AMAXIVM

Differential LVPECL-to-LVDS Translators

Abstract

General Description The MAX9374 and MAX9374A are 2.0 GHz differential LVPECL-to-LVDS translators and are designed for telecom applications. They feature 250ps propagation delay. The differential output conforms to the ANSI TIA/EIA-644 LVDS standard. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An on-chip VBB reference output is available for single-ended operation. The MAX9374 is designed for low-voltage operation from a 2.375 V to 2.625 V power supply for use in 2.5 V systems. The MAX9374A is designed for 3.0 V to 3.6 V operation in systems with a nominal 3.3 V supply. Both devices are offered in industry-standard 8-pin SOT23 and SO packages.

Applications

Precision Clock Buffer

Low-Jitter Data Repeater
Central Office Clock Distribution
DSLAM/DLC
Base Station
Mass Storage

Features

- Guaranteed 2.0 GHz Operating Frequency
- 250ps (typ) Propagation Delay
- 1.0ps RMS Jitter (typ)
- 2.375V to 2.625 V Low-Voltage Supply Range (MAX9374)
- On-Chip VBB Reference for Single-Ended Input
- Output Low for Open Inputs
- Output Conforms to ANSI TIA/EIA-644 LVDS Standard
- ESD Protection >2.0kV (Human Body Model)
- Available in Small 8-Pin SOT23 Package

Ordering Information

| PART | TEMP
 RANGE | PIN-
 PACKAGE | TOP
 MARK |
| :--- | :--- | :--- | :---: | :---: |
| MAX9374EKA-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SOT23-8 | AAKU |
| MAX9374ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX9374AEKA- T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mathrm{SOT} 23-8$ | AAKV |
| MAX9374AESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |

Pin Configurations/Functional Diagrams appear at end of data sheet.

Differential LVPECL-to-LVDS Translators

```
ABSOLUTE MAXIMUM RATINGS
VCC to GND...................................................................4.0V
VD, V\overline{D to GND ..........................................0.3V to VCC + 0.3V}
VD to V\overline{D}}........................................................................3.0V
VBB Sink/Source Current...................................................1mA
Short-Circuit Duration (Q, \overline{Q to GND).......................Continuous}
Short-Circuit Duration (Q to \overline{Q})...............................Continuous
Continuous Power Dissipation (TA = +70 C)
    8-Pin SOT23 (derate 8.9mW/ }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ above +70}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ )...........714mW
    8-Pin SO (derate 5.9mW/' C above +70 C).................470mW
Junction-to-Ambient Thermal Resistance
    8-Pin SOT23.......................................................+1120}\textrm{C}/\textrm{W
    8-Pin SO.............................................................+170}\textrm{C}/\textrm{W
```


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V for MAX9374, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V for MAX9374A, $100 \Omega \pm 1 \%$ across outputs, $\mathrm{V}_{\mathrm{ID}}=0.095 \mathrm{~V}$ to V_{CC} or 3 V , whichever is less, $\mathrm{V}_{I H D}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {ILD }}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-0.095 \mathrm{~V}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IHD }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=$ $1.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for MAX9374A, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ for MAX9374.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
DIFFERENTIAL INPUT (D, $\overline{\mathbf{D}}$)												
High Voltage of Differential Input	VIHD	Figure 1	1.2		VCC	1.2		VCC	1.2		$V_{\text {cc }}$	V
Low Voltage of Differential Input	VILD	Figure 1	GND		$\begin{aligned} & \hline V_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \hline V_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	V
Single-Ended Input High Voltage	V_{IH}	VBB connected to \bar{D} (VIL for VBB connected to D), Figure 1	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		VCC	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		Vcc	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\mathrm{V}_{\text {cc }}$	V
Single-Ended Input Low Voltage	VIL	$V_{B B}$ connected to $\overline{\mathrm{D}}$ (V_{IH} for VBB connected to D), Figure 1	VEE		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	VEE		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	Vee		$\begin{aligned} & \text { VCC }- \\ & 1.475 \end{aligned}$	V
Differential Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {IHD }}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$	$\mathrm{V}_{\text {CC }}<3.0 \mathrm{~V}$	0.1		VCC	0.1		VCC	0.1		V_{CC}	V
		$\mathrm{V}_{C C} \geq 3.0 \mathrm{~V}$	0.1		3.0	0.1		3.0	0.1		3.0	
Input Current	In	VIHMAX, VILMIN (Note 3)	-150		150	-150		150	-150		150	$\mu \mathrm{A}$
DIFFERENTIAL OUTPUT (Q, $\overline{\mathbf{Q}}$)												
Output High Voltage	VOH	Figure 1			1.6			1.6			1.6	V
Output Low Voltage	VOL	Figure 1	0.9			0.9			0.9			V
Differential Output Voltage	VOD	Figure 1	250	350	450	250	350	450	250	350	450	mV

Differential LVPECL-to-LVDS Translators

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V for MAX9374, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V for MAX9374A, $100 \Omega \pm 1 \%$ across outputs, $\mathrm{V}_{\mathrm{ID}}=0.095 \mathrm{~V}$ to V_{CC} or 3 V , whichever is less, $\mathrm{V}_{I H D}=1.2 \mathrm{~V}$ to V CC, $\mathrm{V}_{\text {ILD }}=G N D$ to $\mathrm{V}_{\mathrm{CC}}-0.095 \mathrm{~V}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IHD }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=$ $1.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for MAX9374A, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ for MAX9374.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Change in Vod Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$				25		1	25		1	25	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	V
Change in Vos Between Complementary Output States	$\Delta \mathrm{V}$ OS				25		3	25		3	25	mV
Output Short-Circuit Current	Iosc	Q or $\overline{\mathrm{Q}}$ short to GND		23	30		23	30		23	30	mA
VBB AND SUPPLY												
Reference Voltage	$V_{B B}$	$\begin{aligned} & I_{\mathrm{BB}}= \pm 0.6 \mathrm{~mA} \\ & (\text { Note } 4) \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.38 \\ \hline \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V} C \mathrm{CC} \\ 1.38 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.26 \end{gathered}$	$\begin{gathered} \hline \mathrm{V} C \mathrm{C} \\ 1.38 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.26 \end{gathered}$	V
Supply Current	ICC	(Note 5)		16	30		18	30		20	30	mA

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}=2.375 \mathrm{~V}$ to 2.625 V for MAX9374, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V for MAX9374A, $100 \Omega \pm 1 \%$ across outputs, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to V_{CC} or 3 V , whichever is less, $\mathrm{V}_{\mathrm{IHD}}=1.2 \mathrm{~V}$ to V_{CC}, $\mathrm{V}_{\mathrm{ILD}}=G N D$ to $\mathrm{V}_{\mathrm{CC}}-0.15 \mathrm{~V}$, $\mathrm{fIN}=1 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$, input duty cycle $=$ 50%, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IHD }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=1.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for MAX9374A, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ for MAX9374, unless otherwise noted.) (Notes 1, 6)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input to Differential Output Delay	tPLHD, tpHLD	Figure 1	116	240	420	128	250	403	145	260	440	ps
Single-Ended Input to Differential Output Delay	tPLHS tPHLS	Figure 1	126	250	430	138	250	415	155	260	450	ps
Part-to-Part Skew	tSKPP	(Note 7)			304			275			295	ps
Added Random Jitter (Note 8)	tr J	$\mathrm{fiN}=1.0 \mathrm{GHz},$ clock pattern		0.9	2		1	2		1	2	ps(RMS)
		$\mathrm{f}_{\mathrm{IN}}=2.0 \mathrm{GHz},$ clock pattern		0.8	2		0.9	2		0.9	2	
Added Deterministic Jitter (Note 8)	tDJ	$\begin{aligned} & \text { f/N }=2.0 \mathrm{Gbps}, \\ & 2^{23}-1 \text { PRBS } \\ & \text { pattern } \end{aligned}$		45	75		46	75		38	75	ps(P-P)
Operating Frequency	$f_{\text {max }}$	$V_{O D} \geq 250 \mathrm{mV}$	2.0	2.2		2.0	2.2		2.0	2.2		MHz
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	20% to 80%, Figure 1		92	200		91	200		90	200	ps

Differential LVPECL-to-LVDS Translators

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=2.375 \mathrm{~V}\right.$ to 2.625 V for MAX9374, $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V for MAX9374A, $100 \Omega \pm 1 \%$ across outputs, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ or 3 V , whichever is less, $\mathrm{V}_{\text {IHD }}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{ILD}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-0.15 \mathrm{~V}, \mathrm{fIN}^{2}=1 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$, input duty cycle $=$ 50%, unless otherwise noted. Typical values are at $\mathrm{V}_{I H D}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=1.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for MAX9374A, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ for MAX9374, unless otherwise noted.) (Notes 1, 6)

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: $D C$ parameters are production tested at $T_{A}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 3: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 4: Use $V_{B B}$ as a reference for inputs on the same device only.
Note 5: 100Ω across the outputs, all other pins open except V_{CC} and GND.
Note 6: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 8: Device jitter added to the input signal.

Typical Operating Characteristics
(MAX9374A, $100 \Omega \pm 1 \%$ across outputs, $\mathrm{f} / \mathrm{N}=1 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}$, input duty cycle $=50 \%, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=2.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=1.85 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Differential LVPECL-to-LVDS Translators

Pin Description

PIN		NAME	FUNCTION
SOT23	SO		
1	4	VBB	Reference Output Voltage. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{CC}; otherwise, leave it open.
2	5	GND	Ground. Provide a low-impedance connection to the ground plane.
3	3	$\overline{\mathrm{D}}$	Inverted LVPECL Data Input. $36.5 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and $75 \mathrm{k} \Omega$ pulldown to GND.
4	2	D	Noninverted LVPECL Data Input. $75 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and $75 \mathrm{k} \Omega$ pulldown to GND.
5	8	VCC	Positive Supply Voltage. Bypass V_{CC} to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
6	7	Q	Noninverted LVDS Output. Typically terminate with 100Ω to $\overline{\text { Q }}$.
7	6	\bar{Q}	Inverted LVDS Output. Typically terminate with 100Ω to Q.
8	1	N.C.	No Connection. Not internally connected.

Figure 1. MAX9374/MAX9374A Timing Diagram

Differential LVPECL-to-LVDS Translators

Abstract

Detailed Description The MAX9374/MAX9374A are 2.0 GHz differential LVPECL-to-LVDS translators. The output is differential LVDS and conforms to the ANSI TIA/EIA-644 LVDS standard. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An on-chip V_{BB} reference output is available for single-ended input operation. The MAX9374 is designed for low-voltage operation from 2.375 V to 2.625 V in systems with a nominal 2.5 V supply. The MAX9374A is designed for 3.0 V to 3.6 V operation in systems with a nominal 3.3 V supply.

Differential LVPECL Input

The MAX9374/MAX9374A accept differential LVPECL inputs and can be configured to accept single-ended inputs through the use of the $V_{B B}$ voltage reference output. The maximum magnitude of the differential signal applied to the input is 3.0 V or V_{CC}, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Single-Ended Inputs and VBB

The differential inputs can be configured to accept a single-ended input through the use of the $V_{B B}$ reference voltage. A noninverting, single-ended input is produced by connecting $V_{B B}$ to the $\overline{\bar{D}}$ input and applying a single-ended input signal to the D input. Similarly, an inverting input is produced by connecting $V_{B B}$ to the D input and applying the input signal to the $\overline{\mathrm{D}}$ input. With a differential input configured as single ended (using $V_{B B}$), the single-ended input can be driven to $V_{C C}$ and GND or with a single-ended LVPECL signal. Note that a single-ended input must be at least $V_{B B} \pm 95 \mathrm{mV}$ or a differential input of at least 95 mV to switch the outputs to the $\mathrm{VOH}_{\mathrm{OH}}$ and V OL levels specified in the DC Electrical Characteristics table.
When using the V_{BB} reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{C}. If the V_{BB} reference is not used, leave it unconnected. Use VBB only for inputs that are on the same device as the V_{BB} reference.

Input Bias Resistors

Internal biasing resistors ensure a (differential) outputlow condition in the event that the inputs are not connected. The inverting input $(\overline{\mathrm{D}})$ is biased with a $36.5 \mathrm{k} \Omega$ pulldown to V_{CC} and a $75 \mathrm{k} \Omega$ pullup to GND. The noninverting input (D) is biased with a $75 \mathrm{k} \Omega$ pullup to $V_{C C}$ and $75 \mathrm{k} \Omega$ pulldown to GND.

Differential LVDS Output

The differential outputs conform to the ANSI TIA/EIA-644 LVDS standard. Typically, terminate the outputs with 100Ω across Q and \bar{Q}, as shown in the Typical Application Circuit. The outputs are short-circuit protected.

Applications Information

Supply Bypassing

Bypass VCc to GND with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel and as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the $V_{B B}$ reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{CC} (if the V_{BB} reference is not used, it can be left open).

Controlled-Impedance Traces Input and output trace characteristics affect the performance of the MAX9374/MAX9374A. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate the outputs with 100Ω across Q and \bar{Q} as shown in the Typical Application Circuit. Both outputs must be terminated.

Differential LVPECL-to-LVDS Translators

Pin Configurations/Functional Diagrams

Chip Information
TRANSISTOR COUNT: 236
PROCESS: Bipolar

Differential LVPECL-to-LVDS Translators

NDTE:

1. ALL DIMENSIINS ARE IN MILLIMETERS

FIDT LENGTH MEASURED REFERENCE TI FLAT FILT SURFACE PARALLEL TI DATUM " A "

3. PACKAGE DUTLINE EXCLUSIVE DF MLLD FLASH \& METAL BURR.
4. PACKAGE DUTLINE INCLUSIVE OF SDLDER PLATING.
5. EIAJ REF. NUMBER" SC-74 (6 LEAD VERSIDN)
6. CIPLANARITY 4 MILS. MAX.
7. PIN 1 I.D. DUT IS $0.3 \mathrm{MM} \varnothing$ MIN. LDCATED ABLVE PIN 1.
8. MEETS JEDEC MD178.

| | | | |
| :--- | :--- | :--- | :--- | :--- |

Differential LVPECL-to-LVDS Translators

Package Information (continued)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
D	0.189	0.197	4.80	5.00
e	0.050	BSC	1.27	BSC
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27
α	$0 ?$	$8 ?$	$0 ?$	$8 ?$

NOTES:

1. D\&E DZ NZT INCLUDE MILD FLASH.
2. MLLD FLASH IR PRDTRUSIINS NDT TI EXCEED . 15 mm (.006")
3. CZNTRZLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC MS-012 AA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3242BRJZ-REEL7 ADG3243BRJZ-REEL7 ADG3245BCPZ

