19-5803; Rev 1; 10/11

5-pin SOT23 package.

perature range.

Cell Phones

Electronic Toys Notebook Computers

Portable Media Players

Portable Medical Devices

AVAILABLE

The MAX9644/MAX9645/MAX9646 are small, single com-

parators, ideal for a wide variety of portable electronics

applications such as cell phones, media players, and

notebooks that have extremely tight board space and

power constraints. These comparators are offered in both a miniature 4-bump UCSP™ package with a 1mm x 1mm

footprint (as small as two 0402 resistors) and a

The ICs feature an input voltage range of -0.3V to

+5.5V, independent of supply voltage. These devices

maintain high impedance at the inputs even when powered down (V_{CC} or V_{REF} = 0V). They also feature inter-

The ICs have an internal 0.2V reference. These devices

feature either a push-pull or an open-drain output. They consume only 700nA (max) supply current and operate down to $V_{CC} = 1V$ over the extended -40°C to +85°C tem-

nal filtering to provide high RF immunity.

Low-Power Comparators with Precision

Reference in 4-Bump UCSP

General Description

Applications

Features

- Tiny, 1mm x 1mm x 0.6mm 4-Bump UCSP Footprint = Two 0402 Resistors Also Available in a 5-Pin SOT23 Package
- Ultra-Low Operating Current (700nA max)
- ♦ -0.3V to +5.5V Input Voltage Range
- Internal 0.2V Reference Trimmed to 1% Accuracy
- 15µs Propagation Delay
- ♦ -40°C to +85°C Extended Temperature Range

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX9644EBS+G45	4 UCSP	+AGL
MAX9644EUK+	5 SOT23	+AFJN
MAX9645EBS+G45	4 UCSP	+AGM
MAX9645EUK+	5 SOT23	+AFJO
MAX9646EBS+G45	4 UCSP	+AGN
MAX9646EUK+	5 SOT23	+AFJP
		1 1 1000 1

Note: All devices are specified over the extended -40°C to +85°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

G45 = Protective die coating.

Selector Guide

PART	REFERENCE VOLTAGE (V)	INPUT	OUTPUT
MAX9644	0.2	Noninverting	Open drain
MAX9645	0.2	Inverting	Open drain
MAX9646	0.2	Noninverting	Push-pull

UCSP is a trademark of Maxim Integrated Products, Inc.

M /X / M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , REF, IN to GND OUT to GND (MAX9644/MAX9645)	
OUT to GND (MAX9646 only)	
Output Short-Circuit Current Duration	
Input Current into Any Terminal	±20mA
Continuous Power Dissipation	
4-Bump UCSP (derate 3.0mW/°C abo	ove +70°C)238 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.3V, R_{PULLUP} = 10k\Omega$ to $V_{PULLUP} = 3.3V$ for MAX9644/MAX9645, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
DC CHARACTERISTICS			•				
Input Voltage Range	VIN	Guaranteed by IIN test	-0.3		+5.5	V	
Input Bias Current	lin	V _{IN} = 0.2V to 5.5V (Note 2)		0.06	15	nA	
Input Leakage Current	IIN_SHDN	V _{CC} = 0, V _{IN} = 5.5V (Note 2)		< 0.1	15	nA	
		$I_{SINK} = 50 \mu A, V_{CC} = 1.0 V$		0.03	0.2		
		$I_{SINK} = 200 \mu A, V_{CC} = 1.2 V$		0.08	0.20		
Output Voltage Low	VOL	$I_{SINK} = 500 \mu A, V_{CC} = 1.8 V$		0.13	0.23	V	
		$I_{SINK} = 0.75 \text{mA}, V_{CC} = 3.3 \text{V}$		0.14	0.3		
		$I_{SINK} = 1.2 mA, V_{CC} = 5.5 V$		0.19	0.5		
		$I_{\text{SOURCE}} = 15 \mu A, V_{\text{CC}} = 1.0 \text{V}$		V _{CC} - 0.08V	V _{CC} - 0.2V		
		$I_{\text{SOURCE}} = 40 \mu \text{A}, V_{\text{CC}} = 1.2 \text{V}$		V _{CC} - 0.08V	V _{CC} - 0.20V	V	
Output Voltage High (MAX9464 Only)	Vон	$I_{\text{SOURCE}} = 180 \mu \text{A}, V_{\text{CC}} = 1.8 \text{V}$		V _{CC} - 0.15V	V _{CC} - 0.23V		
(M/ VOHOH OHIY)		$I_{\text{SOURCE}} = 0.3 \text{mA}, V_{\text{CC}} = 3.3 \text{V}$		V _{CC} - 0.13V	V _{CC} - 0.3V		
		$I_{\text{SOURCE}} = 0.75 \text{mA}, V_{\text{CC}} = 5.5 \text{V}$		V _{CC} - 0.24V	V _{CC} - 0.5V		
Output Leakage Current (MAX9644/MAX9645 Only)	IOUT_LEAKAGE	OUT = high, V _{PULLUP} = 5.5V (Note 2)		< 0.1	15	nA	
AC CHARACTERISTICS	•						
Propagation Delay	t _{PD}	$V_{OVERDRIVE} = \pm 100 mV$ (Note 3)		15		μs	
Fall Time	tF	C _L = 10pF		14		ns	
Rise Time	t _R	$C_L = 10 pF$, MAX9646 only		30		ns	
REFERENCE VOLTAGE	•						
		MAX964_EBS+		200			
Input Threshold (Note 4)	VREF	MAX964_EUK+		199		mV	
Input Threshold Error	Delta-V _{REF}	$T_A = +25^{\circ}C$	-1		+1	- %	
(Note 4)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-3.5		+3.5		
Input Threshold Hysteresis	V _{HYS}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Note 5)}$		±0.9		mV	
REF Tempco	VREF_TEMPCO	(Note 6)		6		µV/°C	
Power-Supply Rejection Ratio	PSRR	V _{CC} = 1.0V to 5.5V	40	53		dB	

ELECTRICAL CHARACTERISTICS

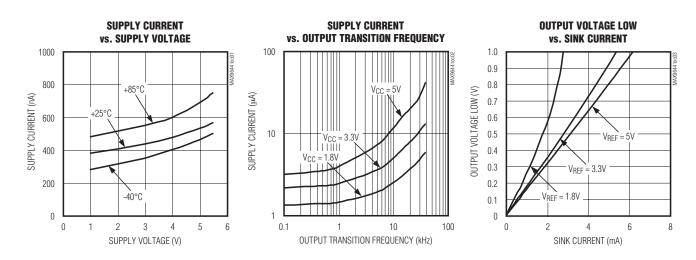
 $(V_{CC} = 3.3V, R_{PULLUP} = 10k\Omega$ to $V_{PULLUP} = 3.3V$ for MAX9644/MAX9645, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY						
Supply Voltage	V _{CC}	Guaranteed by VOL/VOH tests	1.0		5.5	V
Supply Current		$V_{CC} = 1.0V$		0.4	0.7	
	ICC	$V_{CC} = 5.5 V$		0.6	1.1	μΑ
Power-Up Time	ton			3		ms

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Temperature limits are guaranteed by design.

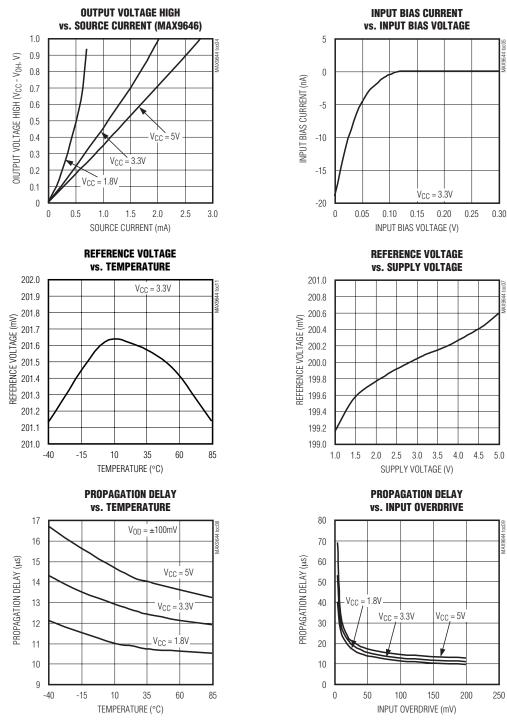
Note 2: Too small to be measured in an ATE test environment. Only gross test to catch failures is implemented.

Note 3: Overdrive is defined as the voltage above or below the switching points.

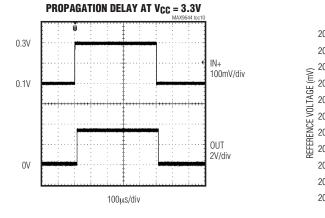

Note 4: Guaranteed by ATE and/or bench characterization over temperature. VREF is the average of the trip points.

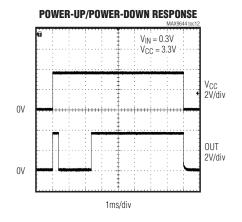
Note 5: Hysteresis is half the input voltage difference between the two switching points.

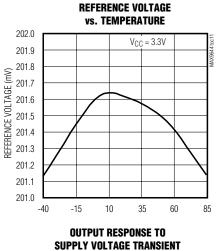
Note 6: Includes reference error along with comparator offset voltage error.

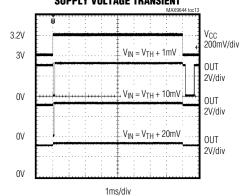

Typical Operating Characteristics

 $(V_{CC} = 3.3V, V_{REF} = 1.8V, R_{PULLUP} = 10k\Omega$ to $V_{PULLUP} = 3.3V$ for MAX9644/MAX9645, GND = 0, $T_A = +25^{\circ}C$, unless otherwise noted.)

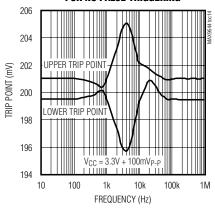

Typical Operating Characteristics

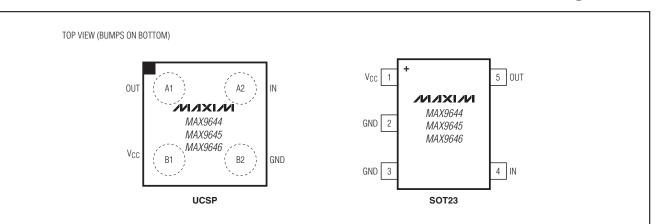

 $(V_{CC} = 3.3V, V_{REF} = 1.8V, R_{PULLUP} = 10k\Omega$ to $V_{PULLUP} = 3.3V$ for MAX9644/MAX9645, GND = 0, $T_A = +25^{\circ}C$, unless otherwise noted.)




Typical Operating Characteristics (continued)

 $(V_{CC} = 3.3V, V_{REF} = 1.8V, R_{PULLUP} = 10k\Omega$ to $V_{PULLUP} = 3.3V$ for MAX9644/MAX9645, GND = 0, T_A = +25°C, unless otherwise noted.)





POWER-SUPPLY REJECTION FOR NO FALSE TRIGGERING

MAX9644/MAX9645/MAX9646

_Pin Configuration

Pin Description

P	IN	NAME	FUNCTION
UCSP	SOT23	NAME	FUNCTION
A1	5	OUT	Comparator Output. The MAX9644/MAX9645 have open-drain outputs. The MAX9646 has a push-pull output.
A2	4	IN	Comparator Input. The MAX9644/MAX9646 have noninverting inputs. The MAX9645 has inverting inputs.
B1	1	Vcc	Power-Supply Voltage. Bypass to ground with a 0.1µF bypass capacitor.
B2	2, 3	GND	Ground

Detailed Description

The MAX9644/MAX9645/MAX9646 are extremely small comparators ideal for compact, low-current, and low-voltage applications.

The ICs consume only 400nA (typ). The low-voltage operating capability of the operating current makes these devices extremely attractive to long-life battery-operated devices—these applications can now use a single digital power-supply rail to power the new generation of microcontrollers (which can be down to 0.9V). All parts are available in a tiny 4-bump UCSP, which is only 0.6mm tall and occupies a 1mm x 1mm footprint and a 5-pin SOT23.

Input Stage Circuitry

Noninverting inputs are available on the MAX9644/ MAX9646 and inverting inputs are available on the MAX9645.

The MAX9644/MAX9645/MAX9646 incorporate an innovative input stage architecture that allows their input voltage to exceed V_{CC} by several volts (limited only by the *Absolute Maximum Ratings*). This is unlike traditional comparators that have an input ESD diode clamp between the input and V_{CC}, limiting this maximum overvoltage to about 0.3V. The ICs architecture maintains a high input impedance to input signals even when the device power-supply voltage is completely turned off (V_{CC} or REF taken to 0V). This greatly benefits flexible power-saving schemes to be easily implemented in advanced battery-operated devices. On-chip filtering provides immunity from any RF noise being picked up by input traces. These devices feature an internal temperature-compensated, low-power 0.2V reference voltage.

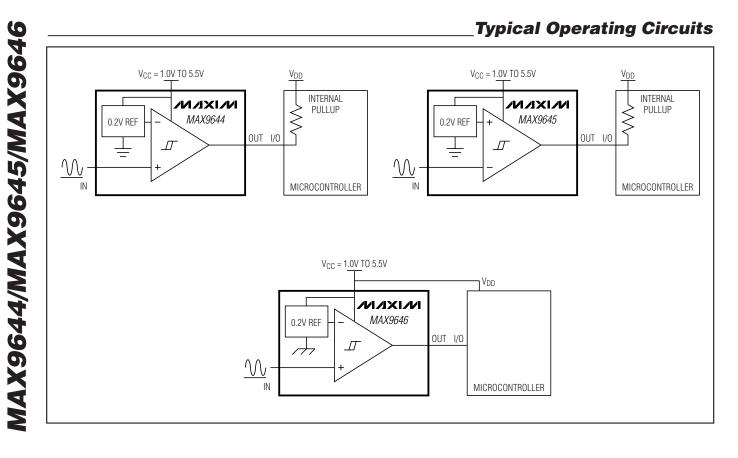
Output Stage Structure

The MAX9644/MAX9645 have open-drain outputs that allow them to interface to logic circuitry running from supply voltages other than the one supplied to the part. These devices require an external pullup resistor or current source for proper operation. Many microcontroller digital inputs ports can be readily programmed to include these.

The MAX9646 has a push-pull output stage that can both sink and source current, eliminating the need for an external pullup resistor. In this case, the MAX9646 uses the microcontroller's power supply as V_{CC} .

Applications Information

Bypassing REF/Vcc


Place a 0.1µF capacitor between REF or V_{CC} and GND as close as possible to the device. During a switching event, all comparators draw a current spike from their power-supply rails. This current spike is minimized by the use of an internal break-before-make design.

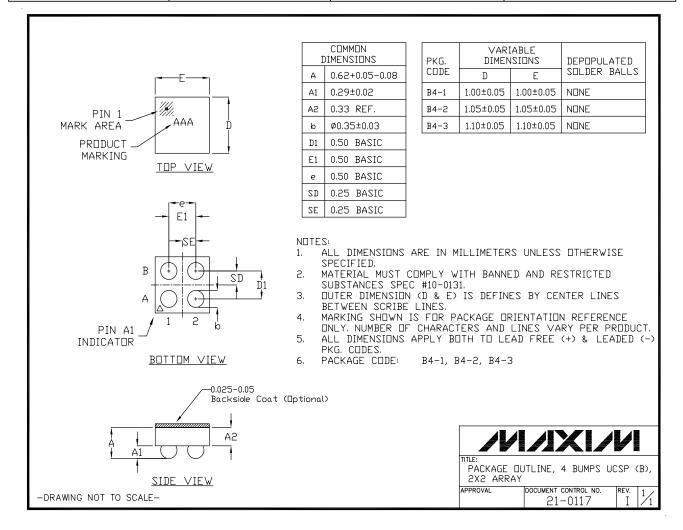
Hysteresis Operation

The ICs feature internal hysteresis for noise immunity and glitch-free operation. If additional hysteresis is needed, an external positive feedback network can be easily implemented on the MAX9644 and MAX9646 noninverting input devices. Additional external hysteresis is not possible on the MAX9645 because the noninverting input of the comparator is not externally accessible.

Table 1. How Devices Behave Under Various Input Voltage Conditions

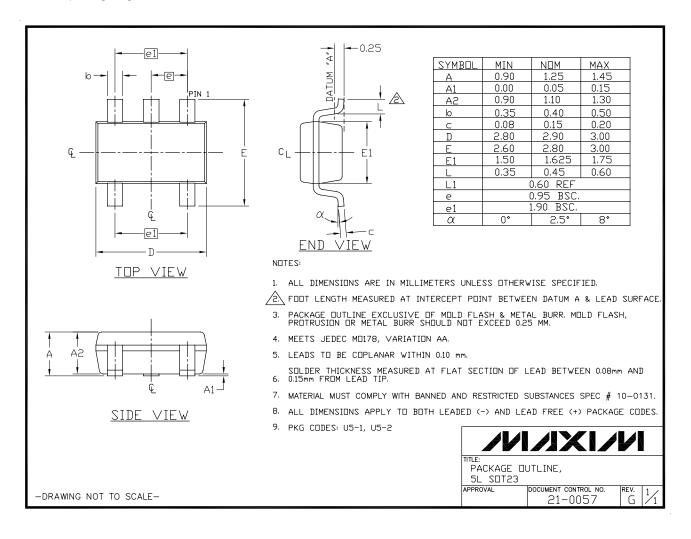
PART	INPUT VOLTAGE CONDITIONS	ACTION AT OUTPUT
MAX9644	V _{IN} > 0.2V	External pullup resistor pulls output high.
IVIAA9644	V _{IN} < 0.2V	Output asserts low.
NANY0045	V _{IN} > 0.2V	Output asserts low.
MAX9645	V _{IN} < 0.2V	External pullup resistor pulls output high.
MAX9646	V _{IN} > 0.2V	Output asserts high.
WIAA9646	V _{IN} < 0.2V	Output asserts low.

Chip Information


PROCESS: BICMOS

8

Package Information


For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	LAND PATTERN NO.
4 UCSP	B4+1	<u>21-0117</u>	Refer to Application Note 1891
5 SOT23	U5+2	<u>21-0057</u>	<u>90-0174</u>

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/11	Initial release	—
1	10/11	Updated Features section	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

_ 11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog Comparators category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

633740E ADCMP396ARZ-RL7 NCV2200SN2T1G NCV2200SQ2T2G SC339DR2G LM2901SNG LM339SNG AP393AM8G-13 418524AB TS393CD C3 LM393SNG 55122 5962-8757203IA MAX971ESA+T MAX961ESAT MAX944ESD+T MAX931ESAT MAX984CPE MAX9062EBSTG45 MAX9041AEUTT MAX9022ASAT RT2902YDT M38510/11201B2A NTE911 5962-8751601DA 5962-8751601CA MAX961EUA+T MAX9065EBS+TG45 NCV2202SN2T1G MAX919ESA+T LT6700HS6-2#TRMPBF MAX19005CCS+ LM339EDR2G LT6700HS6-2#TRM NTE919 NTE922 TS883IQ2T LT6700HVCS6-3#TRMPBF LT6700HVHS6-3#TRMPBF MAX978EEE+T MAX975ESA+T MAX9602EUG+T MAX997EUA+T MIC841NYC5-T5 LM393WDT MCP6564T-E/STVAO MAX983ESA+T NCX2200GMAZ LTC1540CMS8#PBF MC10E1651FNG