Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

General Description

The MAX9389 is a fully differential, high-speed, low-jitter, 8-to-1 ECL/PECL multiplexer (mux) with dual output buffers. The device is designed for clock and data distribution applications, and features extremely low propagation delay (310ps typ) and output-to-output skew (30ps max).
Three single-ended select inputs, SELO, SEL1, and SEL2, control the mux function. The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip reference output (VBB1, VBB2), nominally VCC -1.425 V . The select inputs accept signals between $\mathrm{V}_{C C}$ and $\mathrm{V}_{E E}$. Internal pulldowns to $\mathrm{V}_{E E}$ ensure a low default condition if the select inputs are left open.
The differential inputs D_{-}, \bar{D}_{-}can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output (VBB1, $V_{B B 2}$). All the differential inputs have internal bias and clamping circuits that ensure a low output state when the inputs are left open.
The MAX9389 operates with a wide supply range VCC $\mathrm{V}_{\text {EE }}$ of 2.375 V to 5.5 V . The device is offered in 32-pin TQFP and thin QFN packages, and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
High-Speed Telecom and Datacom Applications Central-Office Backplane Clock Distribution DSLAM/DLC

Pin Configurations

Features

- 310ps Propagation Delay
- Guaranteed 2.7GHz Operating Frequency
- 0.3ps ${ }_{\text {RMS }}$ Random Jitter
- <30ps Output-to-Output Skew
- -2.375V to -5.5V Supplies for Differential LVECL/ECL
- +2.375V to +5.5V Supplies for Differential LVPECL/PECL
- Outputs Low for Open Inputs
- Dual Output Buffers
- >2kV ESD Protection (Human Body Model)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9389EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP
MAX9389ETJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN

*Future product-contact factory for availability.
Functional Diagram

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

ABSOLUTE MAXIMUM RATINGS

Continuous Output Current	50mA
Surge Output Current.	
VBB_ Sink/Source Current	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
32-Lead TQFP (derate $13.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .1047 mW	
$\theta \mathrm{JA}$ in Still Air.. $+76^{\circ} \mathrm{C} / \mathrm{W}$	
Өjc	+ $25^{\circ} \mathrm{C} / \mathrm{W}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}-\mathrm{V}_{E E}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}} \mathrm{CD}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT (D_, $\overline{\mathbf{D}_{-}}$, SEL_)													
Single-Ended Input High Voltage	V_{IH}	VBB_connected to the unused input, Figure 1		$\begin{aligned} & V_{C C}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 0.880 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.225 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	V
Single-Ended Input Low Voltage	VIL	VBB_ connected to the unused input, Figure 1		$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC }- \\ & 1.625 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.625 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.625 \end{aligned}$	V
Differential Input High Voltage	VIHD	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	V
Differential Input Low Voltage	VILD	Figure 1		VEE		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 0.095 \end{aligned}$	VEE		$\begin{aligned} & V_{C C}- \\ & 0.095 \end{aligned}$	VEE		$\begin{aligned} & V_{\text {CC }}- \\ & 0.095 \end{aligned}$	V
Differential Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {IHD }}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$	Figure 1	$\begin{aligned} & V_{C C}-V_{E E}< \\ & 3.0 \mathrm{~V} \end{aligned}$	0.095		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	0.095		$\begin{gathered} V_{C C}- \\ V_{\mathrm{EE}} \end{gathered}$	0.095		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	V
			$\begin{aligned} & V_{C C}-V_{E E} \geq \\ & 3.0 \mathrm{~V} \end{aligned}$	0.095		3.000	0.095		3.000	0.095		3.000	
Input Current	IIN	$\mathrm{V}_{\text {IH, }} \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {IHD }}$, $\mathrm{V}_{\text {ILD }}$		-60		+60	-60		+60	-60		+60	$\mu \mathrm{A}$
OUTPUT (Q_, $\overline{\mathbf{Q}_{-}}$)													
Single-Ended Output High Voltage	VOH	Figure 2		$\begin{aligned} & V_{C C}- \\ & 1.145 \end{aligned}$		$\begin{aligned} & \text { VCC }^{-} \\ & 0.895 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.145 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.895 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.145 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 0.895 \end{aligned}$	V

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1-4)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Single-Ended Output Low Voltage	VoL	Figure 2	$\begin{aligned} & \text { VCC }-1 \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC }- \\ & 1.695 \end{aligned}$	$\begin{aligned} & \text { VCC - } \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 1.695 \end{aligned}$	$\begin{aligned} & \text { VCC - } \\ & 1.945 \end{aligned}$		$\begin{aligned} & \text { VCC - } \\ & 1.695 \end{aligned}$	V
Differential Output Voltage	$\mathrm{VOH}-$ Vol	Figure 2	650	830		650	840		650	840		mV
REFERENCE OUTPUT ($\mathrm{VBB}_{\text {- }}$)												
Reference Voltage Output	$V_{B B 1}$ VBB2	$\begin{aligned} & I_{\mathrm{BB} 1}+\mathrm{I}_{\mathrm{BB} 2}= \pm 0.5 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.525 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.425 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.325 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.525 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.425 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.325 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.525 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.425 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.325 \end{aligned}$	V
POWER SUPPLY												
Supply Current	IEE	(Note 6)		50	70		53	70		55	70	mA

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}-V_{E E}=2.375 \mathrm{~V}\right.$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}-\mathrm{V}_{\mathrm{ILD}}=0.15 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}} \leq 2.5 \mathrm{GHz}$, input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{C C}-1.5 \mathrm{~V}$, fiN $=622 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)).($ Note 7$)$

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input-to-Output Delay	tPLHD, tPHLD	Figure 2		216	301	370	237	310	416	255	329	456	ps
$\begin{aligned} & \text { SEL_-to-Output } \\ & \text { Delay } \end{aligned}$	tPLH2, tPHL2	Figure 4, input transition time $=500 \mathrm{ps}$ (20\% to 80\%) (Note 8)			1.34	2		1.25	2		1.44	2	ns
Output-to-Output Skew	tSKOO	Figure 5 (Note 9)				15			15			30	ps
Input-to-Output Skew	tSKIO	Figure 6 (Note 10)				50			50			55	ps
Part-to-Part Skew	tSKPP	(Note 11)				125			150			160	ps
Added Random Jitter (Note 12)	tr J	Clock pattern	$\mathrm{fIN}=156 \mathrm{MHz}$		0.3	1.15		0.3	1.15		0.3	1.15	pSRMS
			$\mathrm{fiN}^{\text {a }}$ 622MHz		0.3	1.15		0.3	1.15		0.3	1.15	
			$\mathrm{f} / \mathrm{N}=2.5 \mathrm{GHz}$		0.3	1.15		0.3	1.15		0.3	1.15	
Added Deterministic Jitter (Note 12)	TDJ	$\begin{aligned} & \text { PRBS } \\ & 2^{23}-1 \end{aligned}$	$\mathrm{fIN}=156 \mathrm{Mbps}$		33	95		33	95		33	95	psp-P
			$\mathrm{f} / \mathrm{N}=622 \mathrm{Mbps}$		21	61		21	61		21	61	

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

AC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to 5.5 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}-\mathrm{V}_{\mathrm{ILD}}=0.15 \mathrm{~V}$ to 1 V , fiN $\leq 2.5 \mathrm{GHz}$, input duty cycle $=50 \%$, input transition time $=125$ ps (20% to 80%). Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{I L D}=\mathrm{V}_{C C}-1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=622 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125$ ps (20% to 80%.) $)($ Note 7)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Switching Frequency	$f_{\text {max }}$	$V_{O H}-V_{O L} \geq 300 \mathrm{mV} \text {, }$ Figure 2	2.7			2.7			2.7			GHz
Select Toggle Frequency	fsel	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \geq 300 \mathrm{mV} \text {, }$ Figure 4	100			100			100			MHz
Output Rise and Fall Time (20\% to 80\%)	$\mathrm{tr}_{\text {, }} \mathrm{tF}$	Figure 2	67	105	138	74	117	155	81	128	165	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into an I/O pin is defined as positive. Current out of an I/O pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 4: Single-ended data input operation using $V_{B B}$ is limited to $\left(V_{C C}-V_{E E}\right) \geq 3.0 \mathrm{~V}$.
Note 5: Use $V_{B B}$ _ only for inputs that are on the same device as the $V_{B B}$ reference.
Note 6: All pins open except V_{CC} and V_{EE}.
Note 7: Guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 8: Measured from the 50% point of the input signal with the 50% point equal to $V_{B B}$, to the 50% point of the output signal.
Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 10:Measured between input-to-output paths of the same part at the signal crossing points for a same-edge transition of the differential input signal.
Note 11:Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 12: Device jitter added to the differential input signal.
$\left(V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{C C}-1 \mathrm{~V}, \mathrm{~V}_{I L D}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right.$, outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, $\mathrm{fIN}=622 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125$ ps (20% to 80%), unless otherwise noted.)

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

Typical Operating Characteristics (continued)

$\left(V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right.$, outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, $\mathrm{fIN}=622 \mathrm{MHz}$, input duty cycle $=50 \%$, input transition time $=125$ ps (20% to 80%), unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,8,22, \\ 26,29 \end{gathered}$	VCC	Positive Supply Input. Bypass each $\mathrm{V}_{C C}$ to $\mathrm{V}_{\text {EE }}$ with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	VBB2	Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass V_{BB} to V_{CC} with a 0.01 нF ceramic capacitor. Otherwise leave open.
3	VBB1	Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass $\mathrm{V}_{\mathrm{BB} 1}$ to V_{CC} with a $0.01 \mu \mathrm{~F}$ ceramic capacitor. Otherwise leave open.
4	D0	Noninverting Differential Input 0. Internal $232 \mathrm{k} \Omega$ to $\mathrm{V}_{C C}$ and $180 \mathrm{k} \Omega$ to V_{EE}.
5	$\overline{\mathrm{D}}$	Inverting Differential Input 0. Internal $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
6	D1	Noninverting Differential Input 1. Internal $232 \mathrm{k} \Omega$ to $\mathrm{V}_{C C}$ and $180 \mathrm{k} \Omega$ to V_{EE}.
7	$\overline{\text { D1 }}$	Inverting Differential Input 1. Internal $180 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
9	D2	Noninverting Differential Input 2. Internal $232 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to V_{EE}.
10	$\overline{\mathrm{D} 2}$	Inverting Differential Input 2. Internal $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
11	D3	Noninverting Differential Input 3. Internal $232 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to V_{EE}.
12	$\overline{\text { D3 }}$	Inverting Differential Input 3. Internal $180 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
13	D4	Noninverting Differential Input 4. Internal $232 \mathrm{k} \Omega$ to $\mathrm{V}_{C C}$ and $180 \mathrm{k} \Omega$ to V_{EE}.
14	$\overline{\text { D4 }}$	Inverting Differential Input 4. Internal $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
15	D5	Noninverting Differential Input 5. Internal $232 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to V_{EE}.
16	$\overline{\text { D5 }}$	Inverting Differential Input 5. Internal 180k Ω to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to V_{EE}.
17, 32	V_{EE}	Negative Supply Input
18	D6	Noninverting Differential Input 6. Internal $232 \mathrm{k} \Omega$ to V_{CC} and $180 \mathrm{k} \Omega$ to V_{EE}.
19	$\overline{\text { D6 }}$	Inverting Differential Input 6. Internal $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

Pin Description (continued)

PIN	NAME	FUNCTION
20	D7	Noninverting Differential Input 7. Internal $232 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to V_{EE}.
21	$\overline{\text { D7 }}$	Inverting Differential Input 7. Internal $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC }}$ and $180 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
23	SELO	Select Logic Input 0. Internal 165k Ω pulldown to V_{EE}.
24	SEL1	Select Logic Input 1. Internal 165k Ω pulldown to VEE.
25	SEL2	Select Logic Input 2. Internal 165k pulldown to VEE.
27	Q1	Inverting Output 1. Typically terminate with 50Ω resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
28	Q1	Noninverting Output 1. Typically terminate with 50Ω resistor to VCC - 2V.
30	Q0	Inverting Output 0. Typically terminate with 50Ω resistor to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
31	Q0	Noninverting Output 0. Typically terminate with 50Ω resistor to VCC-2V.
-	EP	Exposed Pad (QFN Package Only). Connect to Vee.

Figure 1. Input Definitions

Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Diagram

Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram

Figure 4. Select Input (SELO) to Output (Q_, \bar{Q}_{-}) Delay Timing Diagram

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

Figure 5. Output-to-Output Skew (tSKOO) Definition

Detailed Description

The MAX9389 is a fully differential, high-speed, low-jitter 8-to-1 ECL/PECL mux with dual output buffers. The device is designed for clock and data distribution applications, and features extremely low propagation delay (310ps typ) and output-to-output skew (30ps max).
Three single-ended select inputs, SELO, SEL1, and SEL2, control the mux function (see Table 1). The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip reference output (VBB1, $\mathrm{V}_{\mathrm{BB} 2}$), nominally $\mathrm{V}_{\mathrm{CC}}-1.425 \mathrm{~V}$. The select inputs accept signals between VCC and VEE. Internal 165k pulldowns to $V_{E E}$ ensure a low default condition if the select inputs are left open. Leaving SELO, SEL1, and SEL2 open selects the D0, D0 inputs by default.
The differential inputs D_{-}, \bar{D}_{-}can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage (VBB1, VBB2). Voltage reference outputs $V_{B B 1}$ and $V_{B B 2}$ provide the reference voltage needed for sin-gle-ended operations. A single-ended input of at least VBB_ $\pm 100 \mathrm{mV}$ or a differential input of at least 100 mV switches the outputs to the $\mathrm{VOH}_{\mathrm{OH}}$ and V_{OL} levels specified in the DC Electrical Characteristics table. The maximum magnitude of the differential input from D_{-}to \bar{D}_{-}is $\pm 3.0 \mathrm{~V}$. This limit also applies to the difference between a single-ended input and any reference voltage input.

Figure 6. Input-to-Output Skew (tSkIO) Definition
Table 1. Mux Select Input Truth Table

DATA OUTPUT	SEL0	SEL1	SEL2
D0* *	L or open	L or open	L or open
D1	H	L or open	L or open
D2	L or open	H	L or open
D3	H	H	L or open
D4	L or open	L or open	H
D5	H	L or open	H
D6	L or open	H	H
D7	H	H	H

*Default output when SELO, SEL1, and SEL2 are left open.

Single-Ended Operation

The recommended supply voltage for single-ended operation is 3.0 V to 3.8 V . The differential inputs (D_{-}, D_) can be configured to accept single-ended inputs when operating at supply voltages greater than 2.725 V . In single-ended mode operation, the unused complementary input needs to be connected to the on-chip reference voltage, $\mathrm{V}_{\mathrm{BB}} 1$ or V_{BB}, as a reference. For example, the differential D_{-}, \bar{D}_{-}inputs are converted to a noninverting, single-ended input by connecting VBB1 or $\mathrm{V}_{\mathrm{BB} 2}$ to $\overline{\mathrm{D}}_{-}$and connecting the single-ended input to D_. Similarly, an inverting input is obtained by connecting $\mathrm{V}_{\mathrm{BB} 1}$ or $\mathrm{V}_{\mathrm{BB} 2}$ to D_{-}and connecting the singleended input to \bar{D}_{-}. The single-ended input can be driven to VCC or VEE or with a single-ended LVPECL/LVECL signal.

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

In single-ended operation, ensure that the supply voltage ($\mathrm{VCC}_{\mathrm{C}}-\mathrm{V}_{\mathrm{EE}}$) is greater than 2.725 V . The input high minimum level must be at least $(\mathrm{VEE}+1.2 \mathrm{~V})$ or higher for proper operation. The reference voltage V_{BB} must be at least $\left(V_{E E}+1.2 \mathrm{~V}\right)$ because it becomes the highlevel input when a single-ended input swings below it. The minimum $V_{B B}$ output for the MAX9389 is (VCC 1.525 V). Substituting the minimum V_{BB} output for (V_{BB} $=\mathrm{V}_{\mathrm{EE}}+1.2 \mathrm{~V}$) results in a minimum supply ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ of 2.725 V . Rounding up to standard supplies gives the recommended single-ended operating supply ranges (VCC - V_{EE}) of 3.0 V to 5.5 V .
When using the V_{BB} reference output, bypass it with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to V_{CC}. If V_{BB} is not being used, leave it unconnected. The $V_{B B}$ reference can source or sink a total of 0.5 mA (shared between VBB1 and $V_{B B 2}$), which is sufficient to drive eight inputs.

Applications Information

Output Termination

Terminate each output with a 50Ω to $V_{C C}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. Terminate each Q_{-} and \bar{Q}_{-}output with identical termination for minimal distortion. When a single-ended signal is taken from the differential output, terminate both Q_{-}and \bar{Q}_{-}.
Ensure that the output current does not exceed the current limits specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should not be exceeded.

Supply Bypassing

Bypass each $V_{C C}$ to $V_{E E}$ with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors. For PECL, bypass each $V_{C C}$ to $V_{E E}$. For ECL, bypass each VEE to VCC. Place the capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins.
Use multiple vias when connecting the bypass capacitors to ground. When using the V_{BB} or V_{BB} reference outputs, bypass each one with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $V_{C C}$. If the $V_{B B 1}$ or $V_{B B 2}$ reference outputs are not used, they can be left open.

Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing commonmode noise immunity.
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Pin Configurations (continued)

NOTE: $V_{\text {EE }}$ IS CONNECTED
TO THE UNDERSIDE
METAL SLUG.

Chip Information

TRANSISTOR COUNT: 716
PROCESS: Bipolar

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Differential 8:1 ECL/PECL Multiplexer with Dual Output Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I ISPPAC-
CLK5510V-01TN48C 83905AMLFT

