1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

Abstract

General Description The MAX9320B low-skew, 1-to-2 differential driver is designed for clock and data distribution. The input is reproduced at two differential outputs. The differential input can be adapted to accept single-ended inputs by applying an external reference voltage. The MAX9320B features ultra-low propagation delay (208ps), part-to-part skew (20ps), and output-to-output skew (6ps) with 30mA maximum supply current, making this device ideal for clock distribution. For interfacing to differential PECL and LVPECL signals, this device operates over a +3.0 V to +5.5 V supply range, allowing high-performance clock or data distribution in systems with a nominal 3.3 V or 5 V supply. For differential ECL and LVECL operation, this device operates from a -3.0 V to -5.5 V supply. The MAX9320B is offered in industry-standard 8-pin TSSOP and SO packages.

Applications
Precision Clock Distribution
Low-Jitter Data Repeater
Protection Switching

Features

- Improved Second Source of the MC10EP11D
- +3.0V to +5.5V Differential PECL/LVPECL Operation
- -3.0V to -5.5V ECL/LVECL Operation
- Low 22mA Supply Current
- 20ps Part-to-Part Skew
- 6ps Output-to-Output Skew
- 208ps Propagation Delay
- Minimum 300mV Output at 3GHz
- Outputs Low for Open Input
- ESD Protection >2kV (Human Body Model)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9320BESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX9320BEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TSSOP

Pin Configuration

Figure 1. Differential Transition Time and Propagation Delay Timing Diagram

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

ABSOLUTE MAXIMUM RATINGS

Junction-to-Ambient Thermal Resistance with 500
LFPM Airflow
8-Pin TSSOP ... $+155^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO... $99^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance
8-Pin TSSOP
$+39^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO.. $40^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection
Human Body Model (D, $\overline{\mathrm{D}}, \mathrm{Q}_{-}, \bar{Q}_{-}$) $\mathrm{P}_{2} \mathrm{kV}$
Soldering Temperature (10s) ... $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}$ $=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes $1,2,3$)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

DIFFERENTIAL INPUT (D, $\overline{\mathrm{D}}$)

High Voltage of Differential Input	VIHD		$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & +1.2 \end{aligned}$	$V_{\text {cc }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & +1.2 \end{aligned}$	VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ +1.2 \end{gathered}$	VCC	V
Low Voltage of Differential Input	VILD		$V_{\text {EE }}$	$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	VEE	$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	VEE	$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	V
Differential Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IHD}}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$		0.1	3.0	0.1	3.0	0.1	3.0	V
Input High Current	IIH			150		150		150	$\mu \mathrm{A}$
D Input Low Current	IILD	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{EE}} \leq 3.8 \mathrm{~V}$	-100	+100	-100	+100	-100	+100	$\mu \mathrm{A}$
		$V_{C C}-V_{\text {EE }} \geq 3.8 \mathrm{~V}$	-140	+140	-140	+140	-140	+140	
$\overline{\mathrm{D}}$ Input Low Current	IILD	$V_{C C}-V_{\text {EE }} \leq 3.8 \mathrm{~V}$	-150	+150	-150	+150	-150	+150	$\mu \mathrm{A}$
		$V_{C C}-V_{\text {EE }} \geq 3.8 \mathrm{~V}$	-175	+175	-175	+175	-175	+175	

DIFFERENTIAL OUTPUTS (Q_, $\overline{\mathbf{Q}_{-}}$)

| Single-Ended
 Output High
 Voltage | VOH | Figure 1 | $V_{C C}$ | V |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}$ $=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes $\left.1,2,3\right)$

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Single-Ended Output Low Voltage	VoL	Figure 1	$\left\lvert\, \begin{array}{\|c} \text { VCc } \\ -1.935 \end{array}\right.$		$\begin{gathered} V_{C C} \\ -1.685 \end{gathered}$	$\begin{gathered} \mathrm{V}_{C C} \\ -1.87 \end{gathered}$		$\begin{gathered} \mathrm{V}_{C C} \\ -1.62 \end{gathered}$	$\begin{gathered} V_{C C} \\ -1.81 \end{gathered}$		$\begin{gathered} V_{C C} \\ -1.56 \end{gathered}$	V
Differential Output Voltage	VOH - VOL	Figure 1	550			550			550			mV
POWER SUPPLY												
Supply Current	IEE	(Note 4)		20	28		22	28		23	30	mA

AC ELECTRICAL CHARACTERISTICS

(VCC - VEE $=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$, input frequency $\leq 1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to
 $=\mathrm{VCC}-1 \mathrm{~V}, \mathrm{~V}$ ILD $=\mathrm{V}$ CC -1.5 V , unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-toOutput Delay	tpLHD, tPHLD	Figure 1	145	220	265	155	208	265	160	203	270	ps
Output-toOutput Skew	tSKOO	(Note 6)		6	30		6	30		6	30	ps
Part-to-Part Skew	tSKPP	(Note 7)		20	120		20	110		20	110	ps
Added Random Jitter	tr J	$\mathrm{fiN}=1.5 \mathrm{GHz}$, clock pattern (Note 8)		1.7	2.8		1.7	2.8		1.7	2.8	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$
		$\mathrm{f} / \mathrm{N}=3.0 \mathrm{GHz}$, clock pattern (Note 8)		0.6	1.5		0.6	1.5		0.6	1.5	
Added Deterministic Jitter	tDJ	$\begin{aligned} & 3.0 \mathrm{Gbps} \\ & 2^{23}-1 \text { PRBS pattern } \\ & (\text { Note 8) } \end{aligned}$		57	80		57	80		57	80	$\begin{gathered} \text { ps } \\ (\mathrm{P}-\mathrm{P}) \end{gathered}$

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

AC ELECTRICAL CHARACTERISTICS (continued)

(VCC $-V_{E E}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$, input frequency $\leq 1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to 80%), $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{E E}$ to $\mathrm{V}_{C C}-0.15 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to 3.0 V . Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}$ $=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Switching Frequency	fmax	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 300 \mathrm{mV},$ clock pattern, Figure 1	3.0			3.0			3.0			GHz
		$V_{O H}-V_{O L} \geq 550 \mathrm{mV}$, clock pattern, Figure 1	2.0			2.0			2.0			
Output Rise/Fall Time (20\% to 80\%)	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Figure 1	50	95	120	50	98	120	50	105	120	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Guaranteed by design and characterization over the full operating temperature range.
Note 4: All pins open except V_{CC} and V_{EE}.
Note 5: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 8: Device jitter added to the input signal.

Typical Operating Characteristics

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{fIN}=1.5 \mathrm{GHz}$, outputs loaded with 50Ω to $\mathrm{V} C \mathrm{C}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V} I \mathrm{HD}=\mathrm{V} C \mathrm{C}-1 \mathrm{~V}, \mathrm{VILD}=\mathrm{V} C \mathrm{C}-1.5 \mathrm{~V}, \mathrm{fIN}=1.5 \mathrm{GHz}$, outputs loaded with 50Ω to $\mathrm{V} C \mathrm{C}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to Vcc-2V.
2	$\overline{\text { Q0 }}$	Inverting Q0 Output. Typically terminate with 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
3	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to VCC-2V.
4	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
5	V_{EE}	Negative Supply Voltage
6	$\overline{\text { D }}$	Inverting Differential Input. $50 \mathrm{k} \Omega$ pullup to V_{CC} and $100 \mathrm{k} \Omega$ pulldown to V_{EE}.
7	D	Noninverting Differential Input. $80 \mathrm{k} \Omega$ pullup to V_{CC} and $60 \mathrm{k} \Omega$ pulldown to V_{EE}.
8	VCC	Positive Supply Voltage. Bypass from VCC to $V_{E E}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

Abstract

Detailed Description The MAX9320B low-skew, 1-to-2 differential driver is designed for clock and data distribution. For interfacing to differential PECL and LVPECL signals, this device operates over a +3.0 V to +5.5 V supply range, allowing high-performance clock and data distribution in systems with a nominal 3.3 V or 5 V supply. For differential ECL and LVECL operation, this device operates from a -3.0 V to -5.5 V supply.

Inputs
The maximum magnitude of the differential input from D to $\overline{\mathrm{D}}$ is 3.0 V . This limit also applies to the difference between any reference voltage input and a singleended input.
The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open The inverting input, $\overline{\mathrm{D}}$, is biased with a $50 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and a $100 \mathrm{k} \Omega$ pulldown to V_{EE}. The noninverting input, D , is biased with an $80 \mathrm{k} \Omega$ pullup to V_{CC} and a 60k Ω pulldown to VEE.
Specifications for the high and low voltages of the differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously (VILD cannot be higher than VIHD).

Outputs

Output levels are referenced to VCC and are considered PECL/LVPECL or ECL/LVECL, depending on the level of the VCC supply. With VCC connected to a positive supply and VEE connected to GND, the outputs are PECL/LVPECL. The outputs are ECL/LVECL when VCC is connected to GND and V_{EE} is connected to a negative supply.
A differential input of at least $\pm 100 \mathrm{mV}$ switches the outputs to the VOH and V_{OL} levels specified in the $D C$ Electrical Characteristics table.

Applications Information

Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ value capacitor closest to the device. Use multiple parallel ground vias for low inductance

Traces
Input and output trace characteristics affect the performance of the MAX9320B. Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination
Terminate outputs through 50Ω to VCC -2 V or use an equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and Q0.

Chip Information

TRANSISTOR COUNT: 182

1:2 Differential PECL/ECL/LVPECL/LVECL Clock and Data Driver

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
D	0.189	0.197	4.80	5.00
e	0.050	BSC	1.27	BSC
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27
α	$0 ?$	$8 ?$	$0 ?$	$8 ?$

NDTES:

1. D\&E DD NDT INCLUDE MDLD FLASH.
2. MLLD FLASH IR PRUTRUSIUNS NDT TD EXCEED . 15 mm (.006")
3. CDNTRDLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC MS-012 AA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I ISPPAC-
CLK5510V-01TN48C 83905AMLFT

