High-Current VCOM Drive Op Amps for TFT LCDs

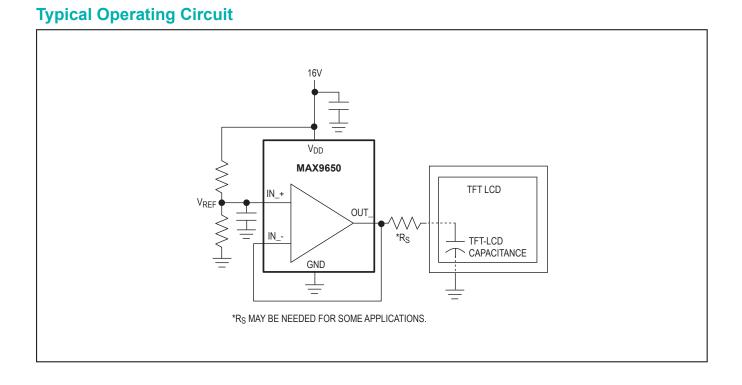
General Description

The MAX9650/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX9650/MAX9651 can drive up to 1300mA of peak current per channel and operate up to 20V.

The MAX9650/MAX9651 are designed to source and sink a high current quickly to hold the VCOM voltage stable in large TFT-LCD panels.

The MAX9650/MAX9651 feature $40V/\mu s$ slew rate and 35MHz bandwidth to quickly settle outputs for 120Hz frame rate and full HD television.

The MAX9650/MAX9651 feature output short-circuit protection and thermal shutdown. These devices are available in exposed pad packages for excellent heat dissipation.


Applications

- TFT-LCD Panels
- Instrument Control Voltage Sources

Features

- 1300mA Peak Output Current
- Rail-to-Rail Inputs and Outputs
- Operates Up to 20V
- 40V/µs Slew Rate
- 35MHz Bandwidth
- 5mA Quiescent Current per Channel
- Excellent Heat Dissipation (Exposed Pad)

<u>Pin Configurations</u> and <u>Ordering Information</u> appear at end of data sheet.

19-4187; Rev 8; 1/19

High-Current VCOM Drive Op Amps for TFT LCDs

Absolute Maximum Ratings

Supply Voltage (V _{DD} to GND)0.3V to +22	<u>2</u> V
Any Other Pin to GND	V)
IN_+/IN (current)±20n	۱A
OUT_ (current)1.3	3A
Continuous Power Dissipation (T _A = +70°C)	
SOT23 (derate 3.7mW/°C above +70°C)297.4m	W
µMAX-EP (derate 12.9mW/°C	
above +70°C)1030.9m	W
TDFN-EP (derate 23.8mW/°C	
above +70°C)1951.2m	W

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

SOT23

Package Code	Z5+2A			
Outline Number	<u>21-0113</u>			
Land Pattern Number	<u>90-0241</u>			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ_{JA})	146.4			
Junction to Case (θ _{JC})	93.5			

µMAX®-EP

U8E+2			
<u>21-0107</u>			
<u>90-0145</u>			
97			
5			
Thermal Resistance, Four-Layer Board:			
77.6			
5			

 μ MAX is a registered trademark of Maxim Integrated Products, Inc.

High-Current VCOM Drive Op Amps for TFT LCDs

Package Information (continued)

TDFN-EP

Package Code	T833+2
Outline Number	<u>21-0137</u>
Land Pattern Number	<u>90-0059</u>
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ_{JA})	54
Junction to Case (θ _{JC})	8
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	41
Junction to Case (θ_{JC})	8

Electrical Characteristics

 $(V_{DD} = 19V, V_{GND} = 0V, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR	Guaranteed by PSRR			20	V
Quiescent Current	I _{DD}	Per channel			3.7	8	mA
High Output Voltage	V _{OH}	I _H = +5mA, V _{IN} = V _{DD}		V _{DD} - 0.30	V _{DD} - 0.05		V
Low Output Voltage	V _{OL}	I _L = -5mA, V _{IN} = 0V			0.05	0.30	V
		T _A = +25°C		-14	3.5	+14	mV
Input Offset Voltage	V _{OS}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		-17		+17	
		I _{OUT} = 0mA to -80mA			+0.2		
Load Regulation	LR	I _{OUT} = 0mA to +80mA			-0.2		mV/mA
Input Bias Current	I _{FB}	At V _{IN} = 9.5V			0.01	1	μA
Voltage Gain	Av	$R_{L} = 10 k\Omega, C_{L} = 50 pF$		0.99		1.01	V/V
Power-Supply Rejection Ratio	PSRR	V_{DD} = 6V to 20V, V_{CM} = V_{OUT} = 3V		70	95		dB
Common-Mode Input Voltage Range	CMVR	Inferred from CMRR test		0.5		V _{DD} - 0.5	V
Common-Mode Rejection Ratio	CMRR	$0.5V \le V_{CM} \le V_{DD} - 0.5V$		60	80		dB
		V _{OUT} = 9.5V (Note 2)	MAX9650AZK+	20			
Continuous Output Current	IO		MAX9650AUA+	80			mA
		V _{DD} = 15V, V _{OUT} = 7.5V	MAX9650ATA+		±350		
Transient Peak Output Current	I _{PK}	(Note 3)			±1.3		А
Bandwidth	BW	-3dB			35		MHz

High-Current VCOM Drive Op Amps for TFT LCDs

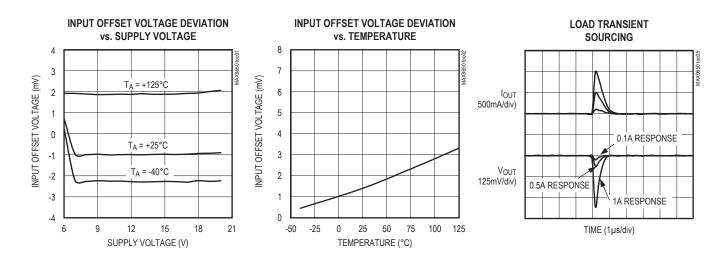
Electrical Characteristics (continued)

 $(V_{DD} = 19V, V_{GND} = 0V, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Slew Rate	SR	4V step, C_L = 50pF, R_L = 10k Ω , A_V = +1V/V		40		V/µs
Settling Time	ts	Settling to 0.1% of V _{OUT} , I _L = 0 to 1000mA, R_S = 2.2 Ω , C_S = 0.1 μ F (Figure 1)	T, IL = 0 to 1000mA, (Figure 1) 2.0		μs	
Maximum Load Capacitance	C _{LOAD}	(Note 4)		150		nF
Noninverting Input Resistance	R _{IN+}	(Note 5)		100		MΩ
Inverting Input Resistance	R _{IN-}	(Note 5)		100		MΩ
Input Capacitance	C _{IN}			3		pF
Thermal Shutdown				+170		°C
Thermal Shutdown Hysteresis				15		°C

Note 1: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

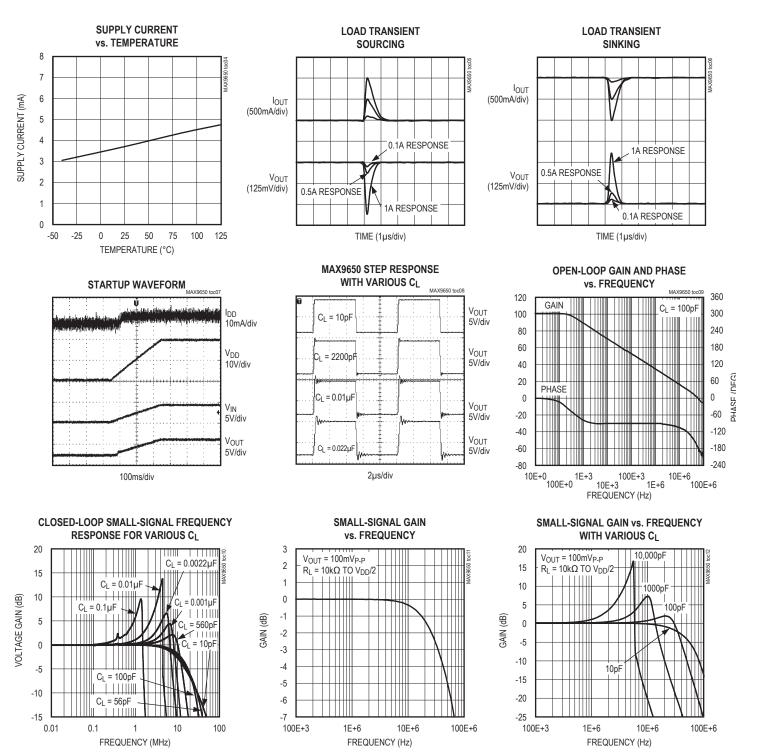
Note 2: Continuous output current is tested with one output at a time.


Note 3: See the <u>Thermal Shutdown with Temperature Hysteresis</u> section.

Note 4: A series resistor can extend load capacitance range. The settling time can be optimized by a small series resistance. See the <u>Applications Information</u> section for more information.

Note 5: Inputs are protected by back-to-back diodes.

Typical Operating Characteristics


(V_{DD} = 19V, GND = 0, V_{CM} = V_{OUT} = $V_{DD}/2$, T_A = +25°C, unless otherwise specified.)

High-Current VCOM Drive Op Amps for TFT LCDs

Typical Operating Characteristics (continued)

(V_{DD} = 19V, GND = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = +25°C, unless otherwise specified.)

High-Current VCOM Drive Op Amps for TFT LCDs

Pin Description

	PIN			FUNCTION		
MAX	MAX9650		NAME			
SOT23	µMAX-EP, TDFN-EP	(µMAX-EP, TDFN-EP)		- UNCTION		
1	6	1	OUTA	VCOM Output A		
2	4	4	GND	Ground		
3	3	3	INA+	Positive Input A		
4	2	2	INA-	Negative Input A		
5	7	8	V _{DD}	Positive-Supply Input. Bypass V_{DD} to GND with a 0.1µF capacitor as close as possible to the device.		
_	_	5	INB+	Positive Input B		
_		6	INB-	Negative Input B		
_	_	7	OUTB	VCOM Output B		
_	1, 5, 8	_	N.C.	No Connection. Not internally connected.		
_	_	_	EP	Exposed Pad (µMAX and TDFN Only). EP is internally connected to GND. Connect EP to GND.		

Detailed Description

The MAX9650/MAX9651 operational rail-to-rail input/ output amplifiers hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (1.3A) into a capacitive load such as the backplane of a TFT-LCD panel.

Thermal Shutdown with Temperature Hysteresis

The MAX9650/MAX9651 are capable of high output currents and feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches +170°C, the device shuts down. When the die cools down by 15°C, the device turns on again. In a TFT-LCD application, the duty cycle is very low. Even with high values of voltage and current, the power dissipation is low and the chip does not shut down.

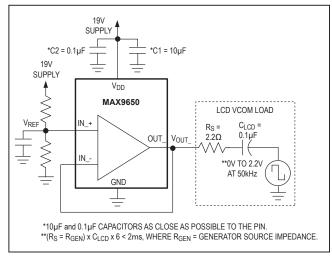


Figure 1. Settling Time Test Circuit

High-Current VCOM Drive Op Amps for TFT LCDs

Applications Information

Output Load

The MAX9650/MAX9651 are designed to drive capacitive loads. A small value of series resistance improves the performance of the device to ensure stability and fast settling with very large or very small capacitive loads. In many cases, this resistance is already present due to connection resistance in the wiring and no additional physical resistor is necessary. For minimum series resistance required for stability with capacitive loading, see Figure 2.

Power Supplies and Bypass Capacitors

The MAX9650/MAX9651 operate from a 6V to 20V single supply or from $\pm 4.5V$ to $\pm 10V$ dual supplies. Proper supply bypassing ensures stability while driving high

transient loads. The MAX9650/MAX9651 require a minimum 10µF (C1) and 0.1µF (C2) power-supply bypass capacitors placed as close as possible to the power-supply pin (V_{DD}). See <u>Figure 3</u>. For dual-supply operation, use 10µF and 0.1µF bypass capacitors on both supplies (V_{DD} and GND) with each capacitor placed as close as possible to V_{DD} and GND.

Layout and Grounding

The exposed pad on the μ MAX and TDFN packages provides a low thermal resistance for heat dissipation. Solder the exposed pad to a ground plane for best thermal performance. Do not route traces under these packages. For dual-supply operation, the exposed pad (EP) can be electrically connected to the negative supply or it can be left unconnected.

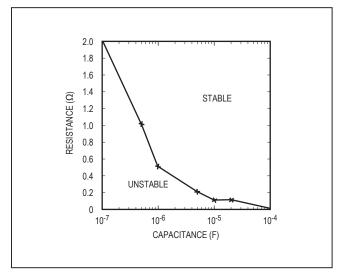


Figure 2. Minimum Combined ESR/Series/Trace Resistance Required for Stability of the MAX9650 in Response to Capacitive Loads

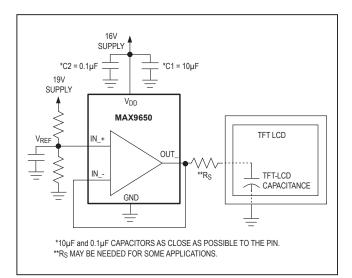
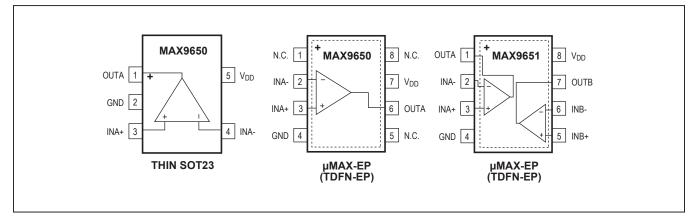



Figure 3. Typical TFT-LCD Backplane Drive Circuit

High-Current VCOM Drive Op Amps for TFT LCDs

Pin Configurations

Ordering Information

PART	AMPS PER PACKAGE	PIN- PACKAGE	TOP MARK
MAX9650AZK+	1	5 SOT23	ADSI
MAX9650AZK/V+	1	5 SOT23	ADSK
MAX9650AUA+	1	8 µMAX-EP*	AABI
MAX9650ATA+	1	8 TDFN-EP*	BKX
MAX9651AUA+	2	8 µMAX-EP*	AABH
MAX9651ATA+	2	8 TDFN-EP*	BKY

Note: All devices are specified over the -40°C to +125°C operating range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

/V denotes an automotive qualified part.

*EP = Exposed pad.

Chip Information

PROCESS: BICMOS

High-Current VCOM Drive Op Amps for TFT LCDs

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/08	Initial release	—
1	10/08	Updated slew rate and added TDFN-EP package	1, 2, 6, 10, 11
2	5/09	Updated continuous output current specification	2
3	2/10	Added automotive part to <u>Ordering Information</u> , corrected units for input offset voltage, and added figure for minimum series resistance	1, 2, 5, 6
4	7/10	Removed extraneous information in the <i>Electrical Characteristics</i> table and corrected typo in TOC 5	2, 4
5	11/12	Corrected lead pattern number	8
6	3/18	Added new <u>Package Information</u> tables, deleted Package Information table/ diagrams from end of data sheet, and moved <u>Ordering Information</u> to end of data sheet	1, 2, 8–12
7	12/18	Updated Package Information table for SOT23	2
8	1/19	Updated Package Information table for SOT23	2

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY