Stereo 3.1 W Class D Amplifier

Abstract

\section*{General Description}

The MAX98303 stereo 3.1W Class D amplifier provides Class AB audio performance with Class D efficiency This device offers five selectable gain settings (6dB, $9 \mathrm{~dB}, 12 \mathrm{~dB}, 15 \mathrm{~dB}$, and 18 dB) set by a single gain-select input (GAIN).

Active emissions limiting, edge-rate, and overshoot control circuitry greatly reduces EMI. A filterless spreadspectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These features reduce application component count. The IC's 2.0 mA at $3.7 \mathrm{~V}, 2.7 \mathrm{~mA}$ at 5 V , quiescent current extends battery life in portable applications.

The IC is available in a 16 -bump WLP $(1.68 \mathrm{~mm} \times 1.68 \mathrm{~mm}$ $\times 0.64 \mathrm{~mm}$) package specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

\section*{Applications}

Notebook and Netbook Computers

Tablets Cellular Phones

MP3 Players Portable Audio Players VoIP Phones

Features

- Low Quiescent Current: 2.0mA at 3.7V, 2.7 mA at 5 V
- Spread Spectrum and Active Emissions Limiting
- Five Pin-Selectable Gains
- Click-and-Pop Suppression
- Thermal and Overcurrent Protection
- Low-Current Shutdown Mode
- Space-Saving, $1.68 \mathrm{~mm} \times 1.68 \mathrm{~mm} \times 0.64 \mathrm{~mm}$, 16-Bump WLP (0.4 mm Pitch)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX98303EWE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 WLP	AAA

+Denotes a lead(Pb)-free/RoHS-compliant package.

Stereo 3.1W Class D Amplifier

ABSOLUTE MAXIMUM RATINGS

PVDD to PGND..-0.3V to +6V	
OUT_+, OUT_- to PGND-0.3V to (VPVDD + 0.3V)	
All Other Pins to PGND ...-0.3V to +6 V	
Continuous Current for PVDD, PGND, OUTL_, OUTR_ .. $\pm 1600 \mathrm{~mA}$	
Continuous Input Current (all other pins)...................... $\pm 20 \mathrm{~mA}$	
Duration of Short Circuit Between	
OUTL_, OUTR_ to PVDD or PGND	Continuous
L+ to OUTL-, OUTR+	antinuous

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{\text {PVDD }}=V_{S H D N}=3.7 \mathrm{~V}, V_{P G N D}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}(\mathrm{GAIN}=\mathrm{PVDD}), \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}\right.$ connected between OUT_+ to OUT_-, 20Hz to 22 kHz AC measurement bandwidth, $T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VPVDD	Inferred from PSRR test	2.6		5.5	V
Undervoltage Lockout	UVLO				2.3	V
Quiescent Supply Current	IDD			2.0	3.1	mA
		VPVDD $=5.0 \mathrm{~V}$		2.7		
Shutdown Supply Current	ISHDN	V SHDN $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		≤ 0.1	10	$\mu \mathrm{A}$
Turn-On Time	ton			3.4	10	ms
Bias Voltage	VBIAS			1.3		V
Voltage Gain	Av	Connect GAIN to PGND	17.5	18	18.5	dB
		Connect GAIN to PGND through 100k Ω $\pm 5 \%$ resistor	14.5	15	15.5	
		Connect GAIN to PVDD	11.5	12	12.5	
		Connect GAIN to PVDD through 100k Ω $\pm 5 \%$ resistor	8.5	9	9.5	
		GAIN unconnected	5.5	6	6.5	
Channel-to-Channel Gain Tracking				± 0.1		\%
Input Resistance	RIN	$\mathrm{AV}=18 \mathrm{~dB}$	15	20	29	$k \Omega$
		$A \mathrm{~V}=15 \mathrm{~dB}$	15	20	29	
		$A \mathrm{~V}=12 \mathrm{~dB}$	15	20	29	
		$A V=9 d B$	20	28	40	
		$\mathrm{AV}=6 \mathrm{~dB}$	30	40	58	
Output Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4)		± 0.3	± 3	mV

Stereo 3.1W Class D Amplifier

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{P V D D}=V\right.$ SHDN $=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{PGND}}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}(\mathrm{GAIN}=\mathrm{PVDD}), \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}$ connected between OUT_+ to OUT_-, 20Hz to 22 kHz AC measurement bandwidth, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Click and Pop	KCP	Peak voltage, A-weighted, 32 samples per second, $R L=8 \Omega+68 \mu H$ (Notes 4, 5)	Into shutdown	-74		dBV
			Out of shutdown	-59		
Common-Mode Rejection Ratio	CMRR	$\mathrm{fin}=1 \mathrm{kHz},$ input referred	$A \mathrm{~V}=18 \mathrm{~dB}$	67		dB
			$A V=15 d B$	72		
			$A v=12 \mathrm{~dB}$	67		
			$A V=9 \mathrm{~dB}$	65		
			$A \mathrm{~V}=6 \mathrm{~dB}$	62		
Crosstalk		$\begin{aligned} & \text { Pout }=300 \mathrm{~mW}, \\ & \text { RL }=8 \Omega+68 \mu \mathrm{H} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	100		dB
			$\mathrm{f}=10 \mathrm{kHz}$	95		
Power-Supply Rejection Ratio (Note 4)	PSRR	$\mathrm{V}_{\text {PVDD }}=2.6 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5178		dB
		$\begin{aligned} & \text { VRIPPLE }=200 \mathrm{mVP-P}, \\ & \mathrm{RL}=8 \Omega+68 \mu \mathrm{H} \end{aligned}$	$\mathrm{f}=217 \mathrm{~Hz}$	66		
			$\mathrm{f}=1 \mathrm{kHz}$	66		
			$\mathrm{f}=10 \mathrm{kHz}$	63		
Output Power	Pout	$\begin{aligned} & \mathrm{THD}+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{RL}=4 \Omega+33 \mu \mathrm{H} \end{aligned}$	VPVDD $=5.0 \mathrm{~V}$	3.1		W
			VPVDD $=4.2 \mathrm{~V}$	2.2		
			VPVDD $=3.7 \mathrm{~V}$	1.7		
		$\begin{aligned} & \mathrm{THD}+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{RL}=4 \Omega+33 \mu \mathrm{H} \end{aligned}$	VPVDD $=5.0 \mathrm{~V}$	2.5		
			VPVDD $=4.2 \mathrm{~V}$	1.7		
			VPVDD $=3.7 \mathrm{~V}$	1.3		
		$\begin{aligned} & \mathrm{THD}+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{RL}=8 \Omega+68 \mu \mathrm{H} \end{aligned}$	VPVDD $=5.0 \mathrm{~V}$	1.8		
			VPVDD $=4.2 \mathrm{~V}$	1.2		
			VPVDD $=3.7 \mathrm{~V}$	1.0		
		$\begin{aligned} & \mathrm{THD}+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{RL}=8 \Omega+68 \mu \mathrm{H} \end{aligned}$	VPVDD $=5.0 \mathrm{~V}$	1.4		
			VPVDD $=4.2 \mathrm{~V}$	1.0		
			VPVDD $=3.7 \mathrm{~V}$	0.7		
Total Harmonic Distortion Plus Noise	THD+N	$\mathrm{fin}=1 \mathrm{kHz}$	$\begin{aligned} & \text { RL }=4 \Omega+33 \mu \mathrm{H}, \\ & \text { PoUT }=1 \mathrm{~W} \end{aligned}$	0.047		\%
			$\begin{aligned} & \mathrm{RL}=8 \Omega+68 \mu \mathrm{H}, \\ & \text { Pout }=0.5 \mathrm{~W} \end{aligned}$	0.04		
Oscillator Frequency	fosc			300		kHz
Spread-Spectrum Bandwidth				± 15		kHz
Efficiency	η	$\mathrm{THD}+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega+68 \mu \mathrm{H}$		93		\%
Output Noise	V_{N}	AV $=6 \mathrm{~dB}, \mathrm{~A}$ weighted (Note 4)		37		$\mu \mathrm{V}$ RMS
Signal-to-Noise Ratio	SNR	POUT $=3.1 \mathrm{~W}, \mathrm{~V}$ PVDD $=5.0 \mathrm{~V}, \mathrm{AV}=6 \mathrm{~dB}$		99.6		dB

Stereo 3.1W Class D Amplifier

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{P V D D}=V_{S H D N}=3.7 \mathrm{~V}, V_{P G N D}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}(\mathrm{GAIN}=\mathrm{PVDD}), \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}\right.$ connected between OUT_+ to OUT_-, 20Hz to 22 kHz AC measurement bandwidth, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Current Limit	ILIM			2		A
Thermal Shutdown Level				145		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis				15		${ }^{\circ} \mathrm{C}$
DIGITAL INPUT ($\overline{\text { SHDN }}$)						
Input Voltage High	VINH	VPVDD $=2.5 \mathrm{~V}$ to 5.5 V	1.4			V
Input Voltage Low	VINL	VPVDD $=2.5 \mathrm{~V}$ to 5.5 V			0.4	V
Input Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 1	$\mu \mathrm{A}$

Note 2: This device is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 3: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R L=4 \Omega$, $L=33 \mu \mathrm{H}$. For $R L=8 \Omega, L=68 \mu \mathrm{H}$.
Note 4: Amplifier inputs AC-coupled to ground.
Note 5: Mode transitions controlled by $\overline{\text { SHDN }}$.

Typical Operating Characteristics

$\left(\right.$ VPVDD $=$ VSHDN $=5.0 \mathrm{~V}, \mathrm{VPGND}^{2}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}$ connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Stereo 3.1W Class D Amplifier

Typical Operating Characteristics (continued)
$\left(\mathrm{VPVDD}=\mathrm{V} \overline{S H D N}=5.0 \mathrm{~V}, \mathrm{VPGND}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}\right.$ connected between OUT_+ to OUT_-, 20Hz to 22 kHz AC measurement bandwidth, $\mathrm{TA}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Stereo 3.1W Class D Amplifier

Typical Operating Characteristics (continued)
$\left(V \operatorname{VVDD}=\mathrm{V}\right.$ SHDN $=5.0 \mathrm{~V}, \mathrm{VPGND}^{2}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}$ connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

EFFICIENCY vs. OUTPUT POWER

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

Stereo 3.1W Class D Amplifier

 bandwidth, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Stereo 3.1W Class D Amplifier

Bump Description

BUMP	NAME	
A1	OUTL+	Positive Left Speaker Output
A2	OUTL-	Negative Left Speaker Output
A3	GAIN	Gain Select. See Table 1 for Gain Settings.
A4	INL+	Noninverting Audio Left Input
B1, B2, B3	PGND	Ground
B4	INL-	Inverting Audio Left Input
C1, C2, C3	PVDD	Power Supply. Bypass PVDD to PGND with 0.1 $\mu \mathrm{F}$ and 10رF capacitors.
C4	INR-	Inverting Audio Right Input
D1	OUTR+	Positive Right Speaker Output
D2	OUTR-	Negative Right Speaker Output
D3	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Drive $\overline{\text { SHDN low to place the device in shutdown. }}$
D4	INR+	Noninverting Audio Right Input

Stereo 3.1W Class D Amplifier

Detailed Description

The MAX98303 features low quiescent current, a lowpower shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.
The IC offers Class AB audio performance with Class D efficiency in a minimal board-space solution.
The Class D amplifier features spread-spectrum modulation, edge-rate, and overshoot control circuitry that offers significant improvements to switch-mode amplifier radiated emissions.
The amplifier features click-and-pop suppression that reduces audible transients on startup and shutdown. The amplifier includes thermal-overload and short-circuit protection.

Class D Speaker Amplifier

The filterless Class D amplifier offers much higher efficiency than Class $A B$ amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the $I^{2} R$ loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low-EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromagnet-ic-interference (EMI) regulation standards. Maxim's active emissions limiting edge-rate control circuitry and spreadspectrum modulation reduce EMI emissions, while maintaining up to 93% efficiency.
Maxim's spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The IC's spread-spectrum modulator randomly varies the switching frequency by $\pm 15 \mathrm{kHz}$ around the center frequency $(300 \mathrm{kHz})$. Above 10 MHz , the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (2A typ), the IC disables the outputs for approximately $100 \mu \mathrm{~s}$. At the end of $100 \mu \mathrm{~s}$, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and reenable the outputs until the fault condition is removed.

Selectable Gain
The IC offers five programmable gains selected using the GAIN input.

Table 1. Gain Control Configuration

GAIN PIN	MAXIMUM GAIN (dB)
Connect to PGND	18
Connect to PGND through $100 \mathrm{k} \Omega$ 5% resistor	15
Connect to PVDD	12
Connect to PVDD through $100 k \Omega \pm 5 \%$ resistor	9
Unconnected	6

Figure 1. EMI with 30 cm of Speaker Cable and No Output Filter

Shutdown
The IC features a low-power shutdown mode, drawing $\leq 0.1 \mu \mathrm{~A}$ (typ) of supply current. Drive SHDN low to place the MAX98303 into shutdown.

Click-and-Pop Suppression

The IC speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

Stereo 3.1W Class D Amplifier

Applications Information

Filterless Class D Operation

Traditional Class D amplifiers require an output filter. The filter adds cost and size and decreases THD performance. The IC's filterless modulation scheme does not require an output filter.
Because the switching frequency of the IC is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance > 10رH. Typical 8Ω speakers exhibit series inductances in the $20 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ range.

Component Selection
 Power-Supply Input (PVDD)

PVDD powers the speaker amplifier. PVDD ranges from 2.6 V to 5.5 V . Bypass PVDD with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used.

Input Filtering

The input-coupling capacitor (CIN), in conjunction with the amplifier's internal input resistance (RIN), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level.
Assuming zero source impedance with a gain setting of $12 \mathrm{~dB}, 15 \mathrm{~dB}$, or $18 \mathrm{~dB}, \mathrm{CIN}$ is:

$$
\mathrm{C}_{\mathrm{IN}}=\frac{8}{f_{-3 \mathrm{~dB}}}[\mu \mathrm{~F}]
$$

with a gain setting of $9 \mathrm{~dB}, \mathrm{CIN}$ is:

$$
\mathrm{C}_{\mathrm{IN}}=\frac{5.7}{\mathrm{f}_{-3 \mathrm{~dB}}}[\mu \mathrm{~F}]
$$

with a gain setting of $6 \mathrm{~dB}, \mathrm{CIN}$ is:

$$
\mathrm{C}_{I N}=\frac{4}{f_{-3 \mathrm{~dB}}}[\mu F]
$$

where $\mathrm{f}-3 \mathrm{~dB}$ is the -3 dB corner frequency. Use capacitors with adequately low-voltage coefficients for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.
Use wide, low-resistance output traces. As the load impedance decreases, the current drawn from the device increases. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, if 2 W is delivered from the device output to a 4Ω load through $100 \mathrm{~m} \Omega$ of total speaker trace, 1.904 W is delivered to the speaker. If power is delivered through $10 \mathrm{~m} \Omega$ of total speaker trace, 1.99 W is delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the device.
The IC is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to Application Note 1891: Wafer level packaging (WLP) and its applications. Figure 2 shows the dimensions of the WLP balls used on the IC.

Figure 2. MAX98303 WLP Ball Dimensions

Stereo 3.1W Class D Amplifier

Stereo 3.1W Class D Amplifier

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 WLP	$\mathrm{W} 161 \mathrm{~B} 1+1$	$\underline{21-0491}$	-

TOP VIEW

COMMON DIMENSIONS	
A	0.64 ± 0.05
A1	0.19 ± 0.03
A2	0.45 REF
A3	0.025 BASIC
b	$\varnothing 0.27 \pm 0.03$
D1	1.20 BASIC
E1	1.20 BASIC
e	0.40 BASIC
SD	0.20 BASIC
SE	0.20 BASIC

PKG. CODE	E		D		DEPOPULATED
	MIN	MAX	MIN	MAX	BUMPS
W161B1+1	1.64	1.68	1.64	1.68	NONE

NOTES:

1. Terminal pitch is defined by terminal center to center value.
2. Outer dimension is defined by center lines between scribe lines.
3. All dimensions in millimeters.
4. Marking shown is for package orientation reference only.
5. Tolerance is $\pm 0.02 \mathrm{~mm}$ unless specified otherwise.
6. All dimensions apply to PbFree (+) package codes only.
7. Front-side finish can be either Black or Clear.

BOTTOM VIEW
-DRAWING NOT TO SCALE-

Stereo 3.1W Class D Amplifier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 10$	Initial release	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K
THAT1646W16-U PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2
TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G
$\underline{\text { NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 }}$
ZXCD1210JB16TA

