One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Abstract

General Description The MAX9324 low-skew, low-jitter, clock and data driver distributes a differential LVPECL input to four differential LVPECL outputs and one single-ended LVCMOS output. All outputs default to logic low when the differential inputs equal GND or are left open. The MAX9324 operates from 3.0 V to 3.6 V , making it ideal for 3.3 V systems, and consumes only 25 mA (max) of supply current. The MAX9324 features low 150ps (max) part-to-part skew, low 15ps output-to-output skew, and low 1.7ps RMS jitter, making the device ideal for clock and data distribution across a backplane or board. CLK_EN and SEOUT_Z control the status of the various outputs. Asserting CLK_EN low configures the differential (Q_, \bar{Q}_{-}) outputs to a differential low condition and SEOUT to a single-ended logic-low state. CLK_EN operation is synchronous with the CLK_ inputs. A logic high on SEOUT_Z places SEOUT in a high-impedance state. SEOUT_Z is asynchronous with the CLK ($\overline{\mathrm{CLK}})$ inputs. The MAX9324 is available in space-saving 20-pin TSSOP and ultra-small 20-pin $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ thin QFN packages and operates over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) temperature range.

Applications

Precision Clock Distribution
Low-Jitter Data Repeater
Data and Clock Driver and Buffer
Central-Office Backplane Clock Distribution
DSLAM Backplane
Base Station

Features

- 15ps Differential Output-to-Output Skew
- 1.7psrms Added Random Jitter
- 150ps (max) Part-to-Part Skew
- 450ps Propagation Delay
- Synchronous Output Enable/Disable
- Single-Ended Monitor Output
- Outputs Assert Low when CLK, CLK are Open or at GND
- 3.0V to 3.6V Supply Voltage Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9324EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX9324ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP ${ }^{* \star}$

*Future product-Contact factory for availability.
${ }^{* *} E P=$ Exposed paddle.

Functional Diagram and Typical Operating Circuit appear at end of data sheet.

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

ABSOLUTE MAXIMUM RATINGS

Junction-to-Ambient Thermal Resistan 20-Pin TSSOP	Air
$20-P i n 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN	$+59.3^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance	
20-Pin TSSOP	$+20^{\circ} \mathrm{C} / \mathrm{W}$
$20-P i n 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN	$+2^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V , differential outputs terminated with $50 \Omega \pm 1 \%$ to ($\mathrm{V} C \mathrm{C}-2 \mathrm{~V}$), SEOUT_Z $=\mathrm{GND}$, CLK_EN $=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
SINGLE-ENDED INPUTS (CLK_EN, SEOUT_Z)					
Input High Voltage	V_{IH}		2	V CC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		0	0.8	V
Input High Current	$\mathrm{IIH}^{\text {H }}$	CLK_EN = VCC	-5	+5	$\mu \mathrm{A}$
		SEOUT_Z = VCC		150	
Input Low Current	IIL	CLK_EN = GND	-150		$\mu \mathrm{A}$
		SEOUT_Z = GND	-5	+5	
DIFFERENTIAL INPUT (CLK, $\overline{\text { CLK }}$)					
Differential Input High Voltage	VIHD	Figure 1	1.5	V CC	V
Differential Input Low Voltage	VILD	Figure 1	0	$V_{\text {CC }}-0.15$	V
Differential Input Voltage	VIHD - $\mathrm{V}_{\text {ILD }}$		0.15	1.5	V
Input Current	ICLK	VIHD, VILD	-5	+150	$\mu \mathrm{A}$
DIFFERENTIAL OUTPUTS (Q_, $\overline{\mathbf{Q}_{-}}$)					
Single-Ended Output High	VOH	Figure 1	$V_{C C}-1.4$	$V_{C C}-1.0$	V
Single-Ended Output Low	VOL	Figure 1	$V_{\text {CC }}-2.0$	$V_{C C}-1.7$	V
Differential Output Voltage	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$	Figure 1	0.6	0.85	V
SINGLE-ENDED OUTPUT (SEOUT)					
Output High Voltage	V OH	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4		V
Output Low Voltage	VOL	$\mathrm{IOL}=4 \mathrm{~mA}$		0.4	V
Output High-Impedance Current	Ioz	SEOUT_Z = VCC, SEOUT = VCC or GND	-10	+10	$\mu \mathrm{A}$
Output Short-Circuit Current	los	$V_{C L K}=V_{C C}$, SEOUT $=$ GND		75	mA
SUPPLY					
Supply Current	IcC	(Note 4)		25	mA

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

AC ELECTRICAL CHARACTERISTICS

(V CC $=3.0 \mathrm{~V}$ to 3.6 V , differential outputs terminated with $50 \Omega \pm 1 \%$ to $(\mathrm{V} C \mathrm{C}-2 \mathrm{~V})$, fCLK $\leq 266 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\text {IHD }}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {ILD }}=\mathrm{GND}$ to $\left(\mathrm{V}_{\mathrm{CC}}-0.15 \mathrm{~V}\right), \mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to $1.5 \mathrm{~V}, \mathrm{CLK}$ _EN $=\mathrm{V}_{\mathrm{CC}}$, SEOUT_Z $=G N D, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\left(\mathrm{V}_{C C}-1 \mathrm{~V}\right), \mathrm{V}_{\text {ILD }}=\left(\mathrm{V}_{C C}-\right.$ 1.5 V), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Switching Frequency	$f_{\text {max }}$	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 0.6 \mathrm{~V}$, SEOUT_Z $=$ VCC	650	800		MHz
		SEOUT_Z = GND, SEOUT	125	200		
Propagation Delay	tPHL, tPLH	CLK, $\overline{C L K}$ to $\mathrm{Q}_{-}, \bar{Q}_{-}$, Figure 1 (Note 6)	100	450	600	ps
Output-to-Output Skew	tSKOO	(Note 7)			30	ps
Part-to-Part Skew	tSkPP	(Note 8)			150	ps
Output Rise Time	tR	20\% to 80\%, Figure 1	100	217	300	ps
Output Fall Time	$\mathrm{t}_{\text {F }}$	80\% to 20\%, Figure 1	100	207	300	ps
Output Duty Cycle	ODC		48	50	52	\%
Added Random Jitter	trJ	fCLK $=650 \mathrm{MHz}$ (Note 9)		1.7	3	ps (RMS)
Added Deterministic Jitter	tDJ	$2 \mathrm{e}^{23}-1$ PRBS pattern, $\mathrm{f}=650 \mathrm{Mbps}$ (Note 9)		83	100	ps(P-P)
Added Jitter	tAJ	$V_{C C}=3.3 V$ with 25 mV superimposed sinusoidal noise at 100 kHz (Note 9)		8.5	12	ps(P-P)
Single-Ended Output Rise Time	tR	$C_{L}=15 \mathrm{pF}, 20 \%$ to 80\%, Figure 1		1.6	2	ns
Single-Ended Output Fall Time	t_{F}	$C_{L}=15 \mathrm{pF}, 80 \%$ to 20\%, Figure 1		1.6	2	ns
Single-Ended Output Duty Cycle	ODC	(Note 10)	40	52	60	\%

Note 1: Measurements are made with the device in thermal equilibrium
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 4: All pins open except V_{CC} and GND.
Note 5: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 6: Measured from the differential input signal crosspoint to the differential output signal crosspoint.
Note 7: Measured between the differential outputs of the same part at the differential signal crosspoint for a same-edge transition.
Note 8: Measured between the differential outputs of different parts at the differential signal crosspoint under identical conditions for a same-edge transition.
Note 9: Jitter added to the input signal.
Note 10: Measured at 50% of V_{CC}.

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}\right.$, outputs terminated to $(\mathrm{VCC}-2 \mathrm{~V})$ through 50Ω, $\mathrm{SEOUT} \mathrm{Z}=\mathrm{V}_{\mathrm{CC}}, \mathrm{CLK}_{-} E N=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

DIFFERENTIAL OUTPUT RISE/FALL TIME
vs. TEMPERATURE

DIFFERENTIAL OUTPUT AMPLITUDE
($\mathbf{V O H}_{\mathbf{O H}}$ - $\mathbf{V O L}_{\text {OL }}$ vs. FREQUENCY

DIFFERENTIAL PROPAGATION DELAY
vs. TEMPERATURE

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Pin Description

| PIN | | NAME | |
| :---: | :---: | :---: | :--- | :--- |
| TSSOP | QFN | | |
| 1,5 | 2,18 | GND | Ground. Provide a low-impedance connection to the ground plane. |
| 2 | 19 | CLK_EN | Synchronous Output Enable. Connect CLK_EN to VCC or leave floating to enable the
 differential outputs. Connect CLK_EN to GND to disable the differential outputs. When
 disabled, Q_ asserts low, $\overline{Q_{-}}$asserts high, and SEOUT asserts low. A 51k Ω pullup resistor to
 VCC allows CLK_EN to be left floating. |
| 3,6 | 3,20 | N.C. | No Connect. Not internally connected. |
| 4 | 1 | SEOUT | LVCMOS/LVTTL Clock Output. SEOUT reproduces CLK when SEOUT_Z = GND. SEOUT
 goes high impedance when SEOUT_Z = VCC. The maximum output frequency of SEOUT is
 125MHz. |
| 7 | 4 | SEOUT_Z | Single-Ended Clock Output Enable/Disable. Connect SEOUT_Z to GND to enable the single-
 ended clock output. Connect SEOUT_Z to VCC to disable the single-ended clock output. A
 $51 k \Omega$ |
| 8 | 5 | CLK pulldown resistor to GND allows SEOUT_Z to be left floating. | |

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

___Detailed Description
The MAX9324 low-skew, low-jitter, clock and data driver distributes a differential LVPECL input signal to four differential LVPECL outputs and a single-ended LVCMOS output. The differential output drivers operate at frequencies up to 800 MHz . When SEOUT_Z = GND, the single-ended LVCMOS output driver operates with frequencies as high as 200 MHz . The MAX9324 operates from 3.0V to 3.6 V , making the device ideal for 3.3 V systems.

Data Inputs
Differential LVPECL Inputs
The MAX9324 accepts a differential LVPECL input. Each differential output duplicates the differential input
signal. Terminate CLK and $\overline{\mathrm{CLK}}$ through 50Ω to (VCC 2 V) to minimize input signal reflections. Internal $51 \mathrm{k} \Omega$ pulldown resistors to GND ensure the outputs default to differential low (Q_, \mathbf{Q}_{-}) or logic low (SEOUT) when the CLK inputs are left open.

CLK_EN Input

CLK_EN enables/disables the differential outputs of the MAX9324. Connect CLK_EN to VCC to enable the differential outputs. The ($\left.Q_{-}, \bar{Q}_{-}\right)$outputs are driven to a differential low condition when CLK_EN = GND. Each differential output pair disables following successive rising and falling edges on CLK (falling and rising edges on $\overline{C L K}$), after CLK_EN connects to GND. Both a rising and falling edge on CLK are required to complete the enable/disable function (Figure 2).

Figure 1. MAX9324 Clock Input-to-Output Delay and Rise/Fall Time

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Figure 2. MAX9324 CLK_EN Timing Diagram

SEOUT_Z

SEOUT_Z enables/disables the single-ended LVCMOS output (Table 1). Connect SEOUT_Z to GND to enable the single-ended output. Connect SEOUT_Z to VCC to force the single-ended output to a high-impedance state. SEOUT provides a single-ended monitor for operating frequencies as high as 200 MHz .

Applications Information
Output Termination
Terminate both outputs of each differential pair through 50Ω to (VCC -2 V) or use an equivalent Thevenin termination. Use identical termination on each output for the lowest output-to-output skew. Terminate both outputs when deriving a single-ended signal from a differential output. For example, using Q0 as a single-ended output requires termination for both Q0 and $\overline{\mathrm{QO}}$.

Table 1. Control Input Table

INPUTS		OUTPUTS		
CLK_EN	SEOUT_Z	Q0-Q3	$\overline{\mathbf{Q 0}-\overline{Q 3}}$	SEOUT
0	0	Disabled, pulled to logic low	Disabled, pulled to logic high	Enabled, logic low
0	1	Disabled, pulled to logic low	Disabled, pulled to logic high	Disabled, high impedance
1	0	Enabled	Enabled	Enabled
1	1	Enabled	Enabled	Disabled, high impedance

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

SEOUT provides a single-ended LVCMOS monitor output. SEOUT operates with a maximum output frequency of 200 MHz .
Ensure that the output currents do not violate the current limits as specified in the Absolute Maximum Ratings table. Observe the device's total thermal limits under all operating conditions.

Power-Supply Bypassing

Bypass VCC to GND using three $0.01 \mu \mathrm{~F}$ ceramic capacitors and one $0.1 \mu \mathrm{~F}$ ceramic capacitor. Place the $0.01 \mu \mathrm{~F}$ capacitors (one per $V_{C C}$ input) as close to $V_{C C}$ as possible (see the Typical Operating Circuit). Use multiple bypass vias to minimize parasitic inductance.

Circuit Board Traces
Input and output trace characteristics affect the performance of the MAX9324. Connect each input and output to a 50Ω characteristic impedance trace to minimize reflections. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoiding sharp corners. Minimize the number of vias to prevent impedance discontinuities. Minimize skew by matching the electrical length of the traces.

Chip Information

TRANSISTOR COUNT: 4430
PROCESS: BiCMOS

Functional Diagram

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Typical Operating Circuit

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

CDMMDN DIMENSIDNS												
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4		
REF.	MIN.	NDM.	MAX.									
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF											
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC ,		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N	12			16			20			24		
ND	3			4			5			6		
NE	3			4			5			6		
Jedec Var.	WGGB			WGGC			WGGD-1			WGGD-2		

EXPDSED PAD				VARIATIDNS		
PKG. CIDES	D2			E2		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25
T1644-2	1.95	2.10	2.25	1.95	2.10	2.25
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO

JESD $95-1$ SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN the zone indicated. The terminal \# 1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO22O.

One-to-Five LVPECL/LVCMOS Output Clock and Data Driver

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2 ADCLK925BCPZ-R7 ADCLK925BCPZ-WP

