DisplayPort to DVITM/HDMI Level Shifter

Abstract

General Description The MAX9406 high-speed, low-skew, quad differential input to current-mode logic (CML) translator features high-speed signal conversion of the DisplayPort ${ }^{\text {™ }}$ (DP) to High-Definition Multimedia Interface (HDMI ${ }^{\text {TM }}$) technology. This device features ultra-low propagation delay of 350ps and channel-to-channel skew of less than 20ps. The MAX9406 supports typical data rates of 2Gbps. The MAX9406 provides the level shift for HDMI's Display Data Channel (DDC) and hot-plug detection (HPD), which converts the 5V single-ended logic to 3.3V single-ended logic.

The MAX9406 operates from a 3 V to 3.6 V core supply and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. This device is available in $48-\mathrm{pin}, 7 \mathrm{~mm}$ $\times 7 \mathrm{~mm}$ thin QFN and 32-pin, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ thin QFN packages.

DVI is a trademark of Digital Display Working Group (DDWG).
DisplayPort is a trademark of Video Electronics Standards Association (VESA)
HDMI is a trademark of HDMI Licensing, LLC.

Applications

Level Conversion for DP to HDMI Data and Clock Driver and Buffer
Backplane Data and Clock Distribution
Base Stations
ATE
\qquad
\qquad Features

- 500mV Differential HDMI Output at 2Gbps Data Rate
- 350ps Propagation Delay
- 20ps Channel-to-Channel Skew at 2Gbps
- Low Jitters: DJ = 11psp-p and RJ = 0.5ps ${ }_{\text {RMS }}$
- Bidirectional Level Shifter of 5V to 3.3V for DDC Pins
- Level Shifter of 5 V to 3.3 V for I / Os
- Integrated 50Ω Input Terminations and Biasing
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX9406ETJ+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & 32 \text { Thin QFN-EP* } \\ & (5 \mathrm{~mm} \times 5 \mathrm{~mm} \times \\ & 0.8 \mathrm{~mm}) \end{aligned}$	T3255-4
MAX9406ETM+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 Thin QFN-EP* ($7 \mathrm{~mm} \times 7 \mathrm{~mm} \times$ 0.8 mm)	T4877-6

+Denotes a lead-free package.
*EP = Exposed paddle.
Pin Configurations

DisplayPort to DVITM/HDMI Level Shifter

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ... $150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ESD Protection

Human Body Model ($\mathrm{R}_{\mathrm{D}}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$)
IN_D_ and OUT_D_ to GND
.$\pm 1.5 \mathrm{kV}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to Application Note 4083 at www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { OE INPUT }}$						
Input High Level	$\mathrm{V}_{\mathrm{IH} 1}$		2.4			V
Input Low Level	VIL1				0.5	V
Input Current	IIN-EN	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}		24		$\mu \mathrm{A}$
DDC_EN INPUT						
Input High Level	$\mathrm{V}_{\mathrm{IH} 1}$		2.4			V
Input Low Level	VIL1				0.5	V
Input Current	IIN-DDC	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}		100		$\mu \mathrm{A}$
HPD INPUT AND OUTPUT						
Input High Level	$\mathrm{V}_{\mathrm{IH} 2}$		2.4		5.3	V
Input Low Level	VIL2				0.8	V
Input Current	IIN2	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		80		$\mu \mathrm{A}$
HPD_SNK Pulldown Resistance	RHPD		40	60		$\mathrm{k} \Omega$
Output High Level	VOH-HPDB		2.5		VCC	V
Output Low Level	VOL-HPDB		0	0.18	0.4	V
DIFFERENTIAL INPUTS (IN_)						
Differential Input High Threshold	VIDH	$V_{\text {ID }}=\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {IN }}-$			50	mV
Differential Input Low Threshold	VIDL	$V_{\text {ID }}=\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {IN }-}$	-50			mV
Common Input Voltage	VCOM	$V_{C O D}=D C A v g\left[\left(V_{\text {IN }}++V_{\text {IN }}\right) / 2\right]$	0	1.43	2	V
Common-Mode AC Tolerance	VCM_AC_P-P	$\mathrm{V}_{\text {CM_AC_P-P }}=\left(\mathrm{V}_{\text {IN }+}+\mathrm{V}_{\text {IN-- }}\right) / 2-\mathrm{V}_{\text {COD }}$			100	mV
Differential Input Termination	RIN		40		60	Ω

DisplayPort to DVITM/HDMI Level Shifter

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIFFERENTIAL OUTPUTS (OUT_)						
Single-Ended Output Swing	Vosw	With a 50Ω load to V_{CC} at both pins	450		600	mV
Single-Ended Output High	VOH3	With a 50Ω load to V_{CC} at both pins	VCC - 10 mV		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+ \\ & 10 \mathrm{mV} \end{aligned}$	mV
Single-Ended Output Low	Vol3	With a 50Ω load to $V_{C C}$ at both pins	VCC 600 mV		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 400 \mathrm{mV} \end{aligned}$	V
Single-Ended Output Current in High-Z	lofF		-10		+10	$\mu \mathrm{A}$
Output Short-Circuit Current	los	Output pins connected to $\mathrm{V}_{\text {cc }}$ or GND	-20		+20	mA
POWER CONSUMPTION						
Supply Current	ICC	Includes 4 channels CML termination supply current, $\overline{\mathrm{OE}}=0$		77	90	mA
	IPD	$\overline{\mathrm{OE}}=1$		5		

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIFFERENTIAL SIGNAL						
Maximum Data Rate	rD		1.85			Gbps
Differential Propagation Delay	tpD			350	500	ps
Channel-to-Channel Skew	tSk			20	50	ps
Output Rise/Fall Time	tR/F		180		515	ps
Added Random Jitter	tru	1 GHz clock input		0.5	1	$\mathrm{ps}_{\text {RMS }}$
Added Deterministic Jitter	tDJ	rD $=2 \mathrm{Gbps}, 2^{23}-1$ PRBS pattern		11	30	psp-p
SINGLE-ENDED SIGNAL						
CLK Frequency	fsck	Supports ${ }^{2} \mathrm{C}$ fast mode			400	kHz
HPD_SRC Rise/Fall Time	tRF-HPDB		1		20	ns
HPD Propagation Delay	thPD				200	ns

Note 2: AC parameters are guaranteed by design and characterization.

DisplayPort to DVITM/HDMI Level Shifter

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}\right.$, outputs terminated with $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DisplayPort to DVITM/HDMI Level Shifter

Pin Description

PIN		NAME	FUNCTION
$\begin{aligned} & \text { 32-PIN } \\ & \text { TQFN } \end{aligned}$	$\begin{aligned} & \text { 48-PIN } \\ & \text { TQFN } \end{aligned}$		
$\begin{gathered} 1,3,8,18 \\ 22 \end{gathered}$	$\begin{gathered} 1,5,12,18, \\ 24,27,31, \\ 36,37,43 \end{gathered}$	GND	Ground
2, 7, 24	$\begin{gathered} 2,11,15 \\ 21,26,33 \\ 40,46 \end{gathered}$	VCC	Power-Supply Input. Bypass V_{C} to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors as close to the supply pins as possible.
-	$\begin{gathered} 3,4,6,10, \\ 34,35 \end{gathered}$	N.C.	No Connection. Not internally connected; leave unconnected.
4	7	HPD_SRC	Hot-Plug Detection at 3.3V Logic
5	8	SDA_SRC	Serial Data Line. ${ }^{2} \mathrm{C}$ data line at 3.3 V logic.
6	9	SCL_SRC	Serial Clock Line. ${ }^{1} \mathrm{C}$ c clock line at 3.3V logic.
9	13	OUT_D4+	Differential Output Port 4+
10	14	OUT_D4-	Differential Output Port 4-
11	16	OUT_D3+	Differential Output Port 3+
12	17	OUT_D3-	Differential Output Port 3-
13	19	OUT_D2+	Differential Output Port 2+
14	20	OUT_D2-	Differential Output Port 2-
15	22	OUT_D1+	Differential Output Port 1+
16	23	OUT_D1-	Differential Output Port 1-
17	25	$\overline{\mathrm{OE}}$	Output Enable. Drive $\overline{\mathrm{OE}}$ low to enable the outputs. Drive $\overline{\mathrm{OE}}$ high to disable the outputs.
19	28	SCL_SNK	Serial Clock Line. $1^{2} \mathrm{C}$ clock line at 5V logic.
20	29	SDA_SNK	Serial Data Line. ${ }^{2} \mathrm{C}$ data line at 5V logic.
21	30	HPD_SNK	Hot-Plug Detection at +5V Logic
23	32	DDC_EN	DDC Link Enable
25	38	IN_D1-	Differential Input Port 1-
26	39	IN_D1+	Differential Input Port 1+
27	41	IN_D2-	Differential Input Port 2-
28	42	IN_D2+	Differential Input Port 2+
29	44	IN_D3-	Differential Input Port 3-
30	45	IN_D3+	Differential Input Port 3+
31	47	IN_D4-	Differential Input Port 4-
32	48	IN_D4+	Differential Input Port 4+
-	-	EP	Exposed Paddle. Connect EP to ground.

DisplayPort to DVITM/HDMI Level Shifter

Detailed Description

The MAX9406 high-speed, low-skew, quad differential input to CML translator is designed for high-speed signal conversion of the DP to HDMI technology. This device features ultra-low propagation delay of 350 ps and channel-to-channel skew of less than 20ps. The MAX9406 supports typical data rates of 2Gbps.
The MAX9406 provides the level shift for HDMI's DDC and HPD, which converts the 5 V single-ended logic to 3.3V single-ended logic.

High-Speed Signal Enables
$\overline{\mathrm{OE}}$ controls the power through the entire length of the four high-speed signal paths. Setting $\overline{\mathrm{OE}}$ low enables all of the high-speed signal paths. Setting $\overline{\mathrm{OE}}$ high disables all high-speed links and disconnects the internal biasing supply and brings the device to the low-power state. In the low-power state, however, the DDC and HPD ports are still functioning.

Display Data Channel (DDC)
The MAX9406 allows the translation between 5 V and 3 V of the lower speed DDC lines. Whenever one side is pulled to GND, the other side follows and vice versa. DDC_EN controls the gating to the DDC link. Setting DDC_EN high enables data to pass through the DDC, while setting DDC_EN low disables the DDC link.

Hot-Plug Detection (HPD)
The MAX9406 translates the HPD 5V logic into 3V logic.

Applications Information

DVI/HDMI Driver

The MAX9406 can be used as the driver for the HDMI signal on the motherboard. The MAX9406 CML output provides a $>400 \mathrm{mV}$ differential HDMI output and supports 3.3 V pullup at the differential outputs. The level shifter boosts the differential signal from the graphics chip to the HDMI connector, located on the edge of the motherboard.

High-Speed Signal Line Enable/Disable

The MAX9406 allows use of the DDC lines independent of the state of the high-speed signal lines and the $\overline{\mathrm{OE}}$ pin. This allows communication through DDC without any high-speed signals.

Output Termination

Terminate CML outputs through 50Ω to $\mathrm{V}_{C C}$ or use an equivalent Thevinin termination. Terminate both outputs and use identical terminations on each for the lowest output-to-output skew.

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass Vcc to GND with high-frequency surface-mount $0.01 \mu \mathrm{~F}$ ceramic capacitors as close to the device as possible. Use multiple bypass vias for connection to minimize inductance.

DisplayPort to DVITM/HDMI Level Shifter

Printed-Circuit Board (PCB) Traces
Input and output trace characteristics affect the performance of the MAX9406. Connect each of the inputs and outputs to a 50Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces, avoiding sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Exposed Paddle

The thin QFN packages used for the MAX9406 have exposed paddles on the bottom. Connect the exposed paddle to ground using a landing pad large enough to accommodate the entire exposed paddle. Add vias from the exposed paddle's land area to a copper polygon on the other side of the PCB to provide lower thermal impedance from the MAX9406 to the ambient air.

Chip Information
PROCESS: BiPolar

DisplayPort to DVITM/HDMI Level Shifter

\qquad

DisplayPort to DVITM/HDMI Level Shifter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS															
PKG	32L 7x7			44L 7x7			48L. 7x7			CUSTOM PKG. (T4877-1) 48L 7x7			56L. 7×7		
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	Max.	MIIN.	NOM.	MAX.	MIN.	NOM.	max.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	-	0.05
A2	0.20 REF.														
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25
D	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
E	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
e	0.65 BSC.			0.50 BSC.			0.50 BSC.			0.50 BSC.			0.40 BSC.		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.45	0.55	0.65	0.30	0.40	0.50
N	32			44			48			44			56		
ND	8			11			12			10			14		
NE	8			11			12			12			14		

EXPOSED PAD VARIATIONS								
$\begin{array}{\|l\|} \hline \text { PKG. } \\ \text { CODES } \end{array}$	$\begin{aligned} & \text { DEPOPULATED } \\ & \text { LEADS } \\ & \hline \end{aligned}$	D2			E2			$\begin{aligned} & \text { JEDEC } \\ & \text { MO220 } \\ & \text { REV. C } \end{aligned}$
		MIN.	NOM.	max.	MIN.	NOM.	max.	
T3277-2	-	4.55	4.70	4.85	4.55	4.70	4.85	-
T3277-3	-	4.55	4.70	4.85	4.55	4.70	4.85	-
T4477-2	-	4.55	4.70	4.85	4.55	4.70	4.85	WKKD-1
T4477-3	-	4.55	4.70	4.85	4.55	4.70	4.85	WKKD-1
T4877-1**	13,24,37,48	4.20	4.30	4.40	4.20	4.30	4.40	-
T4877-3	-	4.95	5.10	5.25	4.95	5.10	5.25	-
T4877-4	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T4877-5	-	2.40	2.50	2.60	2.40	2.50	2.60	-
T4877-6	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T4877-7	-	4.95	5.10	5.25	4.95	5.10	5.25	-
T4877M-1	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T4877M-6	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T4877MN-8	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T4877N-8	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T5677-1	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T5677MN-1	-	5.40	5.50	5.60	5.40	5.50	5.60	-
T5677-2	-	5.40	5.50	5.60	5.40	5.50	5.60	-

** NOTE: T4877-1 IS A CUSTOM 48L PKG. WTH 4 LEADS DEPOPULATED. TOTAL NUMBER OF LEADS ARE 44.

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \# IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-O12. DETALLS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WTHIN
THE ZONE INDICATED. THE TERMINAL IDENTFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. dimension b applies to metaluized terminal and is measured between 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. nd and ne refer to the number of terminals on each d and e side respectively.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWNG CONFORMS TO JEDEC MO220 EXCEPT THE EXPOSED PAD DIMENSIONS OF T4877-1/-3/-4/-5/-6 \& T5677-1.
10. WARPAGE SHALL NOT EXCEED 0.10 mm .
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
13. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.
-DRAWNG NOT TO SCALE-

DisplayPort to DVITM/HDMI Level Shifter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

DisplayPort to DVITM/HDMI Level Shifter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 LMH1208RTVT BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZM ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ ADA4431-1YCPZ-R7

