Low-Power Single/Dual, Rail-to-Rail Op Amps

General Description

The MAX9614/MAX9616 are low-power precision op amps that feature precision MOS inputs.
These devices are ideal for a large number of signal processing applications such as photodiode transimpedance amplifiers and filtering/amplification of a wide variety of signals in industrial equipment. The devices also feature excellent RF immunity, making them ideal for portable applications.

The MAX9614/MAX9616 are capable of operating from a 2.5 V to 5.5 V supply voltage over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.
Both singles and duals are available in tiny SC70 packages. The MAX9614 features an active-low shutdown pin.

Applications

Notebooks, Portable Media Players
Industrial and Medical Sensors
General Purpose Signal Processing

Features

- $\mathrm{VCC}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Low $100 \mu \mathrm{~V}$ (max) Vos
- $1 \mu \mathrm{~A}$ Supply Current in Shutdown, 175 $\mu \mathrm{A}$ Operating
- Small SC70 Package
- 2.8MHz Bandwidth
- Excellent RF Immunity

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9614AXT +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SC 70	+ ADL
MAX9616AXA +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SC 70	+AAE

+Denotes lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.

Low-Power Single/Dual, Rail-to-Rail Op Amps

ABSOLUTE MAXIMUM RATINGS

IN+, IN-, $\overline{\text { SHDN }}, \mathrm{V}_{\mathrm{CC}}$ to GND .
-0.3 V to +6 V
OUT to GND .. -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Short-Circuit (GND) Duration, OUT, OUTA, OUTB 5s
Continuous Input Current (any pin)................................ $\pm 20 \mathrm{~mA}$
Thermal Limits (Note 1) Multilayer PCB
Continuous Power Dissipation $\left(\mathrm{TA}=+70^{\circ} \mathrm{C}\right)$

8-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).

\qquad
245 mW${\text { JJA... } 326^{\circ} \mathrm{C} / \mathrm{W}}^{\text {an }}$$\theta \mathrm{Jc}$$115^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range

\qquad
$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\qquad
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+240^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=V_{S H D N}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CM}}=\mathrm{GND}, \mathrm{RL}=10 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Input Voltage Range	VIN+, VIN-	Guaranteed by CMRR test	-0.1		$\begin{aligned} & \mathrm{VCC} \\ & -1.4 \end{aligned}$	V
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17	100	$\mu \mathrm{V}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, after power-up autocalibration			165	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			750	
Input Offset Voltage Drift	Vos - TC			1	7.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 3)	IB	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$		1	1.55	pA
		$\mathrm{TA}=+70^{\circ} \mathrm{C}$			45	
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			135	
		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			1.55	nA
Input Offset Current (Note 3)	Ios	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$			0.5	pA
		$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			7	
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			25	
		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			4000	
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {CM }}=-0.1 \mathrm{~V}$ to $\mathrm{VCC}-1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	80	95		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC}-1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	78			
Open-Loop Gain	AOL	$+0.4 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}-0.4 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega$	99	115		dB
		$+0.4 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}-0.4 \mathrm{~V}, \mathrm{RL}=600 \Omega$	93	110		
Output Short-Circuit Current (Note 4)	ISC	To VCC		275		mA
		To GND		75		
Output Voltage Low	VoL	$R_{L}=10 k \Omega$		1	11	mV
		$R_{L}=600 \Omega$		11	100	
		$\mathrm{RL}=32 \Omega$		170		

Low-Power Single/Dual, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=V_{S H D N}=3.3 V, V_{I N+}=V_{I N}=V_{C M}=G N D, R_{L}=10 \mathrm{k} \Omega\right.$ to $V_{C C} / 2, T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage High	VOH	$R \mathrm{~L}=10 \mathrm{k} \Omega$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 2 \end{gathered}$		mV
		$R \mathrm{~L}=600 \Omega$	$\begin{gathered} V_{\mathrm{CC}}- \\ 100 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 30 \end{gathered}$		
		$R \mathrm{~L}=32 \Omega$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 560 \end{gathered}$		
AC CHARACTERISTICS						
Input Voltage Noise Density	en	$\mathrm{f}=10 \mathrm{kHz}$		28		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Voltage Noise	Total noise	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz}$		5		$\mu \mathrm{VP-P}$
Input Current Noise Density	In	$\mathrm{f}=10 \mathrm{kHz}$		0.1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
Gain Bandwidth	GBW			2.8		MHz
Slew Rate	SR			1.3		V/us
Capacitive Loading	CLOAD	No sustained oscillation		200		pF
Total Harmonic Distortion	THD	$\mathrm{f}=10 \mathrm{kHz}$, VOUT $=2 \mathrm{~V}$ P-P, AV $=1 \mathrm{~V} / \mathrm{V}$		-85		dB

POWER-SUPPLY CHARACTERISTICS

Note 2: All devices are 100% production tested at $T A=+25^{\circ} \mathrm{C}$. Temperature limits are guaranteed by design.
Note 3: Guaranteed by design, not production tested.
Note 4: Do not exceeed package thermal dissipation in the Absolute Maximum Ratings section.

Low-Power Single/Dual, Rail-to-Rail Op Amps

$\left(\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{~V} \operatorname{IN}+=\mathrm{VIN}-=0 \mathrm{~V}, \mathrm{VCM}=\mathrm{VCC} / 2, \mathrm{RL}=10 \mathrm{k} \Omega\right.$ to $\mathrm{VCC} / 2$, values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OFFSET VOLTAGE
vs. COMMON-MODE VOLTAGE

INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE

SUPPLY CURRENT vs. TEMPERATURE

INPUT BIAS CURRENT
vs. TEMPERATURE

OFFSET VOLTAGE HISTOGRAM

INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE

Low-Power Single/Dual, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)
$\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}+}=\mathrm{V}_{\mathrm{I}} \mathrm{N}-=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2$, values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Low-Power Single/Dual, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}} \mathrm{N}+=\mathrm{V}_{\mathrm{I}} \mathrm{N}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2$, values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Power Single/Dual, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}+=\mathrm{V} / \mathrm{N}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2$, values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Configuration

Pin Description

PIN		NAME	
MAX9614	MAX9616		
1	-	FUNCTION	
-	3	IN +	Positive Input
-	5	INB +	Positive Input A
2	4	GND	Ground
3	-	IN-	Negative Input
-	2	INA-	Negative Input A
-	6	INB-	Negative Input B
4	-	OUT	Output
-	1	OUTA	Output A
-	7	OUTB	Output B
5	-	$\overline{\text { SHDN }}$	Active-Low Shutdown
6	8	VCC	Positive Power Supply. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground.

Low-Power Single/Dual, Rail-to-Rail Op Amps

Abstract

Detailed Description

The MAX9614/MAX9616 are low-power op amps ideal for signal processing applications due to the devices' high precision and CMOS inputs.
The MAX9614 also features a low-power shutdown mode that greatly reduces quiescent current while the device is not operational.
The MAX9614/MAX9616 self-calibrate on power-up to eliminate effects of temperature and power-supply variation.

RF Immunity

The MAX9614/MAX9616 feature robust internal EMI filters that reduce the devices' susceptibility to high-frequency RF signals such as from wireless and mobile devices. This, combined with excellent DC and AC specifications, makes these devices ideal for a wide variety of portable audio and sensitive signal-conditioning applications.

Applications Information

Power-Up Autotrim

The MAX9614/MAX9616 feature an automatic power-up autotrim that self-calibrates the VOS of these devices to less than $100 \mu \mathrm{~V}$ of input offset voltage. The autotrim sequence takes approximately 10 ms to complete, and is triggered by an internal power-on reset (POR) circuitry. During this time, the inputs and outputs are put into high impedance and left unconnected. This self-calibration feature allows the device to eliminate input offset voltage effects due to power supply and operating temperature variation simply by cycling its power.
Take care to ensure that the power supply settles within 0.4 ms of power-up after it crosses a POR threshold of 0.5 V to ensure that a stable power supply is present when it steps through its autotrim sequence. If the power supply glitches below the 0.5 V threshold, the POR circuitry reactivates during next power-up.

Shutdown Operation

The MAX9614 features an active-low shutdown mode that puts both inputs and outputs into a high-impedance state. In this mode, the quiescent current is less than $1 \mu \mathrm{~A}$. Putting the output in high-impedance allows multiple signal outputs to be multiplexed onto a single output line without the additional external buffers. The device
does not self-calibrate when exiting shutdown mode, and retains its power-up trim settings. The device also instantly recovers from shutdown.
The shutdown logic levels of the device are independent of supply allowing the shutdown to operate by either a 1.8 V or 3.3 V microcontroller.

Interfacing with the MAX11613

The MAX9616 dual amplifier's low power and tiny size is ideal for driving multichannel analog-to-digital converters (ADCs) such as the MAX11613 (see the Typical Application Circuit). The MAX11613 is a low-power, 12-bit I2C ADC that measures either four single-ended or two differential channels in an 8 -pin $\mu \mathrm{MAX}{ }^{\circledR}$ package. Operating from a single 3 V or 3.3 V supply, the MAX11613 draws a low 380μ A supply current when sampling at 10ksps.The MAX11613 family also offers pincompatible 5V ADCs (MAX11612) and 8-bit (MAX11601) and 10-bit (MAX11607) options.
The MAX9614/MAX9616's output voltage low is designed to be especially close to ground-it is only 11 mV above ground, allowing maximum dynamic range in single-supply applications. High output current and capacitance drive capability of the part help it to be useful in ADC driver and line-driver.

Figure 1. Autotrim Timing Diagram

Low-Power Single/Dual, Rail-to-Rail Op Amps

Input Bias Current
The MAX9614/MAX9616 feature a high-impedance CMOS input stage and a specialized ESD structure that allows low input bias current operation at low input common-mode voltages. Low input bias current is useful when interfacing with high-ohmic sensors. It is also beneficial for designing transimpedance amplifiers for photodiode sensors. This makes the MAX9614/ MAX9616 ideal for ground referenced medical and industrial sensor applications.

Active Filters
The MAX9614/MAX9616 are ideal for a wide variety of active filter circuits that make use of their rail-to-rail output stages and high impedance CMOS inputs. The Typical Application Circuit shows an example multiple feedback active filter circuit with a corner frequency of 1.3 kHz . At low frequencies, the amplifier behaves like a simple low-distortion inverting amplifier of gain = -1, while its high bandwidth gives excellent stopband attenuation above its corner frequency. See the Typical Application Circuit.

Chip Information
PROCESS: BiCMOS

Low-Power Single/Dual, Rail-to-Rail Op Amps

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC 70	$\mathrm{X} 6 \mathrm{SN}-1$	$\underline{21-0077}$	$\underline{90-0189}$
8 SC 70	$\mathrm{X} 8 \mathrm{SN}-1$	$\underline{21-0460}$	-

Low-Power Single/Dual, Rail-to-Rail Op Amps

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

IIP VIEW

CDMMDN DIMENSIDNS			
SYMBDL	MIN	NDM	MAX
A	0.80	0.95	1.10
A1	0.00	0.07	0.10
A2	0.80	0.90	1.00
A3	0.40	0.47	0.55
b	0.15	0.21	0.27
C	0.10	0.14	0.18
D	1.80	2.00	2.20
e	0.50 BSC.		
E	1.15	1.25	1.35
HE	1.80	2.20	2.40
L	0.26	0.34	0.46
L1	0.425 TYP.		
PKG.	X8C-1		
CDDE			

SIDE VIEW

NOTES

1. ALL DIMENSIINS ARE IN MILLIMETERS.
2. DIMENSIUNS ARE INCLUSIVE OF PLATING.
3. DIMENSIUNS ARE EXCLUSIVE DF MDLD FLASH \& METAL BURR.
4. CDPLANARITY 4 MILS. MAX.
S. fott length measured at intercept paint between datum "a' and lead surface. 6. MARKING IS FIR PACKAGE DRIENTATION REFERENCE DNLY.
5. LEAD CENTERLINES TI BE AT TRUE POSITIDN AS DEFINED BY BASIC DIMENSIDN "e", ± 0.05, 8. ALL DIMENSIINS CDMPLY TO JEDEC MD-203.
6. ALL DIMENSIONS APPLY TV BETH LEADED (-) AND LEAD FREE (+) PACKAGE CIDES,

SIDE VIEW

Low-Power Single/Dual, Rail-to-Rail Op Amps

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $8 / 10$ | Initial release | - |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD\#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY

