1：2 Differential LVPECL／LVECL／HSTL Clock and Data Drivers

Abstract

General Description The MAX9320／MAX9320A are low－skew，1－to－2 differen－ tial drivers designed for clock and data distribution．The input is reproduced at two differential outputs．The dif－ ferential input can be adapted to accept single－ended inputs by applying an external reference voltage． The MAX9320／MAX9320A feature ultra－low propagation delay（208ps），part－to－part skew（20ps），and output－to－ output skew（6ps）with 30mA maximum supply current， making these devices ideal for clock distribution．For interfacing to differential HSTL and LVPECL signals， these devices operate over $\mathrm{a}+2.25 \mathrm{~V}$ to +3.8 V supply range，allowing high－performance clock or data distrib－ ution in systems with a nominal +2.5 V or +3.3 V supply． For differential LVECL operation，these devices operate from a -2.25 V to -3.8 V supply． The pinout is the only difference between the MAX9320 and MAX9320A．Multiple pinouts are provided to simplify routing across a backplane to either side of a double－ sided board．

These devices are offered in space－saving 8－pin SOT23， $\mu \mathrm{MAX}$ ，and SO packages．

Applications
Precision Clock Distribution
Low－Jitter Data Repeater
Protection Switching

Features
－Improved Second Source of the MC10LVEP11 （MAX9320）
－＋2．25V to＋3．8V Differential HSTL／LVPECL Operation
－－2．25V to－3．8V LVECL Operation
－Low 22mA（typ）Supply Current
－20ps（typ）Part－to－Part Skew
－6ps（typ）Output－to－Output Skew
－208ps（typ）Propagation Delay
－Minimum 300mV Output at 3GHz
－Outputs Low for Open Input
－ESD Protection＞2kV（Human Body Model）
－Available in Thermally Enhanced Exposed－Pad SO Package

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	TOP MARK
MAX9320EKA－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23－8	AALJ
MAX9320ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX9320XESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO－EP＊	-
MAX9320EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX9320AEKA－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23－8	AAIW

＊Contact factory for availability．

Pin Configurations

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

ABSOLUTE MAXIMUM RATINGS

Junction-to-Case Thermal Resistance	
8-Pin SOT23.	$+80^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin μ MAX	$+39^{\circ} \mathrm{C} / \mathrm{W}$
8 -Pin SO	$+40^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature .. $150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ESD Protection	
Human Body Model ($\left.\mathrm{D}, \overline{\mathrm{D}}, \mathrm{Q}_{-}, \overline{\mathrm{Q}_{-}}\right)$. 2 kV
Soldering Temperature (10s)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}-\mathrm{V}_{E E}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-$ $1.0 \mathrm{~V}, \mathrm{VILD}=\mathrm{VCC}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
DIFFERENTIAL INPUT (D, $\overline{\mathbf{D}}$)												
High Voltage of Differential Input	VIHD		$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & +1.2 \end{aligned}$		VCC	$\begin{gathered} V_{E E} \\ +1.2 \end{gathered}$		VCC	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & +1.2 \end{aligned}$		VCC	V
Low Voltage of Differential Input	VILD		VEE		$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	VEE		$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	VEE		$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	V
Differential Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {IHD }} \\ & -\mathrm{V}_{\text {ILD }} \end{aligned}$	$\begin{aligned} & \text { For } V_{C C}-V_{E E} \\ & <+3.0 \mathrm{~V} \end{aligned}$	0.1		$\begin{aligned} & \mathrm{V}_{C C} \\ & -\mathrm{V}_{\mathrm{EE}} \end{aligned}$	0.1		$\begin{aligned} & \mathrm{V}_{C C} \\ & -\mathrm{V}_{\mathrm{EE}} \end{aligned}$	0.1		$\begin{gathered} V_{C C} \\ -V_{E E} \end{gathered}$	V
		$\begin{aligned} & \text { For } V_{C C}-V_{E E} \\ & \geq+3.0 \mathrm{~V} \end{aligned}$	0.1		3.0	0.1		3.0	0.1		3.0	
Input High Current	IIH				150			150			150	$\mu \mathrm{A}$
D Input Low Current	IILD		-10		100	-10		100	-10		100	$\mu \mathrm{A}$
$\overline{\mathrm{D}}$ Input Low Current	IIL $\overline{\mathrm{D}}$		-150		+150	-150		+150	-150		+150	$\mu \mathrm{A}$
DIFFERENTIAL OUTPUTS (Q_, $\overline{\mathbf{Q}_{-}}$)												
Single-Ended Output High Voltage	VOH	Figure 1	$\begin{array}{\|c} \left\lvert\, \begin{array}{cc} \\ V_{C C} \\ -1.135 \end{array}\right. \end{array}$		$\begin{gathered} \text { VCC } \\ -0.885 \end{gathered}$	$\begin{gathered} V_{C C} \\ -1.07 \end{gathered}$		$\begin{gathered} V_{C C} \\ -0.82 \end{gathered}$	$\begin{gathered} V_{C C} \\ -1.01 \end{gathered}$		$\begin{gathered} V_{C c} \\ -0.76 \end{gathered}$	V

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{V}} \mathrm{HD}=\mathrm{V}_{\mathrm{CC}}-$ 1.0V, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Single-Ended Output Low Voltage	VOL	Figure 1	$\begin{array}{\|c} \hline V_{C C} \\ -1.935 \end{array}$		$\begin{gathered} V_{C C} \\ -1.685 \end{gathered}$	$\begin{gathered} V_{C C} \\ -1.87 \end{gathered}$		$\begin{gathered} V_{C C} \\ -1.62 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -1.81 \end{gathered}$		$\begin{gathered} V_{C C} \\ -1.56 \end{gathered}$	V
Differential Output Voltage	VOH - VOL	Figure 1	550			550			550			mV
POWER SUPPLY												
Supply Current	IEE	(Note 4)		20	28		22	28		23	30	mA

AC ELECTRICAL CHARACTERISTICS

($\mathrm{VCC}-\mathrm{V}_{\mathrm{EE}}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$, input frequency $=1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$ (20% to 80%), $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{E E}$ to $\mathrm{V}_{C C}-0.15 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to the smaller of 3 V or $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-toOutput Delay	$\begin{aligned} & \text { tPLHD, } \\ & \text { tPHLD } \end{aligned}$	Figure 1	145	203	265	155	208	265	160	220	270	ps
Output-toOutput Skew	tSKOO	(Note 6)		6	30		6	30		6	30	ps
Part-to-Part Skew	tSKPP	(Note 7)		20	120		20	110		20	110	ps
Added Random Jitter (Note 8)	tr J	$\mathrm{fiN}=1.5 \mathrm{GHz}$, clock pattern		1.7	2.8		1.7	2.8		1.7	2.8	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$
		$\mathrm{f} / \mathrm{N}=3.0 \mathrm{GHz}$, clock pattern		0.6	1.5		0.6	1.5		0.6	1.5	
Added Deterministic Jitter	tDJ	3.0Gbps $2^{23}-1$ PRBS pattern (Note 8)		57	80		57	80		57	80	$\begin{gathered} \text { ps } \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

AC ELECTRICAL CHARACTERISTICS (continued)

(VCC $-\mathrm{V}_{\mathrm{EE}}=+2.25 \mathrm{~V}$ to +3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$, input frequency $=1.5 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$ (20% to 80%), $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{E E}$ to $\mathrm{V}_{C C}-0.15 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to the smaller of 3 V or $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{C C}-1.5 \mathrm{~V}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+^{25}{ }^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Switching Frequency	$f_{\text {max }}$	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 300 \mathrm{mV} \text {, }$ clock pattern, Figure 1	3.0			3.0			3.0			GHz
		$V_{O H}-V_{O L} \geq 550 \mathrm{mV}$, clock pattern, Figure 1	2.0			2.0			2.0			
Output Rise/Fall Time (20\% to 80\%)	t_{R}, t_{F}	Figure 1	50	88	120	50	89	120	50	90	120	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Guaranteed by design and characterization over the full operating temperature range.
Note 4: All pins open except V_{CC} and V_{EE}.
Note 5: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 8: Device jitter added to the input signal.

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{fiN}_{\mathrm{I}}=1.5 \mathrm{GHz}$, outputs loaded with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Pin Description (MAX9320)

PIN		NAME	FUNCTION
$\mu \mathrm{MAX} / \mathrm{SO}$	SOT23		
1	8	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
2	7	$\overline{\mathrm{Q} 0}$	Inverting Q0 Output. Typically terminate with 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
3	6	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V $\mathrm{CC}-2 \mathrm{~V}$.
4	5	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
5	2	VEE	Negative Supply Voltage
6	4	$\overline{\text { D }}$	Inverting Differential Input. 60k
7	3	D	Noninverting Differential Input. 100k Ω pulldown to VEE.
8	1	VCC	Positive Supply Voltage. Bypass from VCC to V_{EE} with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

Pin Description (MAX9320A)

PIN	NAME	FUNCTION
SOT23		
1	VCC	Positive Supply Voltage. Bypass from $V_{C C}$ to $V_{E E}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	V_{EE}	Negative Supply Voltage
3	$\overline{\mathrm{D}}$	Inverting Differential Input. $60 \mathrm{k} \Omega$ pullup to V_{CC} and $100 \mathrm{k} \Omega$ pulldown to V_{EE}.
4	D	Noninverting Differential Input. 100k Ω pulldown to V_{EE}.
5	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to VCC - 2V.
6	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V CC - 2V.
7	Q0	Inverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
8	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to VCC - 2V.

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Figure 1. Differential Transition Time and Propagation Delay Timing Diagram

Detailed Description

The MAX9320/MAX9320A low-skew, 1-to-2 differential drivers are designed for clock and data distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25 V to +3.8 V supply range, allowing high-performance clock and data distribution in systems with a nominal +2.5 V or +3.3 V supply. For differential LVECL operation, these devices operate from a -2.25 V to -3.8 V supply.

Inputs
The maximum magnitude of the differential input from D to $\overline{\mathrm{D}}$ is VCC -VEE or 3.0 V , whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input.
The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting input, $\overline{\mathrm{D}}$, is biased with a $60 \mathrm{k} \Omega$ pullup to V_{CC} and a $100 \mathrm{k} \Omega$ pulldown to V_{EE}. The noninverting input, D , is biased with a $100 \mathrm{k} \Omega$ pulldown to VEE .
Specifications for the high and low voltages of the differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously (VILD cannot be higher than VIHD).

Outputs Output levels are referenced to VCC and are considered LVPECL or LVECL, depending on the level of the VCC supply. With VCC connected to a positive supply and VEE connected to GND, the outputs are LVPECL. The outputs are LVECL when $V_{C C}$ is connected to GND and $V_{E E}$ is connected to a negative supply.

A single-ended input of $\pm 100 \mathrm{mV}$ around a reference voltage or a differential input of at least $\pm 100 \mathrm{mV}$ switches the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table.

Applications Information

Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ value capacitor closest to the device. Use multiple parallel vias for low inductance.

Traces
Input and output trace characteristics affect the performance of the MAX9320/MAX9320A. Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.
The exposed-pad (EP) SO package can be soldered to the PC board for enhanced thermal performance. If the EP is not soldered to the PC board, the thermal resistance is the same as the regular SO package. The EP is connected to the chip $V_{E E}$ supply. Be sure that the pad does not touch signal lines or other supplies.
Contact the Maxim Packaging department for guidelines on the use of EP packages.

Output Termination

Terminate outputs through 50Ω to $\mathrm{VCC}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and Q0.

Chip Information

TRANSISTOR COUNT: 182

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1:2 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX
74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115
74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D.112 74AHCT245D. 112
SN74LVCH16952ADGGR CY74FCT16245TPVCT SN74ABT16646DGGR 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112
74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R
74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N
MC100EP16DTR2G 5962-9221403MRA 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT164245TPAG8

