Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

General Description

The MAX9586-MAX9589 are small, low-power, multichannel video amplifiers with integrated reconstruction filters and input clamps. Specially suited for standarddefinition video signals, these devices are ideal for a wide range of television and set-top box applications.
The video signals from the outputs of a digital-to-analog converter (DAC) are AC-coupled to the inputs of the MAX9586-MAX9589. External video signals, in which the DC bias is usually not known, can also be AC-coupled to the inputs of the MAX9586-MAX9589. The input sync-tip clamps set the DC level of composite video or luma signals, and the input bias circuits set the DC level of chroma signals.
The reconstruction filter typically has $\pm 1 \mathrm{~dB}$ passband flatness at 8.5 MHz and 55 dB attenuation at 27 MHz . The amplifiers have $2 \mathrm{~V} / \mathrm{V}$ gain and the outputs can be DCcoupled to a 75Ω load, which is the equivalent of two video loads, or AC-coupled to a 150Ω load.
The MAX9586-MAX9589 operate from a 2.7 V to 3.6 V single supply and are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range. The MAX9586-MAX9589 are offered in small SOT23 and $\mu \mathrm{MAX}{ }^{\circledR}$ packages.

Applications

Set-Top Boxes
Televisions
Features

- Single- (MAX9586), Dual- (MAX9587),

Triple- (MAX9588), and Quad- (MAX9589)
Channel Devices

- 8.5MHz, $\pm 1 \mathrm{~dB}$ Passband
- 55dB Attenuation at 27MHz
- Fixed Gain of 2V/V
- Low Power: 4.25mA per Channel
- 2.7V to 3.6V Single-Supply Operation
- Small SOT23 and μ MAX Packages

Ordering Information

PART	PIN-PACKAGE	CHANNELS
MAX9586AZK +T	5 Thin SOT23	1
MAX9587AZT +T	6 Thin SOT23	2
MAX9588AUA +T	$8 \mu \mathrm{MAX}$	3
MAX9589AUB +T	$10 \mu \mathrm{MAX}$	4

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operat ing temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

Pin Configurations and Selector Guide located at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

ABSOLUTE MAXIMUM RATINGS

$V_{\text {DD }}$ to GND	+4V
IN_ to GND	-0.3V to +4V
$\overline{\text { SHDN }}$ to GND.	-0.3V to +4V
OUT_ Short Circuit Duration to VDD, GND	Continuous
Continuous Input Current IN, $\overline{\text { SHDN }}$	$\pm 20 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70$ 5-Pin Thin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ a	C) 727 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{VR}_{\mathrm{L}}=\right.$ no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR		2.7		3.6	V
Supply Current	IDD	Per channel			4.25	8	mA
Sync-Tip Clamp Level	VCLP	Sync-tip clamp		0.24		0.41	V
Input Voltage Range	VIN	Guaranteed by DC voltage gain	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$, sync-tip clamp input			1.05	VP-P
			$V_{D D}=2.7 \mathrm{~V}$, bias input			1.05	
			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$, sync-tip clamp input			1.2	
			$V_{D D}=3 \mathrm{~V}$, bias input			1.2	
Sync Crush		Sync-tip clamp, percentage reduction in sync pulse (0.3VP_P), guaranteed by input clamping current measurement, measured at input				2	\%
Input Clamping Current		Sync-tip clamp			1	2	$\mu \mathrm{A}$
Maximum Input Source Resistance					300		Ω
Bias Voltage	VBIAS	Bias circuit		0.40	0.50	0.62	V
Input Resistance					11		k Ω
DC Voltage Gain (Note 2)	Av	$R_{L}=150 \Omega$ to $G N D$	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CLP}} \text { to } \\ & \left(\mathrm{V}_{\mathrm{CLP}}+1.05 \mathrm{~V}\right) \end{aligned}$	1.95	2.00	2.04	V/V
			$\begin{aligned} & V_{D D}=3 V, V_{I N}=V_{C L P} \text { to } \\ & \left(V_{C L P}+1.2 V\right) \end{aligned}$	1.95	2.00	2.04	
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BIAS}} \\ & \pm 0.525 \mathrm{~V} \end{aligned}$	1.95	2.00	2.04	
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BIAS}} \\ & \pm 0.600 \mathrm{~V} \end{aligned}$	1.95	2.00	2.04	
DC Gain Matching		Guaranteed by DC v	voltage gain	-2	0	+2	\%
		Measured at VOUT,	Sync-tip clamp	0.2	0.3	0.4	
Oupur Level		$R L=150 \Omega \text { to } G N D$	Bias circuit		1.3		

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{VR}_{\mathrm{L}}=\right.$ no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output-Voltage Swing		Sync-tip clamp	$\begin{aligned} & \text { Measured at output, } V_{D D}=2.7 \mathrm{~V} \text {, } \\ & V_{I N}=V_{C L P} \text { to }\left(V_{C L P}+1.05 \mathrm{~V}\right), \\ & R_{L}=150 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$		2.1		VP-P
			$\begin{aligned} & \text { Measured at output, } V_{D D}=2.7 \mathrm{~V}, \\ & V_{I N}=V_{C L P} \text { to }\left(V_{C L P}+1.05 \mathrm{~V}\right), \\ & R_{L}=150 \Omega \text { to } V_{D D} / 2 \end{aligned}$		2.1		
			$\begin{aligned} & \text { Measured at output, } V_{D D}=3 V \\ & V_{I N}=V_{C L P} \text { to }\left(V_{C L P}+1.2 V\right), \\ & R_{L}=150 \Omega \text { to }-0.2 V \end{aligned}$		2.4		
			$\begin{aligned} & \text { Measured at output, } V_{D D}=3 \mathrm{~V}, \\ & V_{I N}=V_{C L P} \text { to }\left(V_{C L P}+1.2 \mathrm{~V}\right), \\ & R_{L}=150 \Omega \text { to } V_{D D} / 2 \end{aligned}$		2.4		
			Measured at output, $\mathrm{V}_{\mathrm{DD}}=$ 3.135 V , $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CLP}}$ to ($\mathrm{V}_{\mathrm{CLP}}+$ $1.05 \mathrm{~V}), \mathrm{RL}=75 \Omega$ to -0.2 V		2.1		
		Bias Circuit	$\begin{aligned} & \text { Measured at output, } \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {BIAS }} \pm 0.525 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$		2.1		
			$\begin{aligned} & \text { Measured at output, } V_{D D}=2.7 \mathrm{~V}, \\ & V_{I N}=V_{B I A S} \pm 0.500 \mathrm{~V}, \\ & R_{L}=150 \Omega \text { to } V_{D D} / 2 \end{aligned}$		2.0		
			$\begin{aligned} & \text { Measured at output, } V_{D D}=3 \mathrm{~V}, \\ & V_{I N}=V_{B I A S} \pm 0.600 \mathrm{~V}, \\ & R_{L}=150 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$		2.4		
			$\begin{aligned} & \text { Measured at output, } V_{D D}=3 \mathrm{~V}, \\ & V_{I N}=V_{B I A S} \pm 0.500 \mathrm{~V}, \\ & R_{L}=150 \Omega \text { to } V_{D D} / 2 \end{aligned}$		2.0		
			$\begin{aligned} & \text { Measured at output, } \mathrm{V}_{\mathrm{DD}}= \\ & 3.135 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {BIAS }} \pm 0.525 \mathrm{~V} \text {, } \\ & R_{\mathrm{L}}=75 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$		2.1		
Output Short-Circuit Current		Short to GND (sourcing)			140		mA
		Short to V ${ }_{\text {DD }}$ (sinking)			70		
Output Resistance	Rout	VOUT $=1.5 \mathrm{~V},-10 \mathrm{~mA} \leq \mathrm{I}$ LOAD $\leq+10 \mathrm{~mA}$			0.2		Ω

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{VR}_{\mathrm{L}}=\right.$ no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		48			dB
		$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV}$ P-P			29		
Standard-Definition Reconstruction Filter		$\pm 1 \mathrm{~dB}$ passband flatness			8.5		MHz
		$V_{\text {OUT_ }}=2 \mathrm{~V}_{\text {P-P }}$, reference frequency is $100 \mathrm{kHz}$	$f=5.5 \mathrm{MHz}$		-0.15		dB
			$f=9.5 \mathrm{MHz}$		-3		
			$f=27 \mathrm{MHz}$		-55		
Differential Gain	DG	5 -step modulated staircase of 129 mV step size and 286mV peak-to-peak subcarrier amplitude,$\mathrm{f}=4.43 \mathrm{MHz}$			0.1		\%
Differential Phase	DP	5 -step modulated staircase of 129 mV step size and 286 mV peak-to-peak subcarrier amplitude,$\mathrm{f}=4.43 \mathrm{MHz}$			0.4		Degrees
2T Pulse-to-Bar K Rating		$2 \mathrm{~T}=200 \mathrm{~ns}$, bar time is $18 \mu \mathrm{~s}$; the beginning 2.5% and the ending 2.5% of the bar time are ignored			0.6		K\%
2T Pulse Response		$2 \mathrm{~T}=200 \mathrm{~ns}$			0.2		K\%
2T Bar Response		$2 \mathrm{~T}=200 \mathrm{~ns}$, bar time is $18 \mu \mathrm{~s}$; the beginning 2.5% and the ending 2.5% of the bar time are ignored			0.2		K\%
Nonlinearity		5-step staircase			0		\%
Group Delay Distortion		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5.5 \mathrm{MHz}$, outputs are $2 \mathrm{VP-P}$			9		ns
Peak Signal to RMS Noise		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5.5 \mathrm{MHz}$			71		dB
Output Impedance		$\mathrm{f}=5.5 \mathrm{MHz}$			4.8		Ω
All-Hostile Crosstalk		$\mathrm{f}=4.43 \mathrm{MHz}$			-64		dB

Note 1: All devices are 100\% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design. Note 2: Voltage gain (Av) is a two-point measurement in which the output-voltage swing is divided by the input-voltage swing.

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Typical Operating Characteristics
$\left(V_{D D}=V_{S H D N}=+3.3 V\right.$, video outputs have $R_{L}=150 \Omega$ connected to $G N D, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Pin Description

PIN				NAME	FUNCTION
MAX9586	MAX9587	MAX9588	MAX9589		
5 SOT23	6 SOT23	$8 \mu \mathrm{MAX}$	10 MMAX		
1	-	-	-	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Connect to GND to shut down.
2	2	4	5	GND	Ground
3	-	-	-	IN	Video Input
-	3	1	1	INA	Video Input A
-	1	2	2	INB	Video Input B
-	-	3	3	INC	Video Input C
-	-	-	4	IND	Video Input D
4	-	-	-	OUT	Video Output
-	4	7	9	OUTA	Video Output A
-	6	6	8	OUTB	Video Output B
-	-	5	7	OUTC	Video Output C
-	-	-	6	OUTD	Video Output D
5	5	8	10	$V_{D D}$	Positive Power Supply. Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.

Figure 1. Typical Application Circuits for the MAX9586/MAX9587 (Anti-Alias Filter)

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Figure 2. Typical Application Circuits for the MAX9588/MAX9589 (Reconstruction Filter)
\qquad

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Figure 3. Loopback Circuit Diagram

Detailed Description

The MAX9586-MAX9589 filter and amplify the video DAC output in applications such as set-top boxes and televisions. These devices consist of input clamps, input bias circuits, lowpass filters, and gain of $2 \mathrm{~V} / \mathrm{V}$ output amplifiers capable of driving a standard 150Ω video load to ground.

Inputs

The input stages of the MAX9586-MAX9589 are either sync-tip clamps or bias circuits. Sync-tip clamps accept AC-coupled CVBS or luma video signals with sync pulses. The sync-tip voltage is internally set to 300 mV . Bias circuit inputs accept AC-coupled chroma, a subcarrier modulated with the color information. The bias voltage of the bias circuits is approximately 500 mV .

Video Filter

The filter passband $(\pm 1 \mathrm{~dB})$ is typically 8.5 MHz , which makes the device suitable for standard-definition video signals from all sources (e.g., broadcast and DVD). Broadcast video signals are channel limited: NTSC signals have 4.2 MHz bandwidth and PAL signals have 5 MHz bandwidth. Video signals from a DVD player, however, are not channel limited, so the bandwidth of DVD video signals can approach the Nyquist limit of 6.75 MHz . (Recommendation ITU-R BT.601-5 specifies 13.5 MHz as the sampling rate for standard-definition video). Therefore, the maximum bandwidth of the signal is 6.75 MHz . To ease the filtering requirements, most modern video systems oversample by two times, clocking the video current DAC at 27 MHz .

Outputs
The video output amplifiers can both source and sink load current, allowing output loads to be DC- or ACcoupled. The amplifier output stage needs approximately 300 mV of headroom from either supply rail. The devices have an internal level-shift circuit that positions the sync tip at approximately 300 mV at the output.
If the supply voltage is greater than 3.135 V (5% below a 3.3 V supply), each amplifier can drive two DC-coupled video loads to ground. If the supply is less than 3.135 V , each amplifier can drive only one DC-coupled or AC-coupled video load.

Shutdown (MAX9586)
The MAX9586 draws less than $1 \mu \mathrm{~A}$ supply current when SHDN is low. In shutdown mode, the amplifier output becomes high impedance.

Applications Information

AC-Coupling the Outputs

The outputs can be AC-coupled since the output stage can source and sink current as shown in Figure 4. Coupling capacitors should be $220 \mu \mathrm{~F}$ or greater to keep the highpass filter, formed by the 150Ω equivalent resistance of the video transmission line, to a corner frequency of 4.8 Hz or below. The frame rate of PAL systems is 25 Hz , and the frame rate of NTSC systems is 30 Hz . The corner frequency should be well below the frame rate.

Power-Supply Bypassing and Ground

The MAX9586-MAX9589 operate from a single-supply voltage down to 2.7 V , allowing for low-power operation. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Place all external components as close as possible to the device.

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Figure 4. AC-Coupled Outputs

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

\qquad Pin Configurations

TOP VIEW

PART	PIN-PACKAGE	PACKAGE SIZE	CHANNELS	TOP MARK
MAX9586AZK +T	5 SOT23-5	$2.9 \mathrm{~mm} \times 1.6 \mathrm{~mm}$	1	ADSH
MAX9587AZT +T	6 SOT23-6	$2.9 \mathrm{~mm} \times 1.6 \mathrm{~mm}$	2	AADI
MAX9588AUA+T	$8 \mu \mathrm{MAX}-8$	$3 \mathrm{~mm} \times 3 \mathrm{~mm}$	3	-
MAX9589AUB+T	$10 \mu \mathrm{MAX}-10$	$3 m \mathrm{~m} \times 3 \mathrm{~mm}$	4	-

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range. +Denotes a lead-free package.

Chip Information

PROCESS: BICMOS

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 TSOT23	$\mathrm{Z} 5+1$	$\underline{\mathbf{2 1}-0113}$	$\underline{\mathbf{9 0 - 0 2 4 1}}$
6 TSOT 23	$\mathrm{Z} 6+1$	$\underline{\mathbf{2 1}-0114}$	$\underline{\mathbf{9 0 - 0 2 4 2}}$
$8 \mu \mathrm{MAX}$	$\mathrm{U}+1$	$\underline{\mathbf{1 1 - 0 0 3 6}}$	$\underline{\mathbf{9 0 - 0 0 9 2}}$
$10 \mu \mathrm{MAX}$	$\mathrm{U}+2$	$\underline{\mathbf{2 1 - 0 0 6 1}}$	$\underline{\mathbf{9 0 - 0 3 3 0}}$

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NDTES:

1. ALL DIMENSIDNS ARE IN MILLIMETERS UNLESS םTHERWISE SPECIFIED.
2. "D" AND "E1" ARE REFERENCE DATUM AND D PRDTRUSIZNS, AND ARE MEASURED AT THE BDTTOM PARTING LINE. MDLD FLASH UR PRZTRUSIDN SHALL NDT EXCEED 0.15 mm QN "D" AND 0.25 mm पN "E" PER SIDE.
3. THE LEAD WIDTH DIMENSION DEES NDT INCLUDE DAMBAR PROTRUSIDN. ALLIWABLE DAMBAR PROTRUSIIDN SHALL BE 0.07 mm TOTAL IN EXCESS DF THE LEAD WIDTH dimension at maximum material condition.
4. DATUM PLANE EHG LICATED AT MILD PARTING LINE AND CDINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT THE BOTTIM GF PARTING LINE.
THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TOLERANCE ZINE. This TDLERANCE ZONE IS DEFINED BY TWD PARALLEL LINES. ONE PLANE IS THE SEATING PLANE, DATUM EC-G AND THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FRDM EC- IN THE DIRECTIIN INDICATED. FIRMED LEADS SHALL BE planar with respect to one andiher with 0.10 mm at Seating plane.
5. THIS PART IS CZMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FIR THE "e" DIMENSIIN WHICH IS 0.95 mm INSTEAD DF 1.00 mm . THIS PART IS IN FULL CIMPLIANCE TI EIAJ SPECIFICATION SC-74.
6. COPLANARITY APPLIES TT THE EXPGSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NDT EXCEED 0.08 mm .
7. WARPAGE SHALL NDT EXCEED 0.10 mm .
8. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTIIN SHALL CONFORM TQ JESD 95-1 PP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIDNAL. THE TERMINAL \# 1 IDENTIFIER MAY BE EITHER A MDLD DR MARKED FEATURE.
9. MARKING IS FIR PACKAGE वRIENTATIUN REFERENCE \quad anly.

DIMENSIDNS				
	MIN	NIM	MAX	
A	-	-	1.10	
A1	0.00	0.075	0.10	
A2	0.85	0.88	0.90	
A3	0.50 BSC			
b	0.30	-	0.45	
b1	0.25	0.35	0.40	
C	0.15	-	0.20	
C1	0.12	0.127	0.15	
D	2.80	2.90	3.00	
E	2.75 BSC			
E1	1.55	1.60	1.65	
L	0.30	0.40	0.50	
e1	1.90 BSC			
e	0.95 BSC			
α	0°	4°	8°	
a.aa	0.20			
PKG	Z5-1, Z5-2, Z5-3			
CDDE				

11. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC \# 10-0131.
12. ALL DIMENSIONS APPLY ta buth LEADED (-) AND LEAD FREE (+) PACKAGE CODES.

MVIXINV

PACKAGE ZUTLINE, 5L THIN SUT23, (LIWW PRDFILE)

APPROVAL	DOCUMENT CONTROL NO. $21-0113$	REV	$2 / 2$

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
nates:

1. ALL dimensions are in millimeters.
2. 'D ' AND "EI' ARE REFERENCE DATUM AND DD NOT INCLUDE MDLD FLASH $\square R$ PROTRUSIONS, AND ARE MEASURED AT THE BITTIM PARTING LINE. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm ON "D" AND 0.25 mm DN "E" PER SIDE.
3. THE LEEAD WIDTH IIMENSION DIES NIT INCLUDE DAMBAR PRITRUSION. ALLIVVABLE dAmbar pratrusion shall be 0.07 mm TOTAL IN EXCESS IF THE LEAD WIDTH diMENSIIN AT MAXIMUM MATERIAL CDNDITIIN.
4. datum plane rh" located at mad parting line and coincident with lead, Vhere lead exits plastic body at the bottom dr parting line.
5. THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TRLERANCE ZZNE. THIS tolerance zane is defined by Tw parallel lines. ane plane is the SEATING PLANE, DATUM C-C-JI AND THE THER PLANE IS AT THE SPECIFIED DISTANCE FROM L-C-J IN THE DIRECTION INITCATED. FRMED LEEADS SHALL BE PLANAR WITH RESPECT TI ONE ANITHER WITH 0.10mm AT SEATING PLANE.
6. THIS PART IS CZMPLIANT WITH JEDEC SPECIFILATION MD-I93 EXCEPT FIR THE "e" DIMENSION WHICH IS 0.95 mm INSTEAD DF 1.00 mm . THIS PART IS IN FULL COMPLIANCE TO EIAJ SPECIFICATION SC-74.
7. CIPLANARITY APPLIES TO THE EXPISED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NDT EXCEED 0.08 mm .
8. Varpage shall nat exceed 0.10 mm .
9. THE TERMINAL \#I IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL信 GPTIONAL. THE TERMINAL \#I IDENTIFIER MAY BE EITHER A MILD DR MARKED GPTIINAL.
10. MARKING IS FIR PACKAGE DRIENTATION REFERENCE anly.
11. all dimensions apply to both leaded (-) and lead free (+) package codes.
[^0]| SYMBCLS | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | NDM | MAX | |
| A | - | - | 1.10 | |
| A1 | 0.00 | 0.075 | 0.10 | |
| A2 | 0.85 | 0.88 | 0.90 | |
| A3 | 0.50 BSC | | | |
| b | 0.30 | - | 0.45 | |
| b1 | 0.25 | 0.35 | 0.40 | |
| c | 0.15 | - | 0.20 | |
| C1 | 0.12 | 0.127 | 0.15 | |
| D | 2.80 | 2.90 | 3.00 | |
| E | 2.75 BSC | | | |
| E1 | 1.55 | 1.60 | 1.65 | |
| L | 0.30 | 0.40 | 0.50 | |
| e1 | 1.90 BSC | | | |
| e | 0.95 BSC | | | |
| OC | 00° | 4° | 8^{\bullet} | |
| a.a. | 0.20 | | | |
| Pkg. Codes1 Z6-1, Z6-2 | | | | |

IL ALL DIMENSIGNS APPLY TG BGTH LEADED ($)$ AND LEAD FREE (t) PACKAGE CDDES.

WDALLAS		
mieitrage dutine, gl thin sqte3, (LOW PROFILE)		
	21-0114	${ }_{\text {Rex }}^{\text {Rec }}$

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

FRONT VIEW

BOTTOM VIEW

SIDE VIEW
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. COMPLIES TO JEDEC MO-187, LATEST REVISION, VARIATION AA.
5. MARKING SHOWN IS FOR PKG. ORIENTATION ONLY.
6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

PACKAGE OUTLINE, 8L uMAX/uSOP

PKG. CODES:
U8-1; U8-3; U8CN-1

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
b	0.010	0.014	0.25	0.36
C	0.005	0.007	0.13	0.18
D	0.114	0.122	2.90	3.10
e	0.0256 BSC		0.65 BSC	
E	0.114	0.122	2.90	3.10
H	0.188	0.198	4.78	5.03
L	0.016	0.026	0.41	0.66
α	0°	6°	$0{ }^{\circ}$	6°
S	0.0207 BSC		0.5250 BSC	
$\begin{aligned} & \text { PKG. CODES: } \\ & \text { U8-1; U8-3; U8CN-1 } \end{aligned}$				

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NDTES:

1. D\&E DD NDT INCLUDE MDLD FLASH.
2. MDLD FLASH QR PRDTRUSIDNS NDT TV EXCEED 0.15 mm (.006")
. CONTRDLLING DIMENSIDN: MILLIMETERS
3. COMPLIES TO JEDEC MO-187, LATEST REVISION, VARIATION BA.
4. MARKING SHDWN IS FIR PKG. ZRIENTATIDN UNLY.
5. ALL DIMENSIDNS APPLY TD BDTH LEADED (\rightarrow AND PbFREE (+) PKG. CDDES.
-DRAWING NOT TO SCALE-

111 1 -111		
TTTEE:		
PACKAGE OUTLINE, 10L uMAX/USOP		
Proval	DOCUMENT CONTROL NO.	v.

Single, Dual, Triple, and Quad Standard-Definition Video Filter Amplifiers with AC-Coupled Input Buffers

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES |
| :---: | :---: | :--- | :--- | :---: |
| 6 | $2 / 11$ | Added loopback circuit diagram | CHANGED |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LT1193CN8 ADA4856-3YCPZ-R7 LT1253CN8\#PBF ADA4859-3ACPZ-R7 AD829SQ/883B AD8001ANZ AD8001AR AD8001ARTZREEL7 AD8002ARMZ AD8072ARMZ AD8072JNZ AD810ANZ AD8123ACPZ AD8123ACPZ-R7 AD812ANZ AD813ANZ AD8141ACPZ-R2 AD818ANZ AD828ANZ AD829JNZ AD829SQ AD8134ACPZ-R2 AD8134ACPZ-REEL7 ADA4310-1ARHZ ADA4310-1ARHZ-R7 ADA4433-1BCPZ-R2 ADA4433-1BCPZ-R7 ADA4433-1WBCPZ-R7 ADA4853-2YCPZ-R2 ADA4853-3YRUZ ADA4859-3ACPZ-R2 ADA4310-1ACPZ-R2 AD8073JRZ AD8023ARZ AD813ARZ-14 AD8013ARZ-14 AD813ARZ-14-REEL7 AD8145YCPZ-R7 AD8143ACPZ-REEL7 AD8372ACPZ-R7 ADA4853-2YCPZ-RL7 AD8002ARZ-R7 AD8072JRZ AD8001ARZ AD8002ARZ AD818ARZ-REEL7 AD829ARZ AD828ARZ AD8011ARZ AD811JRZ

[^0]: -DRAWING NOT TO SCALE-

