10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

General Description

The MAX9703/MAX9704 mono/stereo Class D audio power amplifiers provide Class AB amplifier performance with Class D efficiency, conserving board space and eliminating the need for a bulky heatsink. Using a Class D architecture, these devices deliver up to 15 W while offering up to 78% efficiency. Proprietary and patent-protected modulation and switching schemes render the traditional Class D output filter unnecessary.
The MAX9703/MAX9704 offer two modulation schemes: a fixed-frequency mode (FFM), and a spread-spectrum mode (SSM) that reduces EMI-radiated emissions due to the modulation frequency. The device utilizes a fully differential architecture, a full bridged output, and comprehensive click-and-pop suppression.
The MAX9703/MAX9704 feature high 80dB PSRR, Iow $0.07 \% \mathrm{THD}+\mathrm{N}$, and SNR in excess of 95dB. Short-circuit and thermal-overload protection prevent the devices from being damaged during a fault condition. The MAX9703 is available in a 32-pin TQFN ($5 \mathrm{~mm} x$ $5 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) package. The MAX9704 is available in a 32-pin TQFN ($7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) package. Both devices are specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

LCD TVs	Hands-Free Car
LCD Monitors	Phone Adaptors
Desktop PCs	Automotive
LCD Projectors	

Features

- Filterless Class D Amplifier
- Unique Spread-Spectrum Mode Offers 5dB Emissions Improvement Over Conventional Methods
- Up to 78% Efficient ($R_{L}=8 \Omega$)
- Up to 88% Efficient ($R L=16 \Omega$)
- 15W Continuous Output Power into 8Ω (MAX9703)
- 2x10W Continuous Output Power into 8Ω (MAX9704)
- Low 0.07\% THD+N
- High PSRR (80dB at 1 kHz)
- 10 V to 25 V Single-Supply Operation
- Differential Inputs Minimize Common-Mode Noise
- Pin-Selectable Gain Reduces Component Count
- Industry-Leading Click-and-Pop Suppression
- Low Quiescent Current (24mA)
- Low-Power Shutdown Mode ($0.2 \mu \mathrm{~A}$)
- Short-Circuit and Thermal-Overload Protection
- Available in Thermally Efficient, Space-Saving Packages

32-Pin TQFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.8 \mathrm{~mm}$)-MAX9703
32-Pin TQFN ($7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm}$)-MAX9704
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	AMP
MAX9703ETJ+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFN-EP*	Mono
MAX9704ETJ+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFN-EP*	Stereo

*EP = Exposed paddle.
+Denotes lead-free package.

Pin Configurations appear at end of data sheet.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
VDD to PGND, AGND \qquad 30 V
OUTR_, OUTL_, C1N..................................-0.3V to (VDD +0.3 V)
C1P...(VDD - 0.3V) to (CHOLD + 0.3V)
CHOLD \qquad . $V_{D D}-0.3 \mathrm{~V}$) to +40 V
All Other Pins to GND \qquad -0.3 V to +12 V
Duration of OUTR_/OUTL_
Short Circuit to GND, VDD \qquad
Continuous Input Current (VD, PGND) .10s

Continuous Input Current. 1.6A
(aI...8A
Continuous Input Current (all other pins)...mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
Single-Layer Board:	
MAX9703 32-Pin TQFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	W
MAX9704 32-Pin TQFN (derate $27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Multilayer Board:	
MAX9703 32-Pin TQFN (derate $34.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	2758.6mW
MAX9704 32-Pin TQFN (derate $37 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	2963.0 mW
Junction Temperature ... $150^{\circ} \mathrm{C}$	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Single-Layer Board MAX9703 32-Pin TQFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ MAX9704 32-Pin TQFN (derate $27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2162.2 mW MAX9703 32-Pin TQFN (derate $34.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... above $+70^{\circ} \mathrm{C}$). 2963.0 mW

Junction Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=15 V, G N D=P G N D=0 V, \overline{S H D N} \geq V_{I H}, A V=16 d B, C S S=C_{I N}=0.47 \mu F, C_{R E G}=0.01 \mu F, C 1=100 n F, C 2=1 \mu F, F S 1=F S 2=\right.$ GND ($f \mathrm{f}=660 \mathrm{kHz}$), RL connected between OUTL+ and OUTL- and OUTR + and OUTR-, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
GENERAL							
Supply Voltage Range	VDD	Inferred from PSRR test		10		25	V
Quiescent Current	IDD	$R L=O P E N$	MAX9703		14	22	mA
			MAX9704		24	34	
Shutdown Current	ISHDN				0.2	1.5	$\mu \mathrm{A}$
Turn-On Time	ton	CSS $=470 \mathrm{nF}$			100		ms
		CSS $=180 \mathrm{nF}$		50			
Amplifier Output Resistance in Shutdown		$\overline{\text { SHDN }}=\mathrm{GND}$		150	330		k Ω
Input Impedance	Rin	$A V=13 d B$		35	58	80	$\mathrm{k} \Omega$
		$A \mathrm{~V}=16 \mathrm{~dB}$		30	48	65	
		$\mathrm{AV}=19.1 \mathrm{~dB}$		23	39	55	
		$\mathrm{AV}=29.6 \mathrm{~dB}$		10	15	22	
Voltage Gain	Av	$\mathrm{G} 1=\mathrm{L}, \mathrm{G} 2=\mathrm{L}$		29.4	29.6	29.8	dB
		$\mathrm{G} 1=\mathrm{L}, \mathrm{G} 2=\mathrm{H}$		18.9	19.1	19.3	
		$\mathrm{G} 1=\mathrm{H}, \mathrm{G} 2=\mathrm{L}$		12.8	13	13.2	
		$\mathrm{G} 1=\mathrm{H}, \mathrm{G} 2=\mathrm{H}$		15.9	16	16.3	
Gain Matching		Between channels (MAX9704)			0.5		\%
Output Offset Voltage	Vos				± 6	± 30	mV
Common-Mode Rejection Ratio	CMRR	$\mathrm{f} \mid \mathrm{N}=1 \mathrm{kHz}$, input referred			60		dB
Power-Supply Rejection Ratio (Note 3)	PSRR	$V_{D D}=10 \mathrm{~V}$ to 25 V		54	80		dB
		200mVP-P ripple	fRIPPLE $=1 \mathrm{kHz}$		80		
			frIPPLE $=20 \mathrm{kHz}$		66		

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=15 \mathrm{~V}, \mathrm{GND}=\mathrm{PGND}=0 \mathrm{~V}, \overline{S H D N} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{AV}^{2}=16 \mathrm{~dB}, \mathrm{CSS}=\mathrm{C}_{\mathrm{IN}}=0.47 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{REG}}=0.01 \mu \mathrm{~F}, \mathrm{C} 1=100 \mathrm{nF}, \mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{FS} 1=\mathrm{FS} 2=\right.$ GND (fs $=660 \mathrm{kHz}$), RL connected between OUTL+ and OUTL- and OUTR + and OUTR-, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Continuous Output Power (MAX9703)	PCONT	$\begin{aligned} & \mathrm{THD}+\mathrm{N}=10 \%, \mathrm{~V}_{\mathrm{DD}}= \\ & 16 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C}, \mathrm{tcONT}=15 \min \\ & (\text { Note } 4) \end{aligned}$		$\mathrm{R}_{\mathrm{L}}=4 \Omega$		10			W
				$\mathrm{R}_{\mathrm{L}}=8 \Omega$		15			
				$R_{L}=16 \Omega, V_{D D}=24 \mathrm{~V}$		18			
Continuous Output Power (MAX9704)	PCONT	$\begin{aligned} & \mathrm{THD}+\mathrm{N}=10 \%, \mathrm{~V}_{\mathrm{DD}}= \\ & 16 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C}, \mathrm{tCONT}=15 \mathrm{~min} \\ & (\text { Note } 4) \end{aligned}$		$\mathrm{R}_{\mathrm{L}}=4 \Omega$		2×5			W
				$R \mathrm{~L}=8 \Omega$		2×10			
				$R_{L}=16 \Omega, V_{D D}=24 \mathrm{~V}$		2×16			
Total Harmonic Distortion Plus Noise	THD + N	$\begin{aligned} & \mathrm{f} / \mathrm{N}=1 \mathrm{kHz} \text {, either } \mathrm{FFM} \text { or } \mathrm{SSM}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text {, } \\ & \text { POUT }=4 \mathrm{~W} \end{aligned}$				0.07			\%
Signal-to-Noise Ratio	SNR	$\begin{aligned} & R_{L}=8 \Omega, \text { Pout }= \\ & 10 \mathrm{~W}, f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \mathrm{BW}=22 \mathrm{~Hz} \text { to } \\ & 22 \mathrm{kHz} \end{aligned}$		FFM	94			dB
					SSM	88			
			A-weighted		FFM	97			
					SSM	91			
Crosstalk		Left to right, right to left, 8Ω load, fin $=10 \mathrm{kHz}$				65			dB
Oscillator Frequency	fosc	FS1 $=\mathrm{L}, \mathrm{FS} 2=\mathrm{L}$				560	670	800	kHz
		FS1 $=\mathrm{L}, \mathrm{FS} 2=\mathrm{H}$				940			
		FS1 $=\mathrm{H}, \mathrm{FS} 2=\mathrm{L}$				470			
		FS1 $=\mathrm{H}, \mathrm{FS} 2=\mathrm{H}$ (spread-spectrum mode)				$\begin{array}{r} \hline 670 \\ \pm 7 \% \\ \hline \end{array}$			
Efficiency	η	Pout $=15 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$				78			\%
		Pout $=10 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=16 \Omega$				88			
Regulator Output	VREG						6		V
DIGITAL INPUTS ($\overline{\mathbf{S H D N}}, \mathrm{FS}_{-}, \mathrm{G}_{-}$)									
Input Thresholds		V_{IH}				2.5			V
		$\mathrm{V}_{\text {IL }}$						0.8	
Input Leakage Current								± 1	$\mu \mathrm{A}$

Note 1: All devices are 100% production tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R L=8 \Omega, L=68 \mu H$. For $R L=4 \Omega, L=33 \mu \mathrm{H}$.
Note 3: PSRR is specified with the amplifier inputs connected to GND through CIN
Note 4: The MAX9704 continuous 8Ω and 16Ω power measurements account for thermal limitations of the 32 -pin TQFN-EP package. Continuous 4Ω power measurements account for short-circuit protection of the MAX9703/MAX9704 devices.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

$(33 \mu \mathrm{H}$ with $4 \Omega, 68 \mu \mathrm{H}$ with 8Ω, part in SSM mode, $136 \mu \mathrm{H}$ with 16Ω, measurement $\mathrm{BW}=22 \mathrm{~Hz}$ to 22 kHz , unless otherwise noted.)

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Typical Operating Characteristics (continued)
$(33 \mu \mathrm{H}$ with $4 \Omega, 68 \mu \mathrm{H}$ with 8Ω, part in SSM mode, $136 \mu \mathrm{H}$ with 16Ω, measurement $\mathrm{BW}=22 \mathrm{~Hz}$ to 22 kHz , unless otherwise noted.)

OUTPUT POWER vs. LOAD RESISTANCE

COMMON-MODE REJECTION RATIO vs. FREQUENCY

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

OUTPUT FREQUENCY SPECTRUM

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Typical Operating Characteristics (continued)
$(33 \mu \mathrm{H}$ with $4 \Omega, 68 \mu \mathrm{H}$ with 8Ω, part in SSM mode, $136 \mu \mathrm{H}$ with 16Ω, measurement $\mathrm{BW}=22 \mathrm{~Hz}$ to 22 kHz , unless otherwise noted.)

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Pin Description

PIN		NAME	FUNCTION
MAX9703	MAX9704		
1, 2, 23, 24	1, 2, 23, 24	PGND	Power Ground
3, 4, 21, 22	3, 4, 21, 22	$V_{D D}$	Power-Supply Input
5	5	C1N	Charge-Pump Flying Capacitor Negative Terminal
6	6	C1P	Charge-Pump Flying Capacitor Positive Terminal
7	7	CHOLD	Charge-Pump Hold Capacitor. Connect a $1 \mu \mathrm{~F}$ capacitor from CHOLD to VDD.
$\begin{gathered} 8,17,20,25, \\ 26,31,32 \end{gathered}$	8	N.C.	No Connection. Not internally connected.
9	14	REG	6 V Internal Regulator Output. Bypass with a $0.01 \mu \mathrm{~F}$ capacitor to PGND.
10	13	AGND	Analog Ground
11	-	IN -	Negative Input
12	-	$1 \mathrm{~N}+$	Positive Input
13	12	SS	Soft-Start. Connect a $0.47 \mu \mathrm{~F}$ capacitor from SS to GND to enable soft-start feature.
14	11	$\overline{\text { SHDN }}$	Active-Low Shutdown. Connect $\overline{\text { SHDN }}$ to GND to disable the device. Connect to $V_{D D}$ for normal operation.
15	17	G1	Gain-Select Input 1
16	18	G2	Gain-Select Input 2
18	19	FS1	Frequency-Select Input 1
19	20	FS2	Frequency-Select Input 2
27, 28	-	OUT-	Negative Audio Output
29, 30	-	OUT+	Positive Audio Output
-	9	INL-	Left-Channel Negative Input
-	10	INL+	Left-Channel Positive Input
-	15	INR-	Right-Channel Negative Input
-	16	INR+	Right-Channel Positive Input
-	25, 26	OUTR-	Right-Channel Negative Audio Output
-	27, 28	OUTR+	Right-Channel Positive Audio Output
-	29, 30	OUTL-	Left-Channel Negative Audio Output
-	31, 32	OUTL+	Left-Channel Positive Audio Output
-	-	EP	Exposed Paddle. Connect to GND.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Detailed Description

The MAX9703/MAX9704 filterless, Class D audio power amplifiers feature several improvements to switchmode amplifier technology. The MAX9703 is a mono amplifier, the MAX9704 is a stereo amplifier. These devices offer Class AB performance with Class D efficiency, while occupying minimal board space. A unique filterless modulation scheme and spread-spectrum switching mode create a compact, flexible, lownoise, efficient audio power amplifier. The differential input architecture reduces common-mode noise pickup, and can be used without input-coupling capacitors. The devices can also be configured as a single-ended input amplifier.
Comparators monitor the device inputs and compare the complementary input voltages to the triangle waveform. The comparators trip when the input magnitude of the triangle exceeds their corresponding input voltage.

Operating Modes

Fixed-Frequency Modulation (FFM) Mode The MAX9703/MAX9704 feature three FFM modes with different switching frequencies (Table 1). In FFM mode, the frequency spectrum of the Class D output consists of the fundamental switching frequency and its associated harmonics (see the Wideband FFT graph in the Typical Operating Characteristics). The MAX9703/ MAX9704 allow the switching frequency to be changed by $\pm 35 \%$, should the frequency of one or more of the harmonics fall in a sensitive band. This can be done at any time and does not affect audio reproduction.

Spread-Spectrum Modulation (SSM) Mode
The MAX9703/MAX9704 feature a unique, patented spread-spectrum mode that flattens the wideband spectral components, improving EMI emissions that

Table 1. Operating Modes

FS1	FS2	SWITCHING MODE $\mathbf{(k H z)}$
L	L	670
L	H	940
H	L	470
H	H	$670 \pm 7 \%$

may be radiated by the speaker and cables. This mode is enabled by setting FS1 $=$ FS2 $=\mathrm{H}$. In SSM mode, the switching frequency varies randomly by $\pm 7 \%$ around the center frequency (670 kHz). The modulation scheme remains the same, but the period of the triangle waveform changes from cycle to cycle. Instead of a large amount of spectral energy present at multiples of the switching frequency, the energy is now spread over a bandwidth that increases with frequency. Above a few megahertz, the wideband spectrum looks like white noise for EMI purposes (see Figure 1).

Efficiency
Efficiency of a Class D amplifier is attributed to the region of operation of the output stage transistors. In a Class D amplifier, the output transistors act as currentsteering switches and consume negligible additional power. Any power loss associated with the Class D output stage is mostly due to the I*R loss of the MOSFET on-resistance, and quiescent current overhead.
The theoretical best efficiency of a linear amplifier is 78%; however, that efficiency is only exhibited at peak output powers. Under normal operating levels (typical music reproduction levels), efficiency falls below 30%, whereas the MAX9704 still exhibits $>78 \%$ efficiency under the same conditions (Figure 2).

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Figure 1. MAX9704 EMI Spectrum, 9in PC Board trace, 3in Twisted-Pair Speaker Cable

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Figure 2. MAX9704 Efficiency vs. Class AB Efficiency

Abstract

Shutdown The MAX9703/MAX9704 have a shutdown mode that reduces power consumption and extends battery life. Driving SHDN low places the device in low-power $(0.2 \mu \mathrm{~A})$ shutdown mode. Connect $\overline{\text { SHDN }}$ to a logic high for normal operation.

Click-and-Pop Suppression
The MAX9703/MAX9704 feature comprehensive click-and-pop suppression that eliminates audible transients on startup and shutdown. While in shutdown, the H bridge is pulled to GND through $330 \mathrm{k} \Omega$. During startup, or power-up, the input amplifiers are muted and an internal loop sets the modulator bias voltages to the correct levels, preventing clicks and pops when the H -bridge is subsequently enabled. Following startup, a soft-start function gradually unmutes the input amplifiers. The value of the soft-start capacitor has an impact on the click/pop levels. For optimum performance, CsS should be at least $0.18 \mu \mathrm{~F}$ with a voltage rating of at least 7 V .

Mute Function

The MAX9703/MA9704 features a clickless/popless mute mode. When the device is muted, the outputs stop switching, muting the speaker. Mute only affects the output stage and does not shut down the device. To mute the MAX9703/MAX9704, drive SS to GND by using a MOSFET pulldown (Figure 3). Driving SS to GND during the power-up/down or shutdown/turn-on cycle optimizes click-and-pop suppression.

Figure 3. MAX9703/MAX9704 Mute Circuit

Applications Information

Filterless Operation

Traditional class D amplifiers require an output filter to recover the audio signal from the amplifier's PWM output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency. The traditional PWM scheme uses large differential output swings ($2 \times$ VDD peak-to-peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency.
The MAX9703/MAX9704 do not require an output filter. The devices rely on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output. Eliminating the output filter results in a smaller, less-costly, more-efficient solution.
Because the frequency of the MAX9703/MAX9704 output is well beyond the bandwidth of most speakers, voice coil movement due to the square-wave frequency is very small. Although this movement is small, a speaker not designed to handle the additional power can be damaged. For optimum results, use a speaker with a series inductance $>30 \mu \mathrm{H}$. Typical 8Ω speakers exhibit series inductances in the range of $30 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$. Optimum efficiency is achieved with speaker inductances $>60 \mu \mathrm{H}$.

Internal Regulator Output (VREG)

The MAX9703/MAX9704 feature an internal, 6V regulator output (VREG). The MAX9703/MAX9704 REG output pin simplifies system design and reduces system cost by providing a logic voltage high for the MAX9703/ MAX9704 logic pins (G_, FS_). VREG is not available as a logic voltage high in shutdown mode. Do not apply VREG as a 6 V potential to surrounding system components. Bypass REG with a $6.3 \mathrm{~V}, 0.01 \mu \mathrm{~F}$ capacitor to GND.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Abstract

Gain Selection The MAX9703/MAX9704 feature an internally set, logicselectable gain. The G1 and G2 logic inputs set the gain of the MAX9703/MAX9704 speaker amplifier (Table 2).

Table 2. Gain Selection

G1	G2	GAIN (dB)
0	0	29.6
0	1	19.1
1	0	13
1	1	16

Output Offset
Unlike a Class AB amplifier, the output offset voltage of Class D amplifiers does not noticeably increase quiescent current draw when a load is applied. This is due to the power conversion of the Class D amplifier. For example, an 8 mVDC offset across an 8Ω load results in 1 mA extra current consumption in a class $A B$ device. In the Class D case, an 8 mV offset into 8Ω equates to an additional power drain of $8 \mu \mathrm{~W}$. Due to the high efficiency of the Class D amplifier, this represents an additional quiescent current draw of: $8 \mu \mathrm{~W} /\left(\mathrm{V}_{\mathrm{DD}} / 100 \times \eta\right)$, which is in the order of a few microamps.

Input Amplifier Differential Input

The MAX9703/MAX9704 feature a differential input structure, making them compatible with many CODECs, and offering improved noise immunity over a single-ended input amplifier. In devices such as PCs, noisy digital signals can be picked up by the amplifier's input traces. The signals appear at the amplifiers' inputs as commonmode noise. A differential input amplifier amplifies the difference of the two inputs, any signal common to both inputs is canceled.

Single-Ended Input

The MAX9703/MAX9704 can be configured as singleended input amplifiers by capacitively coupling either input to GND and driving the other input (Figure 4).

Component Selection

Input Filter
An input capacitor, CIN , in conjunction with the input impedance of the MAX9703/MAX9704, forms a highpass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming

Figure 4. Single-Ended Input
zero-source impedance, the -3dB point of the highpass filter is given by:

$$
f_{-3 d B}=\frac{1}{2 \pi R_{\mid N} C_{I N}}
$$

Choose CIN so f -3dB is well below the lowest frequency of interest. Setting $\mathrm{f}-3 \mathrm{~dB}$ too high affects the low-frequency response of the amplifier. Use capacitors with dielectrics that have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, may result in increased distortion at low frequencies.

Charge-Pump Capacitor Selection

 Use capacitors with an ESR less than $100 \mathrm{~m} \Omega$ for optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. For best performance over the extended temperature range, select capacitors with an X7R dielectric.Flying Capacitor (C1) The value of the flying capacitor (C1) affects the load regulation and output resistance of the charge pump. A C1 value that is too small degrades the device's ability to provide sufficient current drive. Increasing the value of C1 improves load regulation and reduces the chargepump output resistance to an extent. Above $1 \mu \mathrm{~F}$, the onresistance of the switches and the ESR of C1 and C2 dominate.

Hold Capacitor (C2)
The output capacitor value and ESR directly affect the ripple at CHOLD. Increasing C2 reduces output ripple. Likewise, decreasing the ESR of C2 reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels.

Output Filter
The MAX9703/MAX9704 do not require an output filter and can pass FCC emissions standards with unshielded speaker cables. However, output filtering can be

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

used if a design is failing radiated emissions due to board layout or cable length, or the circuit is near EMIsensitive devices. Use a ferrite bead filter when radiated frequencies above 10 MHz are of concern. Use an LC filter when radiated frequencies below 10 MHz are of concern, or when long leads connect the amplifier to the speaker. Refer to the MAX9704 Evaluation Kit schematic for details of this filter.

Sharing Input Sources

In certain systems, a single audio source can be shared by multiple devices (speaker and headphone amplifiers). When sharing inputs, it is common to mute the unused device, rather than completely shutting it down, preventing the unused device inputs from distorting the input signal. Mute the MAX9703/MAX9704 by driving SS low through an open-drain output or MOSFET (see the System Diagram). Driving SS low turns off the Class D output stage, but does not affect the input bias levels of the MAX9703/MAX9704. Be aware that during normal operation, the voltage at SS can be up to 7 V , depending on the MAX9703/MAX9704 supply.

Supply Bypassing/Layout

Proper power-supply bypassing ensures low distortion operation. For optimum performance, bypass VDD to PGND with a $0.1 \mu \mathrm{~F}$ capacitor as close to each VDD pin as possible. A low-impedance, high-current power-supply connection to VDD is assumed. Additional bulk capacitance should be added as required depending on the application and power-supply characteristics. AGND and PGND should be star connected to system ground. Refer to the MAX9704 Evaluation Kit for layout guidance.

Class D Amplifier Thermal Considerations

Class D amplifiers provide much better efficiency and thermal performance than a comparable Class AB amplifier. However, the system's thermal performance must be considered with realistic expectations and include consideration of many parameters. This section examines Class D amplifiers using general examples to illustrate good design practices.

Continuous Sine Wave vs. Music

When a Class D amplifier is evaluated in the lab, often a continuous sine wave is used as the signal source. While this is convenient for measurement purposes, it represents a worst-case scenario for thermal loading on the amplifier. It is not uncommon for a Class D amplifier to enter thermal shutdown if driven near maximum output power with a continuous sine wave.

Audio content, both music and voice, has a much lower RMS value relative to its peak output power. Figure 5 shows a sine wave and an audio signal in the time domain. Both are measured for RMS value by the oscilloscope. Although the audio signal has a slightly higher peak value than the sine wave, its RMS value is almost half that of the sine wave. Therefore, while an audio signal may reach similar peaks as a continuous sine wave, the actual thermal impact on the Class D amplifier is highly reduced. If the thermal performance of a system is being evaluated, it is important to use actual audio signals instead of sine waves for testing. If sine waves must be used, the thermal performance will be less than the system's actual capability.

PC Board Thermal Considerations
The exposed pad is the primary route of keeping heat away from the IC. With a bottom-side exposed pad, the PC board and its copper becomes the primary heatsink for the Class D amplifier. Solder the exposed pad to a large copper polygon. Add as much copper as possible from this polygon to any adjacent pin on the Class D amplifier as well as to any adjacent components, provided these connections are at the same potential. These copper paths must be as wide as possible. Each of these paths contributes to the overall thermal capabilities of the system.
The copper polygon to which the exposed pad is attached should have multiple vias to the opposite side of the PC board, where they connect to another copper polygon. Make this polygon as large as possible within the system's constraints for signal routing.

20ms/div

Figure 5. RMS Comparison of Sine Wave vs. Audio Signal

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Additional improvements are possible if all the traces from the device are made as wide as possible. Although the IC pins are not the primary thermal path of the package, they do provide a small amount. The total improvement would not exceed about 10\%, but it could make the difference between acceptable performance and thermal problems.

Auxiliary Heatsinking

If operating in higher ambient temperatures, it is possible to improve the thermal performance of a PC board with the addition of an external heatsink. The thermal resistance to this heatsink must be kept as low as possible to maximize its performance. With a bottom-side exposed pad, the lowest resistance thermal path is on the bottom of the PC board. The topside of the IC is not a significant thermal path for the device, and therefore is not a costeffective location for a heatsink.

Thermal Calculations
The die temperature of a Class D amplifier can be estimated with some basic calculations. For example, the die temperature is calculated for the below conditions:

- $\mathrm{T} A=+40^{\circ} \mathrm{C}$
- POUT $=2 \times 8 \mathrm{~W}=16 \mathrm{~W}$
- $R L=16 \Omega$
- Efficiency $(\eta)=87 \%$
- $\theta \mathrm{JA}=27^{\circ} \mathrm{C} / \mathrm{W}$

First, the Class D amplifier's power dissipation must be calculated.

$$
P_{\text {DISS }}=\frac{P_{\text {OUT }}}{\eta}-P_{\text {OUT }}=\frac{16 \mathrm{~W}}{0.87}-16 \mathrm{~W}=2.4 \mathrm{~W}
$$

Then the power dissipation is used to calculate the die temperature, T C , as follows:

$$
\begin{aligned}
\mathrm{TC} & =\mathrm{TA}_{\mathrm{A}}+\text { PDISS } \times \theta \mathrm{JA} \\
& =40^{\circ} \mathrm{C}+2.4 \mathrm{~W} \times 27^{\circ} \mathrm{C} / \mathrm{W} \\
& =104.8^{\circ} \mathrm{C}
\end{aligned}
$$

Decreasing the ambient temperature or reducing $\theta J A$ will improve the die temperature of the MAX9704. OJA can be reduced by increasing the copper size/weight of the ground plane connected to the exposed paddle of the MAX9704 TQFN package. Additionally, θJ A can be reduced by attaching a heatsink, adding a fan, or mounting a vertical PC board.

Load Impedance
The on-resistance of the MOSFET output stage in Class D amplifiers affects both the efficiency and the peak-current capability. Reducing the peak current into the load reduces the I^{2} R losses in the MOSFETs, thereby increasing efficiency. To keep the peak currents lower, choose the highest impedance speaker which can still deliver the desired output power within the voltage swing limits of the Class D amplifier and its supply voltage.
Although most loudspeakers are either 4Ω or 8Ω, there are other impedances available which can provide a more thermally efficient solution.
Another consideration is the load impedance across the audio frequency band. A loudspeaker is a complex electromechanical system with a variety of resonances. In other words, an 8Ω speaker is usually only 8Ω impedance within a very narrow range, and often extends well below 8Ω, reducing the thermal efficiency below what is expected. This lower-than-expected impedance can be further reduced when a crossover network is used in a multi-driver audio system.

Optimize MAX9704 Efficiency with Load Impedance and Supply Voltage

 To optimize the efficiency of the MAX9703/MAX9704, load the output stage with 12Ω to 16Ω speakers. The MAX9703/MAX9704 exhibits highest efficiency performance when driving higher load impedance (see the Typical Operating Characteristics). If a 12Ω to 16Ω load is not available, select a lower supply voltage when driving 6Ω to 10Ω loads.
10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

__Functional Diagrams

LOGIC INPUTS SHOWN FOR Av = 16dB (SSM)
$\mathrm{V}_{\mathrm{IN}}=$ LOGIC HIGH $>2.5 \mathrm{~V}$.
\dagger CHOOSE CAPACITOR VOLTAGE RATING $\geq V_{D D}$. *SYSTEM-LEVEL REQUIREMENT.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Functional Diagrams (continued)

LOGIC INPUTS SHOWN FOR Av = 16dB (SSM),
$\mathrm{V}_{\mathrm{IN}}=$ LOGIC HIGH $>2.5 \mathrm{~V}$.
\dagger CHOOSE CAPACITOR VOLTAGE RATING \geq VDD
*SYSTEM-LEVEL REQUIREMENT.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

LOGIC INPUTS SHOWN FOR Av = 16dB (SSM).
*BULK CAPACITANCE, IF NEEDED.

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Pin Configurations

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS															
PKG	32L 7x7			44L 7x7			48L 7x7			CUSTOM PKC. (T4877-1) 4BL 7×7			56L 7x7		
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	max.	MIN.	NOM.	max.	MN.	NOM.	MaX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
AI	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	-	0.05
A_{2}	0.20 REF.														
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25
D	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
E	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
e	0.65 BSC.			0.50 BSC.			0.50 日SC.			0.50 BSC.			0.40 BSC.		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	0.35	0.45
L	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.45	0.55	0.65	0.40	0.50	0.60
LI	-	-	-	-	-	-	-	-	-	-	-	-	0.30	0.40	0.50
N	32			44			48			44			56		
ND	8			11			12			10			14		
NE	8			11			12			12			14		

EXPOSED PAD VARIATIONS									
$\begin{aligned} & \text { PKG. } \\ & \text { CODES } \end{aligned}$	$\begin{aligned} & \text { DEPOPULATED } \\ & \text { LEAOS } \\ & \hline \end{aligned}$	D2			E2			$\begin{aligned} & \text { JEDEC } \\ & \text { MD220 } \\ & \text { REV. C } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { DOWN } \\ \text { BONDS } \\ \text { ALOWED } \end{array}$
		MIN.	NOM.	max.	MIN.	NOM.	Max.		
T3277-2	-	4.55	4.70	4.85	4.55	4.70	4.85	-	YES
T3277-3	-	4.55	4.70	4.85	4.55	4.70	4.85	-	NO
T4477-2	-	4.55	4.70	4.85	4.55	4.70	4.85	WKKD-1	YES
T4477-3	-	4.55	4.70	4.85	4.55	4.70	4.85	WKKD-1	YES
T4877-1**	13,24,37,48	4.20	4.30	4.40	4.20	4.30	4.40	-	NO
T4877-3	-	4.95	5.10	5.25	4.95	5.10	5.25	-	YES
T4877-4	-	5.45	5.60	5.63	5.45	5.80	5.63	-	YES
T4877-5	-	2.40	2.50	2.60	2.40	2.50	2.60	-	NO
T4877-6	-	5.45	5.60	5.63	5.45	5.60	5.63	-	NO
T4877-7	-	4.95	5.10	5.25	4.95	5.10	5.25	-	YES
T5677-1	-	5.20	5.30	5.40	5.20	5.30	5.40	-	YES

** NOTE: T4877-1 IS A CUSTOM 4BL PKG. WITH 4 LEADS DEPOPULATED. TOTAL NUMBER OF LEADS ARE 44.

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL *1 IDENTIFER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETALS OF TERMINAL \#1 IDENTIFER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE NDICATED. THE TERMINAL \#I IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
S. DIMENSION b APPUES TO METALLIZED TERNINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

6. DRAWING CONFORMS TO JEDEC MO220 EXCEPT THE EXPOSED PAD DIMENSIONS OF T4877-1/-3/-4/-5/-6 \& T5677-1.
7. WARPAGE SHALL NOT EXCEED 0.10 mm
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY
9. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY
-DRAWNO NOT TO SCALE

仵DALLAS		
		E

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K
THAT1646W16-U PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2
TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G
$\underline{\text { NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 }}$
ZXCD1210JB16TA

