Mono 3.2W Class D Amplifier

The MAX98304 mono 3.2W Class D amplifier provides Class AB audio performance with Class D efficiency This device offers five selectable gain settings (0dB, $3 \mathrm{~dB}, 6 \mathrm{~dB}, 9 \mathrm{~dB}$, and 12 dB) set by a single gain-select input (GAIN).
Active emissions-limiting, edge-rate, and overshoot control circuitry greatly reduces EMI. A filterless spreadspectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These features reduce application component count.
The IC's 0.95 mA at $3.7 \mathrm{~V}(1.2 \mathrm{~mA}$ at 5 V$)$ quiescent current extends battery life in portable applications.
The IC is available in a 9-bump ($1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$) WLP with 0.3 mm pitch that is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Notebook and Netbook Computers
Cellular Phones
Tablets
MP3 Players
Portable Audio Players
VoIP Phones

Typical Application Circuit

Bump Configuration

Mono 3.2W Class D Amplifier

ABSOLUTE MAXIMUM RATINGS
PVDD, IN+, IN-, $\overline{\text { SHDN, }}$, GAIN to PGND
\qquad -0.3 V to +6 V
All Other Pins to PGND-0.3V to (VPVDD +0.3 V)
Continuous Current Into/Out of PVDD, PGND, OUT_ $\ldots \pm 750 \mathrm{~mA}$
Continuous Input Current (all other pins)........................ $\pm 20 \mathrm{~mA}$ Duration of Short Circuit Between

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ for Multilayer Board
9-Bump WLP (derate $\left.10.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \ldots \ldots \ldots . ~$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{P V D D}=V\right.$ SHDN $=5.0 \mathrm{~V}, \mathrm{VPGND}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}(\mathrm{GAIN}=\mathrm{PGND}), \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{R}_{\mathrm{L}}$ connected between OUT + to OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	PVDD	Inferred from PSRR test		2.5		5.5	V
Undervoltage Lockout	UVLO	PVDD falling		1.5	1.8	2.2	V
Quiescent Supply Current	IDD	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.2	1.8	mA
		$\mathrm{V}_{\text {PVDD }}=3.7 \mathrm{~V}$		0.95			
Shutdown Supply Current	ISHDN	$V_{\text {SHDN }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			< 0.1	10	$\mu \mathrm{A}$
Turn-On Time	ton				3.4	10	ms
Bias Voltage	VBIAS				$\begin{aligned} & \text { VPVDD } \\ & \quad / 2 \end{aligned}$		V
Input Resistance	RIN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ single-ended	$A v=12 d B$	45	70		$\mathrm{k} \Omega$
			$A V=9 d B$	64	100		
			$A V=6 d B$	90	140		
			$A v=3 d B$	128	200		
			$A V=0 d B$	180	280		
Voltage Gain	Av	Connect GAIN to PGND		11.5	12	12.5	dB
		Connect GAIN to PGND through 100k $\Omega \pm 5 \%$		8.5	9	9.5	
		Connect GAIN to PVDD		5.5	6	6.5	
		Connect GAIN to PVDD through 100k $\Omega \pm 5 \%$		2.5	3	3.5	
		GAIN unconnected		-0.5	0	+0.5	
Output Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 3)			± 1	± 4.5	mV
Click and Pop	KCP	Peak voltage, A-weighted, 32 samples per second, $R \mathrm{~L}=8 \Omega$ (Notes 3, 4)	Into shutdown		-74		dBV
			Out of shutdown		-60		
Common-Mode Rejection Ratio	CMRR	$\mathrm{fIN}=1 \mathrm{kHz}$, input referred			80		dB

Mono 3.2W Class D Amplifier

ELECTRICAL CHARACTERISTICS (continued)

$(\mathrm{VPVDD}=\mathrm{V}$ SHDN $=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{PGND}=0 \mathrm{~V}, \mathrm{AV}=12 \mathrm{~dB}(\mathrm{GAIN}=\mathrm{PGND}), \mathrm{RL}=\infty, \mathrm{RL}$ connected between OUT+ to OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,2)

Note 1: This device is 100% production tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R \mathrm{~L}=4 \Omega$, $L=33 \mu \mathrm{H}$. For $R \mathrm{~L}=8 \Omega, \mathrm{~L}=68 \mu \mathrm{H}$.
Note 3: Amplifier inputs AC-coupled to ground
Note 4: Mode transitions controlled by SHDN.

Typical Operating Characteristics

$\left(V P V D D=V\right.$ SHDN $=5.0 V, V P G N D=0 V, A V=6 d B, R_{L}=\infty, R_{L}$ connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to $22 \mathrm{kHz}, \mathrm{TA}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX98304
 Mono 3.2W Class D Amplifier

Typical Operating Characteristics (continued)

$\left(V P V D D=V S H D N ~=5.0 V, V P G N D=0 V, A V=6 d B, R_{L}=\infty, R_{L}\right.$ connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to $22 \mathrm{kHz}, \mathrm{TA}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX98304

Mono 3.2W Class D Amplifier

Typical Operating Characteristics (continued)

$(\mathrm{VPVDD}=\mathrm{V}$ SHDN $=5.0 \mathrm{~V}, \mathrm{VPGND}=0 \mathrm{~V}, \mathrm{AV}=6 \mathrm{~dB}, \mathrm{RL}=\infty, \mathrm{RL}$ connected between OUT + to OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX98304
 Mono 3.2W Class D Amplifier

Typical Operating Characteristics (continued)

 to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Bump Description

BUMP	NAME	FUNCTION
A1	OUT-	Negative Speaker Output
A2	OUT+	Positive Speaker Output
A3	PVDD	Power Supply. Bypass PVDD to PGND with 0.1 μ F II 10رF.
B1	PGND	Ground
B2	N.C.	No Connection. Can be left unconnected, or connected to PGND.
B3	GAIN	Gain Select. See Table 1 for GAIN settings.
C1	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Drive $\overline{\text { SHDN }}$ low to place the device in shutdown.
C2	IN-	Inverting Audio Input
C3	IN+	Noninverting Audio Input

MAX98304

Mono 3.2W Class D Amplifier

Detailed Description

The MAX98304 features low quiescent current, a lowpower shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.
The device offers Class $A B$ audio performance with Class D efficiency in a minimal board-space solution.
The Class D amplifier features spread-spectrum modulation, edge-rate, and overshoot control circuitry that offers significant improvements to switch-mode amplifier radiated emissions.
The amplifier features click-and-pop suppression that reduces audible transients on startup and shutdown. The amplifier includes thermal overload and short-circuit protection.

Class D Speaker Amplifier

The filterless Class D amplifier offers much higher efficiency than Class $A B$ amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the I2R loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low EMI Filterless Output Stage
Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromag-netic-interference (EMI) regulation standards. Maxim's patented active emissions-limiting edge-rate control circuitry and spread-spectrum modulation reduces EMI emissions, while maintaining up to 93% efficiency.

Maxim's patented spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The IC's spread-spectrum modulator randomly varies the switching frequency by $\pm 12.5 \mathrm{kHz}$ around the center frequency (300 kHz). Above 10 MHz , the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit
If the output current of the speaker amplifier exceeds the current limit (2.8 A typ), the IC disables the outputs for approximately $100 \mu \mathrm{~s}$. At the end of $100 \mu \mathrm{~s}$, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and reenable the outputs until the fault condition is removed.

Selectable Gain
The IC offers five programmable gain selections through a single gain input (GAIN).

Table 1. Gain Control Configuration

GAIN PIN	MAXIMUM GAIN (dB)
Connect to PGND	12
Connect to PGND through $100 \mathrm{k} \Omega$ 5%	9
Cosistor	

Figure 1. EMI with 60cm of Speaker Cable and No Output Filtering

Mono 3.2W Class D Amplifier

Shutdown
The IC features a low-power shutdown mode, drawing less than $0.1 \mu \mathrm{~A}$ (typ) of supply current. Drive SHDN low to put the IC into shutdown.

Click-and-Pop Suppression

The IC speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

Applications Information

Filterless Class D Operation
Traditional Class D amplifiers require an output filter. The filter adds cost, size, and decreases efficiency and THD +N performance. The IC's filterless modulation scheme does not require an output filter.
Because the switching frequency of the IC is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance $>10 \mu \mathrm{H}$. Typical 8Ω speakers exhibit series inductances in the $20 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ range.

Component Selection
 Power-Supply Input (PVDD)

PVDD powers the speaker amplifier. PVDD ranges from 2.5V to 5.5 V . Bypass PVDD with a $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitor to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used.

Input Filtering
The input-coupling capacitor (CIN), in conjunction with the amplifier's internal input resistance (RIN), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level.
Assuming zero source impedance CIN is:

$$
\mathrm{C}_{\mathbb{I N}}=\frac{2 \pi \times \mathrm{R}_{\mathbb{N}}\left[\mathrm{f}_{-3 \mathrm{~F}]}\right.}{\mathrm{f}^{2}}
$$

where $f-3 d B$ is the $-3 d B$ corner frequency and RIN is the input resistance shown in the Electrical Characteristics table. Use capacitors with adequately low voltage-coefficient for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.
Use wide, low-resistance output traces. As the load impedance decreases, the current drawn from the device increases. At higher current, the resistance of the output traces decreases the power delivered to the load. For example, if 2 W is delivered from the device output to a 4Ω load through $100 \mathrm{~m} \Omega$ of total speaker trace, 1.904 W is being delivered to the speaker. If power is delivered through $10 \mathrm{~m} \Omega$ of total speaker trace, 1.99 W is being delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the device.
The IC is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to Application Note 1891: Waferlevel packaging (WLP) and its applications. Figure 2 shows the dimensions of the WLP balls used on the IC.

Figure 2. MAX98304 WLP Ball Dimensions

MAX98304

Mono 3.2W Class D Amplifier

Functional Diagram

Chip Information
PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

MAX98304

Mono 3.2W Class D Amplifier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 10$	Initial release	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K
THAT1646W16-U PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2
TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G
$\underline{\text { NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 }}$
ZXCD1210JB16TA

