{B B}$ output for each device into $\mathrm{V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}$ results in a minimum supply of 2.725 V for the MAX9311 and 2.58 V for the MAX9313．Rounding up to standard supplies gives the single－ended operating supply ranges of $\mathrm{V}_{C C}-\mathrm{V}_{E E}=$ 3.0 V to 3.8 V for the MAX9311 and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.7 \mathrm{~V}$ to 3.8 V for the MAX9313．

When using the $\mathrm{V}_{\mathrm{BB}}$ reference output，bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $\mathrm{V}_{\mathrm{C}}$ ．If the $\mathrm{V}_{\mathrm{BB}}$ reference is not used，it can be left open．The $\mathrm{V}_{\mathrm{BB}}$ reference can source or sink 0.5 mA ，which is sufficient to drive two inputs．Use $V_{B B}$ only for inputs that are on the same device as the VBB reference．
The maximum magnitude of the differential input from CLK＿to $\overline{C L K}$ is 3.0 V or $\mathrm{V}_{C C}-\mathrm{V}_{E E}$ ，whichever is less． This limit also applies to the difference between any ref－ erence voltage input and a single－ended input．
The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open． The inverting inputs（ $\overline{\mathrm{CLKO}}$ and $\overline{\mathrm{CLK} 1}$ ）are biased with a $75 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and a $75 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\mathrm{EE}}$ ．The noninverting inputs（CLK0 and CLK1）are biased with a $75 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\mathrm{EE}}$ ．The single－ended CLKSEL input does not have a bias resistor．If not driven，pull CLKSEL up or down with a 1 kHz resistor（see Pin Description）．
Specifications for the high and low voltages of a differen－ tial input（VIHD and VILD）and the differential input volt－ age（VIHD－VILD）apply simultaneously（VILD cannot be higher than $\mathrm{V}_{\mathrm{IHD}}$ ）．
Output levels are referenced to $\mathrm{V}_{\mathrm{CC}}$ and are considered LVPECL or LVECL，depending on the level of the $\mathrm{V}_{\mathrm{CC}}$ supply．With $V_{C C}$ connected to a positive supply and VEE connected to GND，the outputs are LVPECL．The outputs are LVECL when VCC is connected to GND and $V_{E E}$ is connected to a negative supply．
A single－ended input of at least $V_{B B} \pm 95 \mathrm{mV}$ or a differen－ tial input of at least 95 mV switches the outputs to the $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ levels specified in the DC Electrical Characteristics table．

## Applications Information

## Supply Bypassing

Bypass $\mathrm{V}_{C C}$ to $\mathrm{V}_{\mathrm{EE}}$ with high－frequency surface－mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible，with the $0.01 \mu \mathrm{~F}$ value capaci－ tor closest to the device．Use multiple parallel vias for low inductance．When using the VBB reference output， bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $\mathrm{V}_{\mathrm{Cc}}$（if the $V_{B B}$ reference is not used，it can be left open）．

Traces
Input and output trace characteristics affect the perfor－ mance of the MAX9311／MAX9313．Connect each signal of a differential input or output to a $50 \Omega$ characteristic impedance trace．Minimize the number of vias to prevent impedance discontinuities．Reduce reflections by main－ taining the $50 \Omega$ characteristic impedance through con－ nectors and across cables．Reduce skew within a

## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

differential pair by matching the electrical length of the traces.

## Output Termination

Terminate outputs through $50 \Omega$ to $\mathrm{VCC}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and $\overline{\mathrm{QO}}$.


Figure 1. Switching with Single-Ended Input


Figure 2. Differential Transition Time and Propagation Delay Timing Diagram

## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers



## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


| JEDEC |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BC |  | BE |  |  |  |
|  | 32 |  | LEAD | 48 |  | LEAD |
|  | MIN. | MAX. | MIN. | MAX. |  |  |
| A | --- | 1.60 | --- | 1.60 |  |  |
| $A_{1}$ | 0.05 | 0.15 | 0.05 | 0.15 |  |  |
| $A_{2}$ | 1.35 | 1.45 | 1.35 | 1.45 |  |  |
| $D$ | 8.90 | 9.10 | 8.90 | 9.10 |  |  |
| $D_{1}$ | 7.00 | BSC. | 7.00 | BSC. |  |  |
| $E$ | 8.90 | 9.10 | 8.90 | 9.10 |  |  |
| $E_{1}$ | 7.00 | BSC. | 7.00 | BSC. |  |  |
| $e$ | 0.8 | BSC. | 0.5 | BSC. |  |  |
| $L$ | 0.45 | 0.75 | 0.45 | 0.75 |  |  |
| $b$ | 0.30 | 0.45 | 0.17 | 0.27 |  |  |
| $c$ | 0.09 | 0.20 | 0.09 | 0.20 |  |  |
| $\propto$ | $0^{\circ}$ | $7^{\circ}$ | $0^{\circ}$ | $7^{\circ}$ |  |  |



NDTES:

1. ALL DIMENSIGNING AND TQLERANCING CZNFIRM TD ANSI Y14.5-1982.
2. CDNTRDLLING DIMENSIDN: MILLIMETER.
3. THIS GUTLINE CZNFIRMS TI JEDEC PUBLICATIUN 95 REGISTRATIUN MD-136, VARIATIUNS BC AND BE.
4. LEADS SHALL BE CDPLANAR WITHIN . 004 INCH.
/VI/IXI/VI

## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


## 1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I ISPPAC-
CLK5510V-01TN48C 83905AMLFT

