CHAXIAV Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Abstract

General Description The MAX9386/MAX9387/MAX9388 are fully differential high-speed, low-jitter ECL/PECL multiplexers (muxes) with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and out-put-to-output skews (3.9ps, typ). The MAX9386 is a $5: 1$ mux with a single output buffer. The MAX9387 is a $5: 1$ mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57. Three single-ended select inputs, SELO, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SELO and SEL1. The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output V_{BB}, nominally $\mathrm{V}_{\mathrm{CC}}-1.425 \mathrm{~V}$. The select inputs accept signals between VCC and VEE. Internal pulldowns to VEE ensure a low-default condition if the select inputs are left open. The differential inputs D_{-}, \bar{D}_{-}can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output $V_{B B}$. All the differential inputs have internal bias and clamping circuits that ensure low-default output states when the inputs are left open. The MAX9386/MAX9387/MAX9388 operate with a wide supply range |VCC - VEEl of 2.375 V to 5.5 V . The MAX9386/MAX9388 are offered in 20-pin TSSOP and QSOP packages. The MAX9387 is offered in 24-pin TSSOP and QSOP packages

Applications
High-Speed Telecom and Datacom Applications
Central Office Backplane Clock Distribution DSLAM/DLC

Features

- 318ps (typ) Propagation Delay
- $>2.7 \mathrm{GHz}$ Toggle Frequency
- 0.3ps(RMS) Random Jitter
- <14ps (max) at $+25^{\circ} \mathrm{C}$ Output-to-Output Skew (MAX9387)
- -2.375V to -5.5V Supplies for Differential LVECL/ECL
+ +2.375V to +5.5V Supplies for Differential LVPECL/PECL
- Outputs Low for Open Inputs
- Dual Output Buffers (MAX9387)
- Pin Compatible with MC100EP57 (MAX9388EUP)
- $\mathbf{~ 2 k V}$ ESD Protection (Human Body Model)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	SELECTION
MAX9386EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$5: 1$ mux with 1 output buffer
MAX9386EEP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 QSOP	$5: 1$ mux with 1 output buffer

Ordering Information continued at end of data sheet.
*Future product - contact factory for availability.
Pin Configurations
TOP VIEW

Pin Configurations continued at end of data sheet.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

ABSOLUTE MAXIMUM RATINGS

20-Lead QSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW
θ JA in Still Air .. $+110^{\circ} \mathrm{C} / \mathrm{W}$
OJC .. $34^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead QSOP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 762 mW
$\theta_{\text {JA }}$ in Still Air .. $+105^{\circ} \mathrm{C} / \mathrm{W}$
OJC ... $+34^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. 150 $^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection
Human Body Model ($\left.\overline{\mathrm{D}}_{-}, \mathrm{D}_{-}, \mathrm{Q}_{-}, \bar{Q}_{-}, \mathrm{SEL}_{-}, \mathrm{VBB}_{-}\right) \geq 2 k V ~$
Lead Temperature (soldering, 10s)+30

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$, $V_{\text {ILD }}=V_{C C}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT (D_, $\overline{\mathbf{D}}_{-}$, SEL_)													
Single-Ended Input High Voltage	V_{IH}	VBB connected to the unused input (Figure 1)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	V
Single-Ended Input Low Voltage	VIL	$V_{B B}$ connected to the unused input (Figure 1)		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.625 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{\text {CC }}- \\ & 1.625 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC }-1 \\ & 1.625 \end{aligned}$	V
Differential Input High Voltage	VIHD	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	V
Differential Input Low Voltage	VILD	Figure 1		VEE		$\begin{aligned} & V_{\text {CC }}- \\ & 0.095 \end{aligned}$	VEE		$\begin{aligned} & V_{\text {CC }}- \\ & 0.095 \end{aligned}$	VEE		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	V
Differential Input Voltage	VIHD - VILD	Figure 1	$\begin{aligned} & V_{C C}-V_{E E} \\ & <3.0 V \end{aligned}$	0.095		$\begin{aligned} & V_{C C}- \\ & V_{\mathrm{EE}} \end{aligned}$	0.095		$\begin{aligned} & V_{C C}- \\ & V_{E E} \end{aligned}$	0.095		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	V
			$\begin{aligned} & V_{C C}-V_{E E} \\ & \geq 3.0 V \end{aligned}$	0.095		3.000	0.095		3.000	0.095		3.000	
Input Current	IIN	$\mathrm{V}_{\text {IH, }}$, $\mathrm{V}_{\text {IL, }}$, $\mathrm{V}_{\text {IHD }}$, VILD		-100		+100	-100		+100	-100		+100	$\mu \mathrm{A}$

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

DC ELECTRICAL CHARACTERISTICS (continued)
($\mathrm{V}_{C C}-\mathrm{V}_{E E}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT (Q_, \mathbf{Q}_{-})												
Single-Ended Output High Voltage	VOH	Figure 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.145 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 0.895 \end{aligned}$	$\begin{aligned} & \text { VCC }-1 \\ & 1.145 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 0.895 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.145 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.895 \end{aligned}$	V
Single-Ended Output Low Voltage	Vol	Figure 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.695 \end{aligned}$	$\begin{aligned} & \text { VCC }-1 \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC }- \\ & 1.695 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.695 \end{aligned}$	V
Differential Output Voltage	VOH - Vol	Figure 2	650	830		650	840		650	840		mV
REFERENCE OUTPUT (VBB_)												
Reference Voltage Output	$V_{B B 1}$, VBB2	$\begin{aligned} & I_{\mathrm{BB} 1}+\mathrm{I}_{\mathrm{BB} 2}= \pm 0.5 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { VCC }-1 \\ & 1.525 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.425 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.325 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.525 \end{aligned}$	$\begin{aligned} & \text { VCC }- \\ & 1.425 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.325 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.525 \end{aligned}$	$\begin{aligned} & V_{\text {CC }}- \\ & 1.425 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.325 \end{aligned}$	V
POWER SUPPLY												
Supply Current (Note 6)	Iee	MAX9386		34	50		36	50		38	50	mA
		MAX9387		40	60		42	60		45	60	
		MAX9388		31	47		33	47		35	47	

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to 1 V , fiN $\leq 2.5 \mathrm{GHz}$ input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{C C}-1.5 \mathrm{~V}$, fiN $=$ 622 MHz , input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-to-Output Delay	$\begin{aligned} & \text { tPLHD, } \\ & \text { tPHLD } \end{aligned}$	Figure 2	222	309	377	238	318	395	254	333	431	ps
SEL_-to-Output Delay	$\begin{aligned} & \text { tPLH2, } \\ & \text { tPHL2, } \end{aligned}$	Figure 4, input transition time $=500 \mathrm{ps}$ (20\% to 80\%) (Note 8)			1.64			1.4			1.6	ns
Output-toOutput Skew	tSKOO	MAX9387 only, Figure 5 (Note 9)		3.9	26		3.9	14		8.0	26	ps
Input-to-Output Skew	tskio	Figure 6 (Note 10)		7.3	53		7.7	50		8.3	50	ps
Part-to-Part Skew	tSKPP	(Note 11)			111			130			133	ps

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

AC ELECTRICAL CHARACTERISTICS (continued)

$V_{C C}-V_{E E}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}-\mathrm{V}_{\mathrm{ILD}}=0.15 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}} \leq 2.5 \mathrm{GHz}$ input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{C C}-1.5 \mathrm{~V}, \mathrm{f} \mathrm{IN}=$ 622 MHz , input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Added Random Jitter (Note 12)	tr J	Clock pattern	$\mathrm{fIN}=156 \mathrm{MHz}$		0.3	1.15		0.3	1.15		0.3	1.15	ps(RMS)
			$\mathrm{fIN}=622 \mathrm{MHz}$		0.3	1.15		0.3	1.15		0.3	1.15	
			$\mathrm{fin}=2.5 \mathrm{GHz}$		0.3	1.15		0.3	1.15		0.3	1.15	
Added	TDJ	$\begin{aligned} & \text { PRBS } \\ & 2^{23}-1 \end{aligned}$	$\mathrm{fin}^{\text {/ }}$ = 156Mbps		33	95		33	95		33	95	psp-P
Jitter (Note 12)			$\mathrm{fin}^{\mathrm{L}}=622 \mathrm{Mbps}$		21	61		21	61		21	61	
Switching Frequency	$f_{\text {max }}$	VOH - VOL $\geq 300 \mathrm{mV}$, Figure 2		2.7			2.7			2.7			GHz
Select Toggle Frequency	fsel			100			100			100			MHz
Output Rise and Fall Time (20\% to 80\%)	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	Figure 2		67	105	138	74	117	155	81	128	165	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into an I/O pin is defined as positive. Current out of an I/O pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 4: Single-ended data input operation using V_{BB} is limited to $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \geq 3.0 \mathrm{~V}$.
Note 5: Use V_{BB} _ only for inputs that are on the same device as the V_{BB} r reference.
Note 6: All pins open except V_{CC} and V_{EE}.
Note 7: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 8: Measured from the 50% point of the input signal with the 50% point equal to $V_{B B}$, to the 50% point of the output signal.
Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 10: Measured between input-to-output paths of the same part at the signal crossing points for a same-edge transition of the differential input signal.
Note 11: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 12: Device jitter added to the differential input signal.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Typical Operating Characteristics
$\left(V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right.$, outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{f}_{\mathrm{I}}=1.5 \mathrm{GHz}$, input duty cycle $=$ 50%, input transition time $=125$ ps (20% to 80%), unless otherwise noted.)

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

MAX9386/MAX9388 Pin Description

PIN		NAME	FUNCTION
MAX9386	MAX9388		
1	2	D0	Noninverting Differential Input 0. Internal $250 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
2	3	$\overline{\text { DO }}$	Inverting Differential Input 0 . Internal $150 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
3	4	D1	Noninverting Differential Input 1. Internal $250 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
4	5	$\overline{\text { D1 }}$	Inverting Differential Input 1. Internal $150 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
5	6	D2	Noninverting Differential Input 2. Internal $250 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
6	7	$\overline{\mathrm{D} 2}$	Inverting Differential Input 2. Internal $150 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
7	8	D3	Noninverting Differential Input 3. Internal $250 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
8	9	$\overline{\text { D3 }}$	Inverting Differential Input 3. Internal $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
9	-	D4	Noninverting Differential Input 4. Internal $250 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
10	-	$\overline{\text { D4 }}$	Inverting Differential Input 4. Internal $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
11	10, 11	$V_{\text {EE }}$	Negative Supply
12	12	$V_{\text {BB2 }}$	Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 2}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open.
13	13	VBB1	Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 1}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open.
14, 20	$\begin{gathered} 1,14 \\ 17,20 \end{gathered}$	VCC	Positive Supply. Bypass each V_{C} to $\mathrm{V}_{E E}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15	15	\bar{Q}	Inverting Output. Typically terminate with 50Ω resistor to VCC - 2V.
16	16	Q	Noninverting Output. Typically terminate with 50Ω resistor to VCC - 2V.
17	18	SELO	Select Logic Input 0. Internal 120k Ω pulldown to V_{EE}.
18	19	SEL1	Select Logic Input 1. Internal 120k Ω pulldown to V_{EE}.
19	-	SEL2	Select Logic Input 2. Internal 120k Ω pulldown to V_{EE}.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

MAX9387 Pin Description

PIN	NAME	FUNCTION
MAX9387		
1, 18, 24	VCC	Positive Supply. Bypass each V_{C} to V_{EE} with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	D0	Noninverting Differential Input 0. Internal $250 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EEE}}$.
3	$\overline{\text { D0 }}$	Inverting Differential Input 0. Internal $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
4	D1	Noninverting Differential Input 1. Internal $250 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
5	$\overline{\text { D1 }}$	Inverting Differential Input 1. Internal $150 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
6	D2	Noninverting Differential Input 2. Internal $250 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to V_{EE}.
7	$\overline{\mathrm{D} 2}$	Inverting Differential Input 2. Internal $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
8	D3	Noninverting Differential Input 3. Internal $250 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EEE}}$.
9	$\overline{\text { D3 }}$	Inverting Differential Input 3. Internal $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $150 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
10	D4	Noninverting Differential Input 4. Internal $250 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
11	$\overline{\mathrm{D} 4}$	Inverting Differential Input 4. Internal $150 \mathrm{k} \Omega$ to V_{CC} and $150 \mathrm{k} \Omega$ to V_{EE}.
12, 13	$V_{E E}$	Negative Supply
14	VBB2	Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 2}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open.
15	VBB1	Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 1}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open.
16	Q1	Inverting Output 1. Typically terminate with 50Ω resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
17	Q1	Noninverting Output 1. Typically terminate with 50Ω resistor to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$.
19	Q0	Inverting Output 0. Typically terminate with 50Ω resistor to VCC - 2 V .
20	Q0	Noninverting Output 0. Typically terminate with 50Ω resistor to VCC - 2 V .
21	SELO	Select Logic Input 0. Internal 120k Ω puldown to $\mathrm{V}_{\text {EE }}$.
22	SEL1	Select Logic Input 1. Internal 120k Ω pulldown to V_{EE}.
23	SEL2	Select Logic Input 2. Internal $120 \mathrm{~K} \Omega$ pulldown to V_{EE}.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Figure 1. Input Definitions

Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram

Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Diagram

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Figure 4. Select Input (SELO)-to-Output (Q_, \bar{Q}_{-}) Delay Timing Diagram

Figure 5. Output-to-Output Skew (tSKOO) Definition (MAX9387 Only)

Figure 6. Input-to-Output Skew (tSKIO) Definition

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Detailed Description

The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, and low-jitter ECL/PECL muxes with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a $5: 1$ mux with a single output buffer. The MAX9387 is a $5: 1$ mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a $4: 1$ mux with a single output buffer, and is pin compatible with the MC100EP57.
Three single-ended select inputs, SELO, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SELO and SEL1 (see Tables 1 and 2). The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output V_{BB}, nominally V_{CC} 1.425 V . The select inputs accept signals between V_{CC} and $V_{E E}$. Internal $120 \mathrm{k} \Omega$ pulldowns to $\mathrm{V}_{E E}$ ensure a low default condition if the select inputs are left open, selecting the DO, $\overline{\mathrm{DO}}$ input.

The differential inputs $\mathrm{D}, \overline{\mathrm{D}}$ can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage

Table 1. Mux Select Input Truth Table for MAX9386/MAX9387

SEL2	SEL1	SEL0	DATA OUTPUT
L or open	L or open	L or open	D0* *
L or open	L or open	H	D1
L or open	H	L or open	D2
L or open	H	H	D3
H	X	X	D4

*Default output when SELO, SEL1, and SEL2 are left open.

Table 2. Mux Select Input Truth Table for MAX9388

SEL1	SEL0	DATA OUTPUT
L or open	L or open	D0* *
L or open	H	D1
H	L or open	D2
H	H	D3

[^0]$V_{B B}$. The reference output voltages, $V_{B B 1}$ and $V_{B B 2}$, provide the reference voltage for single-ended operation for each mux. A single-ended input of at least $\mathrm{VBB}_{\mathrm{B}}$ $\pm 100 \mathrm{mV}$ or a differential input of at least 100 mV switches the outputs to the $\mathrm{VOH}_{\mathrm{OH}}$ and V_{OL} levels specified in the DC Electrical Characteristics. The maximum magnitude of the differential input from D to \bar{D} is $\pm 3.0 \mathrm{~V}$. This limit also applies to the difference between a single-ended input and any reference voltage input.
Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Single-Ended Operation

The recommended supply voltage for single-ended operation is 3.0 V to 5.5 V . The differential inputs ($D, \overline{\mathrm{D}}$) can be configured to accept single-ended inputs when operating at supply voltages greater than 2.725 V . In single-ended mode operation, the unused complementary input needs to be connected to the on-chip reference voltage, V_{BB}, as a reference. For example, the differential $\mathrm{D}, \overline{\mathrm{D}}$ input is converted to a noninverting, single-ended input by connecting $V_{B B}$ to \bar{D} and connecting the single-ended input to D. Similarly, an inverting input is obtained by connecting $V_{B B}$ to D and connecting the single-ended input to $\overline{\mathrm{D}}$. With a differential input configured as single ended (using $V_{B B}$), the single-ended input can be driven to VCC or VEE or with a single-ended LVPECL/LVECL signal.

In single-ended mode operation, a user must ensure that the supply voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) is greater than 2.725 V . This is because the input high minimum level must be at $\left(\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}\right)$ or higher for proper operation. The reference voltage, V_{BB}, must be at least ($\mathrm{V}_{\mathrm{EE}}+$ 1.2 V) for the same reason because it becomes the highlevel input when a single-ended input swings below it. The minimum VBB output for the MAX9386/MAX9387/ MAX9388 is ($\mathrm{V}_{\mathrm{CC}}-1.38 \mathrm{~V}$). Substituting the minimum V_{BB} output for $\left(\mathrm{V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}\right)$ results in a minimum supply ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) of 2.725 V . Rounding up to standard supplies gives the recommended single-ended operating supply ranges ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) of 3.0 V to 5.5 V .

When using the V_{BB} reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{CC}. If not used, leave it open. The $V_{B B}$ reference can source or sink a total of 0.5 mA (shared between $\mathrm{V}_{\mathrm{BB} 1}$ and $\mathrm{V}_{\mathrm{BB} 2}$), which is sufficient to drive five inputs.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Applications Information

Output Termination

Terminate the outputs through 50Ω to $\mathrm{VCC}-2 \mathrm{~V}$ or use equivalent Thevenin terminations. Terminate each Q and \bar{Q} output with identical termination on each for minimal distortion. When a single-ended signal is taken from the differential output, terminate both Q and $\overline{\mathrm{Q}}$.
Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should be observed.

Supply Bypassing

Bypass $\mathrm{V}_{C C}$ to $\mathrm{V}_{E E}$ with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors. For PECL, bypass each VCC to VEE. For ECL, bypass each VEE to VCC. Place the capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins.
Use multiple vias when connecting the bypass capacitors to ground. When using the V_{BB} or V_{BB} reference outputs, bypass each one with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{CC}. If the $\mathrm{V}_{\mathrm{BB} 1}$ or V_{BB} reference outputs are not used, they can be left open.

Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing com-mon-mode noise immunity.
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information
TRANSISTOR COUNT: 583
PROCESS: Bipolar

Functional Block Diagram

MAX9386 (*) DOES NOT HAVE Q1 AND $\overline{\text { Q1 }}$ OUTPUTS, AND MAX9388 (**) DOES NOT HAVE D4, $\overline{\text { D4 }}$, AND SEL2 INPUTS.

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	SELECTION
MAX9387EUG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 TSSOP	$5: 1$ mux with 2 output buffers
MAX9387EEG**	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 QSOP	$5: 1$ mux with 2 output buffers
MAX9388EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$4: 1$ mux with 1 output buffer
MAX9388EEP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 QSOP	$4: 1$ mux with 1 output buffer

*Future product-contact factory for availability.

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Pin Configurations (continued)

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA JM38510/30702BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D. 652 74HC257D. 652 74HCT153D. 652

[^0]: *Default output when SELO and SEL1 are left open.

