1.4W Differentia General Description a $\times 9719$ differential input audio power

PDAs
Portable Devices

Applications
Mobile Phones

Abstract

The MAX9718/MAX9719 differential input audio power amplifiers are ideal for portable audio devices with internal speakers. The differential input structure improves noise rejection and provides common-mode rejection. A bridge-tied load (BTL) architecture minimizes external component count, while providing highquality, power audio amplification. The MAX9718 is a single-channel amplifier while the MAX9719 is a dualchannel amplifier for stereo systems. Both devices deliver 1.4W continuous average power per channel to a 4Ω load with less than 1% THD $+N$ while operating from a single +5 V supply. The devices are available as adjustable gain amplifiers or with internally fixed gains of $0 \mathrm{~dB}, 3 \mathrm{~dB}$, and 6 dB to reduce component count. A shutdown input disables the bias generator and amplifiers and reduces quiescent current consumption to less than 100nA. The MAX9718 shutdown input can be set as active high or active low. These devices feature Maxim's comprehensive click-and-pop suppression circuitry that reduces audible clicks and pops during startup and shutdown. The MAX9718 is pin compatible with the LM4895, and is available in 9-bump UCSPT, 10-pin TDFN, and 10-pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages. The MAX9719 is available in 16-pin TQFN, 16-pin TSSOP, and 16-bump UCSP packages. Both devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Low-Cost, Mono/Stereo, Audio Power Amplifiers

Features

- 2.7V to 5.5V Single-Supply Operation
- Very High -93dB PSRR at 217 Hz
- 1.4 W into 4Ω at 1% THD+N (per Channel)
- Differential Input
- Internal Fixed Gain to Reduce Component Count
- Adjustable Gain Option (MAX9718A/H/MAX9719A)
- 100nA Low-Power Shutdown Mode
- No Audible Clicks or Pops at Power-Up/Down
- Improved Performance Pin-Compatible Upgrade to LM4895 (MAX9718D/G)
- 1.8V Logic Compatible

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9718AEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+ ADX
MAX9718AETB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+ AAV

+Denotes lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
G45 indicates protective die coating.
Ordering Information continued at end of data sheet.
Pin Configurations appear at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc. $\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Simplified Block Diagrams

For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Low-Cost, Mono/Stereo,
 1.4W Differential Audio Power Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to GND) \qquad ...-0.3V to +6 V Any Other Pin to GND \qquad -0.3 V to (V CC +0.3 V) IN_, BIAS, SHDM, SHDN, SHDN Continuous Current 20 mA OUT_ Short-Circuit Duration to GND or VccContinuous Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
9-Bump UCSP (derate $5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1067 mW 10-Pin TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1951 mW $10-\mathrm{Pin} \mu \mathrm{MAX}$ (derate $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 825 mW 16-Bump UCSP (derate $8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1633 mW 16-Pin TQFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1349 mW 16-Pin TSSOP (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1702 mW

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
unction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—5V Supply

$(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{GND}=0, \mathrm{SHDN} / \overline{\mathrm{SHDN}}=\mathrm{VCc}(\mathrm{MAX9718/MAX9719)}$, SHDM $=$ GND (MAX9718), RIN $=$ RF $=10 \mathrm{k} \Omega$ (MAX971_A/H), $T_{A}=+25^{\circ} \mathrm{C}$. CBIAS $=0.1 \mu \mathrm{~F}$, no load. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	VCC			2.7		5.5	V
Supply Current	IcC	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}-}=\mathrm{V}_{\mathrm{I}} \mathrm{~N}_{+}=\mathrm{V}_{\mathrm{BIIAS},} \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \text { per amplifier (Note 2) } \end{aligned}$			5.0	7.5	mA
Shutdown Supply Current	ISHDN	SHDN $=$ SHDM $=\overline{\text { SHDN }}=$ GND, per amplifier			0.1	1	$\mu \mathrm{A}$
SHDN, SHDN, SHDM Threshold	V_{IH}	MAX9718A/B/C/D		$0.7 \times \mathrm{V}_{\mathrm{CC}}$			V
	$\mathrm{V}_{\text {IL }}$					$0.3 \times \mathrm{VCC}$	
$\overline{\text { SHDN, }}$ SHDN, SHDM Threshold	V_{IH}	MAX9718E/F/G/H		1.4			V
	$\mathrm{V}_{\text {IL }}$					0.4	
Output Offset Voltage	Vos	$\mathrm{V}_{\text {IN }-}=\mathrm{V}_{\text {IN }+}=\mathrm{V}_{\text {BIAS }}$	$\begin{aligned} & A v=0 \mathrm{~dB}, \mathrm{MAX971} \mathrm{_A/H}, \\ & \text { MAX971_B/E } \end{aligned}$		± 1	± 10	mV
			Av = 3dB, MAX971_C/F		± 1	± 15	
			AV = 6dB, MAX971_D/G		± 1	± 20	
Common-Mode Input Voltage	VIC	Inferred from CMRR test	Av = 0dB, MAX971_B/E	0.5		Vcc-0.5	V
			Av = 3dB, MAX971_C/F	0.5		$V_{C C}-0.6$	
			Av = 6dB, MAX971_D/G	0.5		$V_{C C}-0.8$	
		External gain, MAX971_A/H		0.5		VCC-1.2	
Input Impedance	RIN	MAX971_B/E, MAX971_C/F, MAX971_D/G		10	15	20	$\mathrm{k} \Omega$
Common-Mode Rejection Ratio	CMRR			-50	-60		dB
		$\mathrm{f}_{\mathrm{N}}=1 \mathrm{kHz}$			-60		
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{BIAS}}$, $V_{\text {RIPPLE }}=200 \mathrm{mV}$ P-P, RL $=8 \Omega$, CBIAS $=1 \mu \mathrm{~F}$	$\mathrm{f}=217 \mathrm{~Hz}$		-93		dB
			$f=1 \mathrm{kHz}$		-90		
Output Power	Pout	$\begin{aligned} & \text { THD }+\mathrm{N}=1 \%, \\ & \mathrm{fIN}=1 \mathrm{kHz} \text { (Note 4) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	0.8	1.1		W
			$\mathrm{R}_{\mathrm{L}}=4 \Omega$		1.4		
Total Harmonic Distortion Plus Noise	THD+N	$\begin{aligned} & R_{L}=8 \Omega, f I N=1 \mathrm{kHz}, \text { POUT }=0.75 \mathrm{~W}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{AV}^{2}=6 \mathrm{~dB}(\text { Note } 5) \end{aligned}$		0.002			\%

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

ELECTRICAL CHARACTERISTICS-5V Supply (continued)

$\left(V_{C C}=5 V, G N D=0, S H D N / \overline{S H D N}=V_{C C}(M A X 9718 / M A X 9719), S H D M=G N D(M A X 9718), R_{I N}=R_{F}=10 k \Omega\right.$ (MAX971_A/H), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. CBIAS $=0.1 \mu \mathrm{~F}$, no load. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Gain Accuracy		MAX971_B/E, MAX971_C/F, MAX971_D/G		± 1	\%
Channel-to-Channel Gain Matching		MAX9719B/E, MAX9719C/F, MAX9719D/G		± 1	\%
Signal-to-Noise Ratio	SNR	POUT $=1 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	-104		dB
Thermal-Shutdown Threshold			+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis			15		${ }^{\circ} \mathrm{C}$
Maximum Capacitive Drive	CLOAD	Bridge-tied capacitance	500		pF
Power-Up/Enable from Shutdown Time	tpu		10		ms
Shutdown Time	tshDN		3.5		$\mu \mathrm{s}$
Turn-Off Transient	VPOP	(Note 6)	50		mV
Crosstalk		MAX9719, $\mathrm{fIN}=1 \mathrm{kHz}$	-85		dB

ELECTRICAL CHARACTERISTICS-3V Supply

$\left(V_{C C}=3 V, G N D=0, S H D N / \overline{S H D N}=V_{C C}(M A X 9718 / M A X 9719), S H D M=G N D(M A X 9718), R I N=R_{F}=10 k \Omega\right.$ (MAX971_A/H), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. CBIAS $=0.1 \mu \mathrm{~F}$, no load. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Low-Cost, Mono/Stereo,
 1.4W Differential Audio Power Amplifiers

ELECTRICAL CHARACTERISTICS-3V Supply (continued)
 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. C BIAS $=0.1 \mu \mathrm{~F}$, no load. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Output Power	Pout	$R_{L}=8 \Omega, T H D+N=1 \%, \mathrm{f}_{\mathrm{I}} \mathrm{N}=1 \mathrm{kHz}$ (Note 4)	475		mW
Total Harmonic Distortion Plus Noise	THD+N	$\begin{aligned} & R_{L}=8 \Omega, f_{I N}=1 \mathrm{kHz}, \text { POUT }=0.25 \mathrm{~W}, \\ & A_{V}=6 \mathrm{~dB} \end{aligned}$	0.003		\%
Thermal-Shutdown Threshold			+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis			15		${ }^{\circ} \mathrm{C}$
Maximum Capacitive Drive	CLOAD	Bridge-tied capacitance	500		pF
Power-Up/Enable from Shutdown Time	tpu		10		ms
Shutdown Time	tSHDN		3		$\mu \mathrm{s}$
Turn-Off Transient	VPOP	(Note 6)	40		mV
Crosstalk		MAX9719, $\mathrm{fIN}=1 \mathrm{kHz}$	-85		dB

Note 1: All specifications are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over temperature ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$) are guaranteed by design, not production tested.
Note 2: Quiescent power-supply current is specified and tested with no load. Quiescent power-supply current depends on the offset voltage when a practical load is connected to the amplifier. Guaranteed by design.
Note 3: Common-mode bias voltage is the voltage on BIAS and is nominally $\mathrm{V}_{\mathrm{C}} / 2$.
Note 4: Output power is specified by a combination of a functional output current test and characterization analysis.
Note 5: Measurement bandwidth for THD+N is 22 Hz to 22 kHz .
Note 6: Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC GND. VCC rise and fall times greater than or equal to 1 ms .

Typical Operating Characteristics

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{BI}} \mathrm{AS}=0.1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}\right.$ measurement bandwidth $=22 \mathrm{~Hz}$ to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{BI}} \mathrm{AS}=0.1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}\right.$ measurement bandwidth $=22 \mathrm{~Hz}$ to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Typical Operating Characteristics (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{BIAS}}=0.1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}\right.$ measurement bandwidth $=22 \mathrm{~Hz}$ to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

COMMON-MODE REJECTION RATIO

vs. FREQUENCY

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{BIAS}}=0.1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}\right.$ measurement bandwidth $=22 \mathrm{~Hz}$ to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

EXITING SHUTDOWN

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Typical Operating Characteristics (continued)

($\mathrm{VCC}=5 \mathrm{~V}, \mathrm{CBIAS}=0.1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}$ measurement bandwidth $=22 \mathrm{~Hz}$ to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN					NAME	FUNCTION
MAX9718		MAX9719				
TDFN-EP/ $\mu \mathrm{MAX}$	UCSP	TQFN-EP	UCSP	TSSOP-EP		
1	C2	-	-	-	SHDN	Shutdown Input. The polarity of SHDN is dependent on the state of SHDM.
-	-	9	B3	11	$\overline{\text { SHDN }}$	Shutdown Input. Active-low shutdown input.
2	C1	-	-	-	IN-	Inverting Input
3	B2	-	-	-	SHDM	Shutdown-Mode Polarity Input. SHDM controls the polarity of SHDN. Connect SHDM high for an active-high SHDN input. Connect SHDM low for an active-low SHDN input (see Table 1).
4	A1	-	-	-	IN+	Noninverting Input
5	A2	5	B2	7	BIAS	DC Bias Bypass
6	A3	-	-	-	OUT-	Bridge Amplifier Negative Output
7	B3	1, 6, 11	$\begin{gathered} \mathrm{A} 2, \mathrm{C} 2, \\ \mathrm{C} 4 \end{gathered}$	3, 8, 13	GND	Ground
8	-	13	-	15	N.C.	No Connection. Not internally connected.
9	B1	8, 14	A4, D3	16, 10	VCC	Power Supply
10	C3	-	-	-	OUT+	Bridge Amplifier Positive Output
-	-	2	C1	4	INR+	Right-Channel Noninverting Input
-	-	3	B1	5	INL-	Left-Channel Inverting Input
-	-	4	A1	6	INL+	Left-Channel Noninverting Input
-	-	7	A3	9	OUTL+	Left-Channel Bridge Amplifier Positive Output

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

PIN				NAME	FUNCTION	
TDFN-EP/ $\boldsymbol{\mu M A X}$	UCSP	TQFN-EP	UCSP			
-	-	10	B4	12	OUTL-	Left-Channel Bridge Amplifier Negative Output
-	-	12	D4	14	OUTR+	Right-Channel Bridge Amplifier Positive Output
-	-	15	D2	1	OUTR-	Right-Channel Bridge Amplifier Negative Output
-	-	16	D1	2	INR-	Right-Channel Inverting Input
-	-	-	-	-	EP	Exposed Pad. Connect EP to GND.

Detailed Description

The MAX9718/MAX9719 are 1.4 W BTL speaker amplifiers. The MAX9718 is a mono speaker amplifier, while the MAX9719 is a stereo speaker amplifier. Both devices feature a low-power shutdown mode and indus-try-leading click-and-pop suppression. The MAX9718 features a two-input shutdown scheme to configure shutdown for active high or active low. These devices consist of high output-current audio amps configured as BTL amplifiers (see the Functional Diagrams). Both adjustable and fixed gain (0dB, 3dB, 6dB) versions are available.

BIAS

These devices operate from a single 2.7 V to 5.5 V supply and feature an internally generated, common-mode bias voltage of $\mathrm{V}_{\mathrm{CC}} / 2$ referenced to ground. BIAS provides both click-and-pop suppression and sets the DC bias level for the audio outputs. Choose the value of the bypass capacitor as described in the BIAS Capacitor section. Do not connect external loads to BIAS as this can affect the overall performance.

Shutdown Mode

The MAX9718/MAX9719 feature a 100 nA low-power shutdown mode that reduces quiescent current consumption. Entering shutdown disables the device's bias circuitry, the amplifier outputs go high impedance, and BIAS is driven to GND. The MAX9718 SHDM input controls the polarity of SHDN. Drive SHDM high for an active-high SHDN input. Drive SHDM low for an activelow SHDN input (see Table 1). The MAX9719 features an active-low shutdown input, SHDN.

Click-and-Pop Suppression

The MAX9718/MAX9719 feature Maxim's industry-leading click-and-pop suppression circuitry. During startup, the amplifier common-mode bias voltage ramps to the DC bias point. When entering shutdown, the amplifier outputs are high impedance to $100 \mathrm{k} \Omega$ between both outputs. This scheme minimizes the energy present in the audio band.

Table 1. Shutdown Mode Selection (MAX9718 Only)

SHDM	SHDN	OPERATIONAL MODE
0	0	Shutdown
0	1	Normal operation
1	0	Normal operation
1	1	Shutdown

Applications Information

BTL Amplifier
The MAX9718/MAX9719 are designed to drive a load differentially, a configuration referred to as bridge-tied load or BTL. The BTL configuration (Figure 1) offers advantages over the single-ended configuration, where one side of the load is connected to ground. Driving the load differentially doubles the output voltage compared to a single-ended amplifier under similar conditions.

Substituting $2 \times$ VOUT(P-P) for VOUT(P-P) into the following equations yields four times the output power due to doubling of the output voltage:

$$
\begin{aligned}
& V_{\text {RMS }}=\frac{V_{\text {OUT }(P-P)}}{2 \sqrt{2}} \\
& P_{\text {OUT }}=\frac{V_{\text {RMS }}{ }^{2}}{R_{L}}
\end{aligned}
$$

Since the differential outputs are biased at midsupply, there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for single-ended amplifiers. These capacitors can be large, expensive, consume board space, and degrade low-frequency performance.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Figure 1. Bridge-Tied Load Configuration
Power Dissipation and Heat Sinking
Under normal operating conditions, the MAX9718/ MAX9719 dissipate a significant amount of power. The maximum power dissipation for each package is given in the Absolute Maximum Ratings section under Continuous Power Dissipation or can be calculated by the following equation:

$$
P_{D(M A X)}=\frac{T_{J(M A X)}-T_{A}}{\theta_{J A}}
$$

where $T_{J}(M A X)$ is $+150^{\circ} \mathrm{C}, T_{A}$ is the ambient temperature, and θ_{JA} is the reciprocal of the derating factor in ${ }^{\circ} \mathrm{C} / \mathrm{W}$ as specified in the Absolute Maximum Ratings section. For example, $\theta J A$ of the TQFN package is $+59.2^{\circ} \mathrm{C} / \mathrm{W}$.
The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The maximum internal power dissipation for a given $V_{C C}$ and load is given by the following equation:

$$
P_{D(M A X)}=\frac{2 V_{C C}{ }^{2}}{\pi^{2} R_{L}}
$$

If the internal power dissipation for a given application exceeds the maximum allowed for a given package, reduce power dissipation by increasing the ground plane heat-sinking capability and the size of the traces to the device (see the Layout and Grounding section). Other methods for reducing power dissipation are to reduce Vcc, increase load impedance, decrease ambient temperature, reduce gain, or reduce input signal.
Thermal-overload protection limits total power dissipation in the MAX9718/MAX9719. When the junction temperature exceeds $+160^{\circ} \mathrm{C}$, the thermal protection circuitry disables the amplifier output stage. The amplifiers are enabled once the junction temperature cools

Figure 2. Setting the MAX9718A/H/MAX9719A Gain
by $15^{\circ} \mathrm{C}$. A pulsing output under continuous thermal overload results as the device heats and cools.
For optimum power dissipation and heat sinking, connect the exposed pad found on the $\mu \mathrm{MAX}$, TDFN, TQFN, and TSSOP packages to a large ground plane.

Fixed Differential Gain

The MAX9718B/E, MAX9718C/F, MAX9718D/G, MAX9719B, MAX9719C, and MAX9719D feature internally fixed gains (see the Selector Guide). This simplifies design, decreases required footprint size, and eliminates external gain-setting resistors. Resistors R1 and R_{2} shown in the Functional Diagrams are used to achieve each fixed gain.

Adjustable Differential Gain Gain-Setting Resistors

External feedback resistors set the gain of the MAX9718A/H and MAX9719A. Resistors RF and RIN (Figure 2) set the gain of the amplifier as follows:

$$
A_{V}=\frac{R_{F}}{R_{I N}}
$$

where $A v$ is the desired voltage gain. Hence, an Rin of $10 \mathrm{k} \Omega$ and an RF_{F} of $20 \mathrm{k} \Omega$ yields a gain of $2 \mathrm{~V} / \mathrm{V}$, or 6 dB .
R_{F} can be either fixed or variable, allowing the use of a digitally controlled potentiometer to alter the gain under software control.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

The fully differential amplifier inputs can be biased at voltages other than midsupply. The common-mode feedback circuit adjusts for input bias, ensuring the outputs are still biased at midsupply. Input capacitors are not required as long as the common-mode input voltage is within the specified range listed in the Electrical Characteristics table.
If input capacitors are used, input capacitor CIN, in conjunction with Rin, forms a highpass filter that removes the DC bias from an incoming signal. The ACcoupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source impedance, the $-3 d B$ point of the highpass filter is given by:

$$
f_{-3 d B}=\frac{1}{2 \pi R_{I N} C_{I N}}
$$

Setting f-3dB too high affects the low-frequency response of the amplifier. Use capacitors with dielectrics that have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, can increase distortion at low frequencies.

BIAS Capacitor
BIAS is the output of the internally generated $\mathrm{V}_{C C} / 2$ bias voltage. The BIAS bypass capacitor, CBIAS, improves PSRR and THD+N by reducing power supply and other noise sources at the common-mode bias node, and also generates the clickless/popless startup DC bias waveform for the speaker amplifiers. Bypass BIAS with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Larger values of CBIAS (up to $1 \mu \mathrm{~F}$) improve PSRR, but slow down tON/tOFF times. A $1 \mu \mathrm{~F}$ CBIAS capacitor slows turn-on and turn-off times by 10 and improves PSRR by 20dB (at 1 kHz). Do not connect external loads to BIAS.

Supply Bypassing

Proper power-supply bypassing ensures low-noise, low-distortion performance. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from VCc to GND. Add additional bulk capacitance as required by the application. Locate the bypass capacitor as close to the device as possible.

Layout and Grounding

Good PC board layout is essential for optimizing performance. Use large traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance and route heat away from the device. Good grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital switching noise from coupling into the audio signal.
The MAX9718/MAX9719 TDFN, TQFN, TSSOP, and $\mu \mathrm{MAX}$ packages feature exposed thermal pads on their undersides. This pad lowers the thermal resistance of the package by providing a direct-heat conduction path from the die to the PC board. Connect the exposed pad to the ground plane using multiple vias, if required.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications.

Selector Guide

PART	MONO	STEREO	GAIN (dB)	SELECTABLE SHUTDOWN POLARITY
MAX9718A/H	\checkmark	-	Adjustable	\checkmark
MAX9718B/E	\checkmark	-	0	\checkmark
MAX9718C/F	\checkmark	-	3	V
MAX9718D/G	\checkmark	-	6	\checkmark
MAX9719A	-	\checkmark	Adjustable	-
MAX9719B	-	V	0	-
MAX9719C	-	\checkmark	3	-
MAX9719D	-	V	6	-

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9718AEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*	+AAAA
MAX9718BEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+ADX
MAX9718BETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+AAW
MAX9718BEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MAX-EP*	+AAAB
MAX9718CEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+ADZ
MAX9718CETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+AAX
MAX9718CEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*	+AAAC
MAX9718DEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+AEA
MAX9718DETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+AAY
MAX9718DEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*	+AAAD
MAX9718EEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+AFB
MAX9718EETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+ASY
MAX9718EEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*	+AAAJ
MAX9718FEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+AFC
MAX9718FETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+ASZ
MAX9718FEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$ - EP^{*}	+AAAK
MAX9718GEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+AFD
MAX9718GETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+ATA

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9718GEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MMAX-EP*	+AAAL
MAX9718HEBL+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3×3 UCSP	+AFE
MAX9718HETB+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	+ATB
MAX9718HEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MMAX-EP*	AAAM
MAX9719AEBE+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×4 UCSP	
MAX9719AETE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	
MAX9719AEUE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP-EP*	
MAX9719BEBE+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×4 UCSP	
MAX9719BETE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	-
MAX9719BEUE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP-EP*	
MAX9719CEBE+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×4 UCSP	-
MAX9719CETE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	
MAX9719CEUE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP-EP*	-
MAX9719DEBE+TG45	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×4 UCSP	
MAX9719DETE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	-
MAX9719DEUE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP-EP*	-

+Denotes lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
G45 indicates protective die coating.

UCSP Marking Information

AAA
XXX

■: A1 Bump indicator
AAA: Product code
XXX: Lot code

Chip Information
MAX9718 TRANSISTOR COUNT: 2359
MAX9719 TRANSISTOR COUNT: 4447
PROCESS: BiCMOS

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Functional Diagrams

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Functional Diagrams (continued)

Low－Cost，Mono／Stereo， 1．4W Differential Audio Power Amplifiers

Pin Configurations

TOP VIEW

TOP VIEW

TOP VIEW
（BUMPS 0
ルハスXIルI
MAX9719

TOP VIEW

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
3×3 UCSP	$\mathrm{B} 9+1$	$\underline{\mathbf{2 1 - 0 0 9 3}}$
10 TDFN-EP	$\mathrm{T} 1033+1$	$\underline{\mathbf{2 1 - 0 1 3 7}}$
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10 \mathrm{E}+3$	$\underline{\mathbf{2 1 - 0 1 0 9}}$
4×4 UCSP	$\mathrm{B} 16+6$	$\underline{\mathbf{2 1 - 0 1 0 1 0 1}}$
16 TQFN-EP	$\mathrm{T} 1644+4$	$\underline{\mathbf{2 1 - 0 1 0 1 0 8}}$
16 TSSOP-EP	$\mathrm{U16E}+3$	

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.	
A2	0.20 REF.	

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \times \mathrm{e}$
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033MK-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED 3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED- 3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-3F	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

Low－Cost，Mono／Stereo， 1．4W Differential Audio Power Amplifiers

Package Information（continued）

For the latest package outline information and land patterns，go to www．maxim－ic．com／packages．Note that a＂+ ＂，＂\＃＂，or＂－＂in the package code indicates RoHS status only．Package drawings may show a different suffix character，but the drawing pertains to the package regardless of RoHS status．
NDTES
1．D\＆E DD NDT INCLUDE MDLD FLASH
2．MILD FLASH OR PRDTRUSIDNS NDT TI EXCEED 0.15 mm （．006＂），
3．CDNTRILLING DIMENSIDN ${ }_{1}$ MILLIMETERS．
4．EXPISED PAD FLUSH WITH BDTTDM DF PACKAGE WITHIN ． 002 ＂．
5．MEETS JEDEC MD187．
6．MARKING IS FIR PACKAGE GRIENTATIUN REFERENCE ZNLY
7．CDPLANARITY SHALL NDT EXCEED 0.10 mm ．
㐆DALLAS
TITLE

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMDN DIMENSIDNS															
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4			28L 4×4		
REF.	MIN.	NDM.	MAX.	MIN.	NGM.	MAX.									
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
Al	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF														
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC.			0.40 BSC .		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N	12			16			20			24			28		
ND	3			4			5			6			7		
NE	3			4			5			6			7		
Nedec	WGGB			WGGC			WGGD-1			WGGD-2			WGGE		

EXPDSED PAD VARIATIDNS						
PKG. CODES	D2			E2		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T1244-3	1.95	2.10	2.25	1.95	2.10	2.25
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25
T1644-4	1.95	2.10	2.25	1.95	2.10	2.25
T2044-2	1.95	2.10	2.25	1.95	2.10	2.25
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63
T2444N-4	2.45	2.60	2.63	2.45	2.60	2.63
T2444M-1	2.45	2.60	2.63	2.45	2.60	2.63
T2844-1	2.50	2.60	2.70	2.50	2.60	2.70

NOTES!

1. DIMENSIDNING \& TDLERANCING CDNFDRM TD ASME Y14.5M-1994
2. ALL DIMENSIDNS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES
3. N IS THE TDTAL NUMBER DF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CZNVENTIUN SHALL CONFIRM TZ JESD 95-1 SPP-012. DETAILS DF TERMINAL \#1 IDENTIFIER ARE DPTIINAL, BUT MUST BE LDCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MLLD DR MARKED FEATURE.
A. DIMENSIUN b APPLIES TD METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FRIM TERMINAL TIP.
5. ND AND NE REFER TI THE NUMBER DF TERMINALS IN EACH D AND E SIDE RESPECTIVELY.
6. DEPOPULATIUN IS POSSIBLE IN A SYMMETRICAL FASHION.
7. CIPLANARITY APPLIES TI THE EXPGSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
8. DRAWING CINFDRMS TD JEDEC MD220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1.

A1. MARKING IS FOR PACKAGE URIENTATIUN REFERENCE UNLY.
11. CIPLANARITY SHALL NDT EXCEED 0.08 mm .
12. WARPAGE SHALL NDT EXCEED 0.10 mm .
13. LEAD CENTERLINES TO BE AT TRUE PUSITIZN AS DEFINED BY BASIC DIMENSIZN " e^{\prime}, ± 0.05 14. NUMBER \quad F LEADS SHDWN ARE FOR REFERENCE \quad NLLY.
15. ALL DIMENSIDNS ARE THE SAME FGR LEADED (- \& \& PbFREE (+) PACKAGE CDDES.
-DRAWING NOT TO SCALE-

NVIXI/VI
边

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

$\stackrel{s}{s}$	CDMMUN DIMENSIDNS			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	--	1.10	--	0.043
A1	0.05	0.15	0.002	0.006
A2	0.85	0.95	0.033	0.037
b	0.19	0.30	0.007	0.012
b1	0.19	0.25	0.007	0.010
c	0.090	0.20	0.004	0.008
c1	0.090	0.135	0.004	0.0053
D	SEE VARIATİNS		SEE VARIATIUNS	
E	4.30	4.50	0.169	0.177
e	0.65 BSC		0.026 BSC	
H	6.25	6.50	0.246	0.256
L	0.50	0.70	0.020	0.028
N	SEE VARIATIUNS		SEE VARIATİNS	
Y	2.60	3.10	0.102	0.122
\propto	0°	8°	0°	8°

$\begin{aligned} & \text { JEDEC } \\ & \text { MD-153 } \end{aligned}$	N	Pkg.Code		VARIATIDNS			
				MILLIMETERS		INCHES	
				MIN.	MAX.	MIN.	MAX.
ABT-1	14	U14E-3	D	4.90	5.10	0.193	0.201
			X	2.80	3.10	0.110	0.122
ABT	16	U16E-3	D	4.90	5.10	0.193	0.201
			X	2.60	3.10	0.102	0.122
ACT	20	U20E-1	D	6.40	6.60	0.252	0.260
			X	3.80	4.20	0.150	0.165
ACT	20	U20E-4	D	6.40	6.60	0.252	0.260
			X	4.50	4.90	0.177	0.193
AET	28	U28E-4	D	9.60	9.80	0.378	0.386
			X	5.20	5.60	0.205	0.221
AET	28	U28E-5	D	9.60	9.80	0.378	0.386
			X	6.50	6.90	0.256	0.272
AET	28	U28ME-1	D	9.60	9.80	0.378	0.386
			X	6.50	6.90	0.256	0.272

JEDEC MD-153	N	Pkg.Code		VARIATIDNS			
				MILLIMETERS	INCHES		
			MIN.	MAX.	MIN.	MAX.	
ADT	24	U24E-1	D	7.70	7.90	0.303	0.311
			X	4.44	4.64	0.175	0.183
			2.64	2.84	0.104	0.112	

NDTES:

1. DIMENSIDNS D AND E DZ NDT INCLUDE FLASH
2. MOLD FLASH OR PROTRUSIUNS NDT TU EXCEED 0.15 mm PER SIDE,
3. CDNTRDLLING DIMENSIDN: MILLIMETERS
4. MEETS JEDEC OUTLINE MD-153. SEE JEDEC VARIATIUNS TABLE.
5. "N" REFERS TD NUMBER DF LEADS.
6. EXPOSED PAD FLUSH WITH BOTTOM DF PACKAGE WITHIN .002"
7. THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZDNE. THIS TOLERANCE ZUNE IS DEFINED BY TWI PARALLEL PLANES. ZNE PLANE IS THE SEATING PLANE, DATUM $[-C-]$; THE QTHER PLANE IS AT THE SPECIFIED DISTANCE FRDM [-C-] IN THE DIRECTIUN INDICATED.
8. MARKING SHIWN IS FUR PACKAGE GRIENTATIUN REFERENCE GNLY
9. NUMBER OF LEADS SHOWN ARE FGR REFERENCE ONLY.
10. ALL DIMENSIZNS APPLY TZ BZTH LEADED (-) AND PbFREE (+) PKG. CODES
-DRAWING NOT TO SCALE-

PACKAGE DUTLINE,

TSSEP 4.4 mm BZDY, EXPDSED PAD | APPROVAL | DOCUMENT CONTROL NO. | REV. | 2 |
| :--- | :---: | :---: | :---: |

Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
5	$2 / 08$	Updated Pin Configurations.	17
6	$3 / 09$	Added lead-free and G45 options to Ordering Information	1,13
7	$4 / 10$	Updated continuous power dissipation for 9-bump and 16-bump UCSP packages and corrected error in the Pin Description section	2,9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
AD8033AKS-EBZ AD8044AR-EBZ AD744JR-EBZ AD8023AR-EBZ AD848JR-EBZ ADA4922-1ACP-EBZ EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ ADA4950-1YCP-EBZ MAX2634EVKIT ISL28158EVAL1Z MADL-011014-001SMB AD8137YCP-EBZ EVAL-ADA4523-1ARMZ EVAL01-HMC1013LP4E MCP6XXXEV-AMP3 MCP6XXXEV-AMP4 MCP6XXXEV-AMP2 ISL28006FH-100EVAL1Z 551012922-001/NOPB EVAL-ADCMP603BCPZ AMC1200EVM AD8417RM-EVALZ DEM-OPA-SOT-1A DEM-OPA-SO-1C DEM-BUF-SOT-1A OPA2836IDGSEVM AD633-EVALZ AD8250-EVALZ AD8418R-EVALZ ISL28433SOICEVAL1Z ISL28233SOICEVAL1Z ISL28208SOICEVAL2Z ISL28207SOICEVAL2Z ISL28006FH-50EVAL1Z ISL28005FH-50EVAL1Z 120257-HMC613LC4B DC1591A DC1150A DC1115A DC954A-C DC306A-A DC1192A 131679HMC813LC4B OPA2835IDGSEVM LMH730220/NOPB MAAP-011246-1SMB 118329-HMC627ALP5

