Precision, High-Bandwidth Op Amp

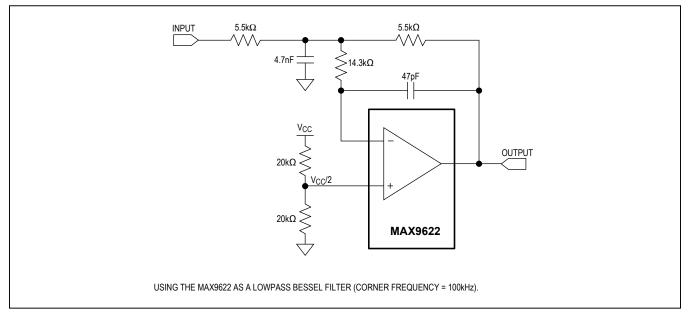
General Description

The MAX9622 op amp features rail-to-rail output and 50MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage to less than 100μ V. It operates from a single-supply voltage of 2.0V to 5.25V.

The MAX9622 is available in a tiny 2mm x 2mm, 5-pin SC70 package and is rated over the -40° C to $+125^{\circ}$ C automotive temperature range.

Applications

- Power Modules
- ADC Drivers for Industrial Systems
- Instrumentation
- Filters


Features

- 50MHz UGBW
- Low Input Voltage Offset Voltage (100µV max)
- Input Common-Mode Voltage Range Extends Below Ground
- Wide 2.0V to 5.25V Supply Range
- Low 1mA Supply Current

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	
MAX9622AXK+T	-40°C to +125°C	5 SC70	AUA	

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

maxim integrated...

Typical Application Circuit

Precision, High-Bandwidth Op Amp

Absolute Maximum Ratings

Supply Voltage (V _{CC} to GND)	0.3V to +5.5V
All Other Pins(0	SND - 0.3V) to $(V_{CC} + 0.3V)$
Short-Circuit Duration to GND or Vo	C 1s
Continuous Input Current (any pins)	±20mA
Thermal Limits (Note 1)	
Continuous Power Dissipation (T _A =	= +70°C)

5-Pin SC70 (derate 3.1mW/°C above +70°C)......245.4mW

Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

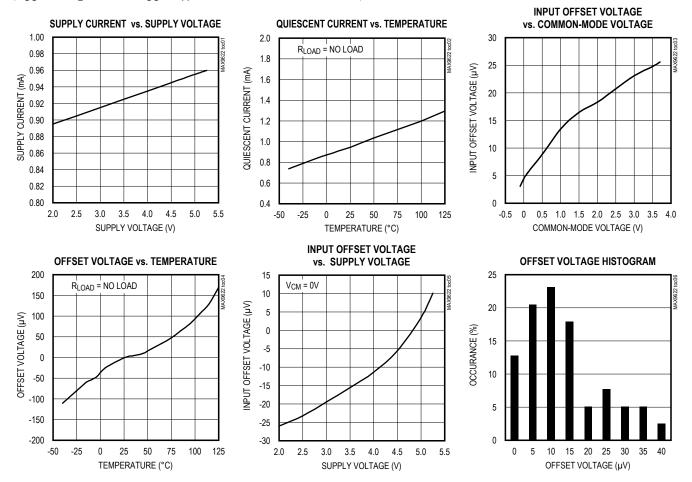
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{CC} = 5V, V_{IN+} = V_{IN-} = 0V, R_L = 10k\Omega$ to $V_{CC}/2$, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY								
Supply Voltage Range	V _{CC}	Guaranteed by PSRF	२	2		5.25	V	
Supply Current	1	No load	T _A = +25°C		1	1.5		
	Icc		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			2.1	mA	
Power-Supply Rejection Ratio	PSRR	T _A = +25°C		97	126		dB	
	FORIX	-40°C ≤ T _A ≤ +125°C		93			uВ	
Power-Up Time	t _{ON}				3		ms	
DC SPECIFICATIONS								
Input Offset Voltage	V _{OS}	After power-up autoc	alibration		8	100	- μV	
	VOS	-40°C ≤ T _A ≤ +125°C	;		8	3000		
Input Offset Voltage Drift	ΔV _{OS}				3		µV/°C	
Input Bias Current		T _A = +25°C			62	150	nA	
	ΙB	-40°C ≤ T _A ≤ +125°C	;			320		
Input Offset Current		T _A = +25°C			3	12	nA	
	los	-40°C ≤ T _A ≤ +125°C	;			30		
Input Common-Mode Range	V _{CM}	Guaranteed by CMRF	R, T _A = -40°C to +125°C	-0.1		V _{CC} -1.3	V	
Common-Mode Rejection Ratio	CMRR	T _A = +25°C		87	121		dB	
		-40°C ≤ T _A ≤ +125°C	;	80			uВ	
	A _{VOL}	400mV ≤ V _{OUT} ≤	T _A = +25°C	91	103			
		V _{CC} - 400mV	-40°C ≤ T _A ≤ +125°C	84			dB	
Large-Signal Gain		$400 \text{mV} \le \text{V}_{\text{OUT}} \le$	T _A = +25°C	77	89			
		V_{CC} - 400mV, R _L = 1kΩ to V _{CC} /2	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	69				
Output Voltage Swing	V _{OH} - V _{CC}	$R_L = 10k\Omega$ to $V_{CC}/2$				60		
	V _{OL}	R_L = 10k Ω to V _{CC} /2				60	mV	
		$R_L = 10k\Omega$ to GND, $T_A = +25^{\circ}C$				40		
		$R_L = 10k\Omega$ to GND				48		
Short-Circuit Current	I _{SC}	(Note 3)			80		mA	

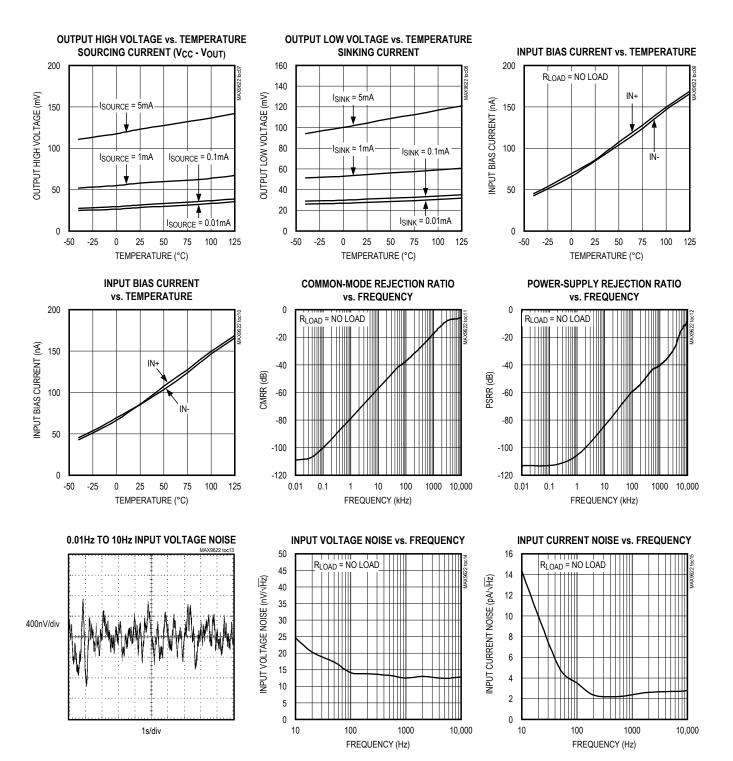
Electrical Characteristics (continued)


 $(V_{CC} = 5V, V_{IN+} = V_{IN-} = 0V, R_L = 10k\Omega$ to $V_{CC}/2$, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC SPECIFICATIONS						
Gain-Bandwidth Product	GBW			50		MHz
Large-Signal Bandwidth	BWLS	V _{OUT} = 2V _{P-P}		3		MHz
Slew Rate	SR	V _{OUT} = 2V _{P-P} , 10% to 90%		20		V/µs
Settling Time	t _S	To 0.1%, V _{OUT} = 2V _{P-P} , C _L = 10pF		200		ns
Total Harmonic Distortion	THD	f = 10kHz, V _{OUT} = 2V _{P-P}		90		dB
Input Voltage-Noise Density	e _N	f = 10kHz		13		nV/√Hz
Input Current-Noise Density	i _N	f = 10kHz		3		pA/√Hz

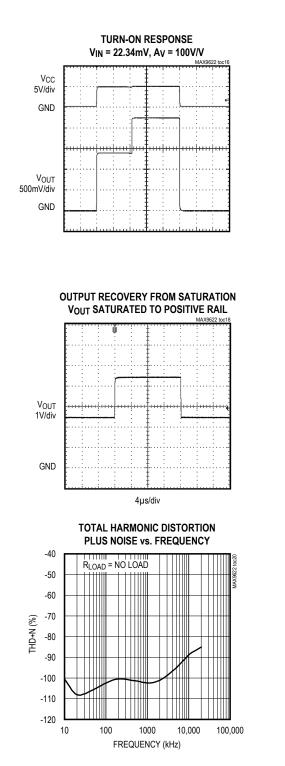
Note 2: The device is 100% production tested at $T_A = +25^{\circ}C$. Temperature limits are guaranteed by design. **Note 3:** Guaranteed by design.

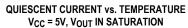
Typical Operating Characteristics

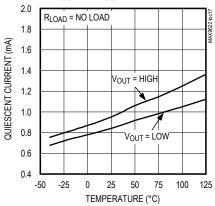

(V_{CC} = 5V, R_L = 10k\Omega to V_{CC}/2, T_A = +25°C, unless otherwise noted.)

Precision, High-Bandwidth Op Amp

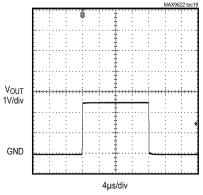
Typical Operating Characteristics (continued)


(V_{CC} = 5V, R_L = 10k Ω to V_{CC}/2, T_A = +25°C, unless otherwise noted.)

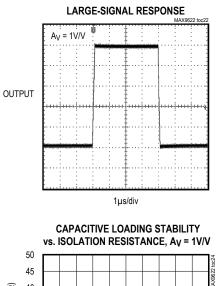


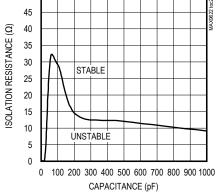

Precision, High-Bandwidth Op Amp

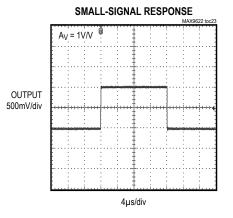
Typical Operating Characteristics (continued)

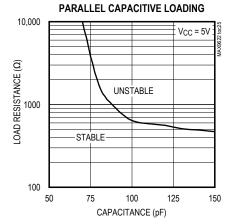

(V_{CC} = 5V, R_L = 10k Ω to V_{CC}/2, T_A = +25°C, unless otherwise noted.)

OUTPUT RECOVERY FROM SATURATION VOUT SATURATED TO NEGATIVE RAIL

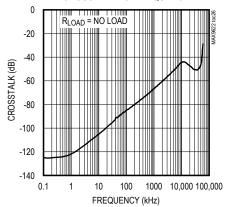


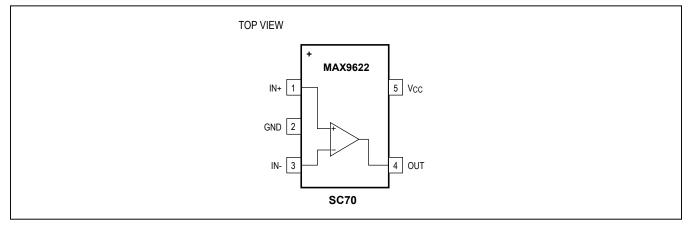

OPEN-LOOP GAIN vs. FREQUENCY 120 R_{LOAD} = NO LOAD 100 OPEN-LOOP GAIN (dB) 80 60 40 20 0 -20 0.01 0.1 1 10 100 1000 10,000 100,000 FREQUENCY (kHz)


Precision, High-Bandwidth Op Amp


Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, R_L = 10k\Omega \text{ to } V_{CC}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$




CROSSTALK vs. FREQUENCY

www.maximintegrated.com

Precision, High-Bandwidth Op Amp

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	IN+	Positive Input
2	GND	Ground
3	IN-	Negative Input
4	OUT	Output
5	V _{CC}	Positive Power Supply. Bypass with a 0.1µF capacitor to ground.

Detailed Description

The MAX9622 is a power-efficient, high-speed op amp ideal for capturing fast edges in a wide variety of signal processing applications.

It precisely calibrates its V_{OS} on power-up to eliminate the effects of package stresses, power supplies, and temperature.

Applications Information

Power-Up Autotrim

The MAX9622 features power-up autotrimming that allows the devices to achieve less than 100μ V of input offset voltage. The startup sequence takes approximately 4ms to complete after the supply voltage exceeds an internal threshold of 1.8V. During this time, the inputs and outputs are connected to an auxiliary amplifier that has an input offset of 5mV (typ). As soon as the autotrimming is completed, the inputs and outputs switch from the auxiliary amplifier to the calibrated amplifier. The calibration settings hold until the supply voltage drops below an internal threshold of 1.4V. This could be used to recalibrate the amplifier. The supply current of the part increases to about 2.5mA during the power-up autotrim period. Use good supply decoupling with low ESR capacitors.

Active Filters

The MAX9622 is ideal for a wide variety of active filter circuits that make use of their wide output voltage swings and large bandwidth capabilities. The *Typical Application Circuit* shows a multiple feedback active filter circuit example with a 100kHz corner frequency. At low frequencies, the amplifier behaves like a simple low-distortion inverting amplifier gain = -1, while its high bandwidth gives excellent stopband attenuation above its corner frequency. See the *Typical Application Circuit*.

Input Differential Voltage Protection

During normal op-amp operation, the inverting and noninverting inputs of the MAX9622 are at essentially the same voltage. However, either due to fast input voltage transients or due to loss of negative feedback, these pins can be forced to different voltages. Internal back-to-back diodes and series resistors protect input-stage transistors from large input differential voltages (see Figure 2). IN+ and IN- can survive any voltage between the powersupply rails.

This op amp has been designed to exhibit no phase inversion to overdriven inputs.

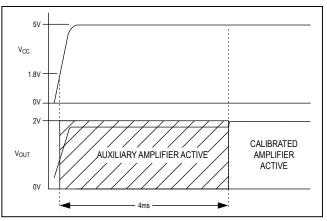


Figure 1. Autotrim Timing Diagram

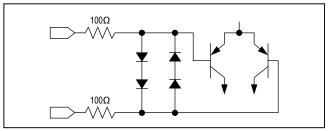


Figure 2. Input Protection Circuit

Precision, High-Bandwidth Op Amp

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.	
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>	

Precision, High-Bandwidth Op Amp

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/10	Initial release	—
1	4/15	Removed automotive reference from data sheet	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

561681F LT6005HGN#PBF LT6238CGN#PBF LT6238HGN#PBF OP05CN8#PBF OP227GN#PBF LT6020IDD#PBF LT6020IDD-1#PBF LT1124CS8#TR NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMP2011MA/NOPB TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZ-R7 TLC272CD AD8539ARMZ LTC6084HDD#PBF LTC1050CN8#PBF LT1024CN#PBF LT1996AIDD#PBF LTC2055CDD#PBF LTC1152CS8#PBF