AMAXINM ECL/PECL Dual Differential 2:1 Multiplexer

\qquad General Description
The MAX9384 fully differential dual 2:1 multiplexer (mux) features extremely low propagation delay (560ps max) and output-to-output skew (40ps max). The device is ideal for clock and data multiplexing applications. The two $2: 1$ muxes are controlled individually or simultaneously through mux select inputs COM_SEL, SELO, and SEL1. The mux select inputs are compatible with ECL/PECL logic, and are referenced to on-chip outputs V_{BB} and $\mathrm{V}_{\mathrm{BB} 1}$, nominally $\mathrm{V}_{\mathrm{CC}}-1.33 \mathrm{~V}$.
The differential inputs $\mathrm{D}, \overline{\mathrm{D}}$ can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip supply output $V_{B B}$ as a reference voltage. All the differential inputs have bias and clamp circuits that force the outputs to a low default when the inputs are left open or at VEE. The sin-gle-ended mux select inputs have pulldowns to VEE, providing low default inputs when the select inputs are left open.

The device operates with a wide supply range (VCC $\mathrm{V} E E)$ of +3.0 V to +5.5 V for PECL or -3.0 V to -5.5 V for ECL, and is pin compatible with the MC100LVEL56 and MC100EL56. The MAX9384 is offered in a 20-pin wide SO package, and is specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications
High-Speed Telecom, Datacom Applications Central-Office Backplane Clock Distribution Access Multiplexers (DSLAM/DLC)

Functional Diagram appears at end of data sheet.

Features

- 40psp-p Deterministic Jitter
- 440ps Differential Propagation Delay
- 12ps Output-to-Output Skew
- Individual and Common Select
- +3.0V to +5.5 V Supplies for Differential LVPECL/PECL
- -3.0V to -5.5V Supplies for Differential LVECL/ECL
- Outputs Low for Inputs Open or at VEE
- >2kV ESD Protection (Human Body Model)
- Pin Compatible with MC100LVEL56 and MC100EL56

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9384EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO

Pin Configuration

TOP VIEW		
	-	$20 V_{C C}$
		19 QO
		18 Q0
	MAXIM	17 SELO
	MAX9384	16 COM_SEL
		15 SEL1
		14 V cc
		13 Q1
		$12 \overline{Q 1}$
		11 VEE
	SO	

ECL/PECL Dual Differential 2:1 Multiplexer

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=$ $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SINGLE-ENDED INPUT SEL_, COM_SEL												
Input High Voltage	V_{IH}	Internally referenced to $V_{B B}$, Figure 1	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$V_{\text {cc }}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		Vcc	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		VCC	V
Input Low Voltage	VIL	Internally referenced to VBB, Figure 1	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.810 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	V
Input Current	IIN	V_{IH}, $\mathrm{VIL}^{\text {l }}$	-10		+50	-10		+50	-10		+50	$\mu \mathrm{A}$
DIFFERENTIAL INPUT (D_, $\overline{\mathbf{D}_{-}}$)												
Single-Ended Input High Voltage	V_{IH}	$V_{B B}$ connected to the unused input, Figure 1	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		VCC	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		Vcc	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		VCC	V
Single-Ended Input Low Voltage	VIL	$V_{B B}$ connected to the unused input, Figure 1	$\begin{array}{\|l} V_{C C}- \\ 1.810 \end{array}$		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.475 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$		$\begin{aligned} & \text { VCC } \\ & 1.475 \end{aligned}$	V
High Voltage of Differential Input	VIHD	Figure 1	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.3 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	V
Low Voltage of Differential Input	VILD	Figure 1	VEE		$\begin{aligned} & V_{C C}- \\ & 0.095 \end{aligned}$	VEE		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	$V_{\text {EE }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	V
Differential Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {IHD }}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$	Figure 1	0.095		3.0	0.095		3.0	0.095		3.0	V
Input Current	IIN	$\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {IHD }}$, $\mathrm{V}_{\text {ILD }}$	-100		+100	-100		+100	-100		+100	$\mu \mathrm{A}$

ECL/PECL Dual Differential 2:1 Multiplexer

DC ELECTRICAL CHARACTERISTICS (continued)
($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=$ $V_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT (Q_, $\overline{\mathbf{Q}_{-}}$)												
Single-Ended Output High Voltage	VOH	Figure 2	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.085 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.998 \end{aligned}$	$\begin{aligned} & \text { VCC - } \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.947 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.929 \end{aligned}$	$\begin{aligned} & \text { VCC - } \\ & 0.880 \end{aligned}$	V
Single-Ended Output Low Voltage	VoL	Figure 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.830 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.707 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.555 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.810 \end{aligned}$	$\begin{aligned} & V_{\text {CC }}- \\ & 1.685 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.620 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$	$\begin{aligned} & \text { VCC }- \\ & 1.690 \end{aligned}$	$\begin{aligned} & V_{\text {CC }}- \\ & 1.620 \end{aligned}$	V
Differential Output Voltage	$\mathrm{VOH}-$ Vol	Figure 2	600			640			660			mV
REFERENCE OUTPUT (VBB)												
Reference Voltage Output	VBB	$\begin{aligned} & \mathrm{IBB}= \pm 0.5 \mathrm{~mA} \\ & (\text { Note } 4) \end{aligned}$	$\begin{gathered} V_{C C}- \\ 1.38 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.322 \end{aligned}$	$\begin{gathered} V_{C C}- \\ 1.26 \end{gathered}$	$\begin{gathered} \hline V_{C C}- \\ 1.38 \end{gathered}$	$\begin{aligned} & \hline V_{\text {CC }}- \\ & 1.330 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{Cc}}- \\ 1.26 \end{gathered}$	$\begin{gathered} \hline V_{C C}- \\ 1.38 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.335 \end{aligned}$	$\begin{gathered} V_{C C}- \\ 1.26 \end{gathered}$	V
SUPPLY												
Supply Current	IEE	(Note 5)		15	24		17	24		19	24	mA

ECL/PECL Dual Differential 2:1 Multiplexer

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V} C \mathrm{C}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}-\mathrm{V}_{\mathrm{ILD}}=0.15 \mathrm{~V}$ to 1 V , $\mathrm{fIN} \leq 500 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{I L D}=\mathrm{V}_{C C}-1.5 \mathrm{~V}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-to-Output Delay	$\begin{aligned} & \text { tPLHD, } \\ & \text { tPHLD } \end{aligned}$	Figure 2	340		540	350		550	360		560	ps
Single-Ended Input-to-Output Delay	$\begin{aligned} & \text { tPLH1, } \\ & \text { tPHL1 } \end{aligned}$	Figure 3 (Note 7)	290		540	310		560	330		580	ps
SEL_ and COM_SEL to Output Delay	$\begin{aligned} & \text { tPLH2, } \\ & \text { tPHL2 } \end{aligned}$	Figure 4 (Note 7)	310		730	320		740	330		750	ps
Output-to-Output Skew	tSKOO	(Note 8)		12	40		12	40		12	40	ps
Added Random Jitter	tRJ	$\begin{aligned} & \mathrm{f} / \mathrm{N}=500 \mathrm{MHz} \\ & (\text { Note 9) } \end{aligned}$		0.3	0.8		0.4	0.8		0.5	0.8	ps(RMS)
Added Deterministic Jitter	tDJ	$\begin{aligned} & \text { 1.0Gbps } 2^{23}-1 \\ & \text { PRBS pattern } \\ & \text { (Note 9) } \end{aligned}$		40	70		40	70		40	70	$\mathrm{ps}(\mathrm{P}-\mathrm{P})$
Switching Frequency	$f_{\text {max }}$	$\mathrm{V}_{\mathrm{OH}}-\mathrm{VOL}_{\mathrm{OL}} \geq$ 300 mV , Figure 2	1.5			1.5			1.5			GHz
Output Rise and Fall Time (20\% to 80\%)	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	Figure 2	200	310	440	200	310	440	200	310	440	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 4: Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.
Note 5: All pins open except $\mathrm{V}_{C C}$ and V_{EE}.
Note 6: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 7: Test conditions are $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1.11 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{CC}}-1.53 \mathrm{~V}$.
Note 8: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Differential input signal.
Note 9: Device jitter added to the input signal. Differential input signal.

ECL/PECL Dual Differential 2:1 Multiplexer

Typical Operating Characteristics
$\left(V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{I L D}=\mathrm{V}_{C C}-1.5 \mathrm{~V}, C O M _S E L=\right.$ low, $S E L-=$ low, outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$, fiN $=500 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125$ ps (20% to 80%), unless otherwise noted.)

ECL/PECL Dual Differential 2:1 Multiplexer

Pin Description

PIN	NAME	FUNCTION
1	DOa	Noninverting Differential Input a for MUX 0. Internal $120 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$.
2	$\overline{\mathrm{DOa}}$	Inverting Differential Input a for MUX 0. Internal 120k Ω pulldown to $\mathrm{V}_{\text {EE }}$ and $120 \mathrm{k} \Omega$ pullup to V_{CC}.
3	VBBO	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass V_{BB} to V_{C} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open. V_{BB} is internally connected to V_{BB}.
4	DOb	Noninverting Differential Input b for MUX 0. Internal 120k pulldown to $\mathrm{V}_{\text {EE }}$.
5	$\overline{\text { D0b }}$	Inverting Differential Input b for MUX 0. Internal $120 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$ and $120 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{\text {CC }}$.
6	D1a	Noninverting Differential Input a for MUX 1. Internal 120k
7	$\overline{\text { D1a }}$	Inverting Differential Input a for MUX 1. Internal $120 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$ and $120 \mathrm{k} \Omega$ pullup to V_{CC}.
8	VBB1	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 1}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open. $\mathrm{V}_{\mathrm{BB} 1}$ is internally connected to V_{BB}.
9	D1b	Noninverting Differential Input b for MUX 1. Internal 120k
10	$\overline{\text { D1b }}$	Inverting Differential Input b for MUX 1. Internal $120 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$ and $120 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$.
11	V_{EE}	Negative Supply Voltage
12	Q1	Inverting Output for MUX 1. Typically terminate with 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
13	Q1	Noninverting Output for MUX 1. Typically terminate with 50Ω resistor to VCC - 2V.
14, 20	VCC	Positive Supply Voltage. Bypass each V_{CC} to V_{EE} with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15	SEL1	Select Logic Input for MUX 1. Internal 210k d pulldown to $\mathrm{V}_{\text {EE }}$.
16	COM_SEL	Common Select Logic Input. Internal $210 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$.
17	SELO	Select Logic Input for MUX 0. Internal $210 \mathrm{k} \Omega$ pulldown to $\mathrm{V}_{\text {EE }}$.
18	Q0	Inverting Output for MUX 0 . Typically terminate with 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
19	Q0	Noninverting Output for MUX 0. Typically terminate with 50Ω resistor to VCC - 2V.

Figure 1. Input Definitions

ECL/PECL Dual Differential 2:1 Multiplexer

Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram

Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Delay

ECL/PECL Dual Differential 2:1 Multiplexer

Figure 4. Select Inputs (COM_SEL, SEL_) to Output (Q_, \bar{Q}_{-}) Delay Timing Diagram

Detailed Description

The MAX9384 dual differential 2:1 multiplexer features extremely low propagation delay (560ps max) and output-to-output skew (40ps max). These features make the device ideal for clock and data multiplexing applications.
The two differential muxes are controlled individually or simultaneously through select control inputs, SELO, SEL1, and COM_SEL (see Table 1). The select control inputs are referenced to V_{BB} (nominally $\mathrm{V}_{\mathrm{CC}}-1.33 \mathrm{~V}$) and are internally pulled down to V_{EE} through $210 \mathrm{k} \Omega$ resistors. By default, the select inputs are low when left open.
The differential inputs D_{-}, \bar{D}_{-}can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage V_{BB}. The reference output voltage, pins V_{BB} and VBB1, provides the input reference voltage for singleended operation for each mux. A single-ended input of at least $V_{B B} \pm 95 \mathrm{mV}$ or a differential input of at least 95 mV switches the outputs to the $\mathrm{VOH}_{\mathrm{OH}}$ and $\mathrm{VOL}_{\mathrm{OL}}$ levels

Table 1. Input Select Truth Table

CONTROL INPUT		DATA INPUT
COM_SEL	SEL_ 2	$\mathbf{D}_{-}, \overline{\mathbf{D}}_{-}$
L or open	L or open	b^{*}
	H	a
H	X	a

[^0]specified in the DC Electrical Characteristics. The maximum magnitude of the differential input from D_{-}to \bar{D}_{-}is $\pm 3.0 \mathrm{~V}$. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.
The device operates over a wide supply range (VCC $\mathrm{VEE})$ of +3.0 V to +5.5 V for PECL or -3.0 V to -5.5 V for ECL, and is pin compatible with the MC100LVEL56 and MC100EL56.

Single-Ended Operation

A single-ended input can be driven to $\mathrm{V}_{C C}$ and V_{EE} or by a single-ended LVPECL/LVECL signal. D_, $\overline{D_{-}}$are differential inputs but can be configured to accept sin-gle-ended inputs. This is accomplished by connecting the on-chip reference voltage, V_{BB}, to an unused complementary input as a reference. For example, the differential DOa, DOa input is converted to a noninverting, single-ended input by connecting $\mathrm{V}_{\mathrm{BBO}}$ to $\overline{\mathrm{DOa}}$ and connecting the single-ended input to DOa. Similarly, an inverting input is obtained by connecting V_{BB} to DOa and connecting the single-ended input to DOa.
When using the V_{BB} _ reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{Cc}. If not used, leave it open. The $\mathrm{VBB}_{\mathrm{B}}$ reference can source or sink 0.5 mA , which is sufficient to drive two inputs.

ECL/PECL Dual Differential 2:1 Multiplexer

Applications Information

Output Termination

Terminate the outputs through 50Ω to VCC - 2 V or use equivalent Thevenin terminations. Terminate each Q_{-} and \bar{Q}_{-}output with identical termination on each for minimal distortion. When a single-ended signal is taken from the differential output, terminate both Q_{-}and \bar{Q}_{-}. Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should be observed.

Supply Bypassing

Bypass each VCC to VEE with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors. Place the capacitors as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins.
Use multiple vias when connecting the bypass capacitors to ground. When using the VBB0 or VBB1 reference outputs, bypass each one with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{C}. If the V_{BB} or V_{BB} reference outputs are not used, they can be left open.

Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing com-mon-mode noise immunity
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information

TRANSISTOR COUNT: 485
PROCESS: Bipolar

Functional Diagram

ECL/PECL Dual Differential 2:1 Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA JM38510/30702BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D. 652 74HC257D. 652 74HCT153D. 652

[^0]: *Default input when COM_SEL and SEL_ are left open.

