

General Description

The MAX9830 mono 2W Class D amplifier provides Class AB audio performance with Class D efficiency.
Active emissions limiting edge rate and overshoot control circuitry greatly reduces EMI. A filterless spreadspectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These features reduce application component count.
The MAX9830's industry-leading 1.6 mA at $5 \mathrm{~V}, 1.2 \mathrm{~mA}$ at 3.6 V , quiescent current extends battery life in portable applications.
The MAX9830 is available in an 8-pin TDFN ($2 \mathrm{~mm} x$ $2 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) and is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

Notebook and Netbook Computers
Cellular Phones
MP3 Players
Portable Audio Players
VoIP Phones

Features
Industry-Leading Quiescent Current: 1.6mA at 5V,
1.2mA at 3.6V
Spread Spectrum and Active Emissions Limiting
(61cm) of Speaker Cable
Click-and-Pop Suppression
Thermal and Overcurrent Protection
Low 0.5 CA Current Shutdown Mode
Space-Saving, $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.8 \mathrm{~mm}, 8$-Pin TDFN
Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9830AETA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP ${ }^{*}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Typical Operating Circuit

Mono 2W Class D Amplifier

ABSOLUTE MAXIMUM RATINGS

Voltage
PVDD, IN+, IN-, $\overline{\text { SHDN, to }}$ PGND
\qquad
-0.3V to +6 V
OUT+, OUT- to PGND
\qquad -0.3 V to $\mathrm{V}_{\text {PVDD }}+0.3 \mathrm{~V}$
Current
Continuous Current Into/Out of PVDD, PGND,
OUT+, OUT-
\qquad
\qquad .$\pm 600 \mathrm{~mA}$
Continuous Input Current (all other pins)20mA Duration of Short Circuit Between Continuous

Continuous Power Dissipation for a Multilayer Board $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$)
8-Pin TDFN-EP (derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 953.5 mW
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$
Rate of Voltage Rise at PVDD ... $1 \mathrm{~V} / \mathrm{Ms}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{P V D D}=V_{S H D N}=5 \mathrm{~V}, V_{P G N D}=0 V, R_{L}=\infty\right.$, unless otherwise specified. RL connected between OUT+ and OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

Mono 2W Class D Amplifier

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {PVDD }}=V_{S H D N}=5 \mathrm{~V}, V_{P G N D}=0 V, R_{L}=\infty\right.$, unless otherwise specified. R_{L} connected between OUT+ and OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Oscillator Frequency	fosc		600		kHz
Spread-Spectrum Bandwidth			± 10		kHz
Noise	V_{N}	A-weighted (Note 3)	39		$\mu \mathrm{V}_{\text {RMS }}$
Signal-to-Noise Ratio	SNR	Pout $=$ Pout at 1% THD + N, A-weighted $R \mathrm{~L}=8 \Omega$	98		dB
Output Current Limit	ILIM	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3		A
Thermal Shutdown Level			+180		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysterysis			30		${ }^{\circ} \mathrm{C}$
Efficiency	η	$\mathrm{R}_{\mathrm{L}}=8 \Omega$, POUT $=1.5 \mathrm{~W}$	85		\%
DIGITAL INPUT (SHDN)					
Input Voltage High	V_{IH}		1.4		V
Input Voltage Low	$\mathrm{V}_{\text {IL }}$			0.4	V
Input Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 10	$\mu \mathrm{A}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R_{L}=4 \Omega, L=33 \mu H$. For $R L=8 \Omega, L=68 \mu H$.
Note 3: Amplifier inputs AC-coupled to PGND with $\mathrm{C}_{\mathrm{IN}}=0.47 \mu \mathrm{~F}$.
Note 4: Specified at room temperature with an 8Ω resistive load in series with a $68 \mu \mathrm{H}$ inductive load connected across BTL outputs. Mode transitions are controlled by $\overline{\text { SHDN. }}$

Mono 2W Class D Amplifier

Typical Operating Characteristics

$\left(V_{P V D D}=V_{S H D N}=5.0 \mathrm{~V}, V_{P G N D}=0 V, R L=\infty\right.$, unless otherwise specified. RL connected between OUT + and OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Mono 2W Class D Amplifier

Typical Operating Characteristics (continued)

$\left(V_{\text {PVDD }}=V_{S H D N}=5.0 V, V_{P G N D}=0 V, R_{L}=\infty\right.$, unless otherwise specified. RL connected between OUT+ and OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

COMMON-MODE REJECTION RATIO

EFFICIENCY vs. OUTPUT POWER

OUTPUT POWER (W)

OUTPUT POWER vs. SUPPLY VOLTAGE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

STARTUP WAVEFORM

Mono 2W Class D Amplifier

$\left(V_{\text {PVDD }}=V_{S H D N}=5.0 V, V_{P G N D}=0 V, R_{L}=\infty\right.$, unless otherwise specified. RL connected between OUT+ and OUT-, AC measurement bandwidth 20 Hz to $22 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Mono 2W Class D Amplifier

Pin Description

PIN	NAME	
1	IN +	FUNCTION
2	IN-	Inverting Audio Input
3	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Drive $\overline{\text { SHDN }}$ low to place the device in shutdown mode.
4	N.C.	No Connection. Leave unconnected.
5	PGND	Ground
6	OUT-	Negative Speaker Output
7	OUT+	Positive Speaker Output
8	PVDD	Power Supply. Bypass PVDD to PGND with a 0.1 1 F capacitor.
-	EP	Exposed Pad. Connect exposed pad to a solid ground plane.

Detailed Description

The MAX9830 features industry-leading quiescent current, low-power shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.
The MAX9830 offers Class AB audio performance with Class D efficiency in a minimal board-space solution. The Class D amplifier features spread-spectrum modulation combined with edge rate and overshoot control circuitry that offers significant improvements to switchmode amplifier radiated emissions.
The MAX9830 includes thermal overload and short-circuit protection.

Class D Speaker Amplifier

The MAX9830 filterless Class D amplifier offers much higher efficiency than Class AB amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the $I^{2 R}$ loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electro-magnetic-interference (EMI) regulation standards. Maxim's active emissions limiting edge-rate control circuitry and spread-spectrum modulation reduces EMI emissions, while maintaining up to 85% efficiency.
Maxim's spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The MAX9830's spread-spectrum modulator randomly varies the switching frequency by $\pm 10 \mathrm{kHz}$ around the center frequency

Figure 1. EMI with 24in of Speaker Cable
(600kHz). Above 10 MHz , the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (1.8A typ), the MAX9830 disables the outputs for approximately $400 \mu \mathrm{~s}$. At the end of $400 \mu \mathrm{~s}$, the outputs are re-enabled. If the fault condition still exists, the MAX9830 continues to disable and re-enable the outputs until the fault condition is removed.

Shutdown

The MAX9830 features a low-power shutdown mode, drawing $0.5 \mu \mathrm{~A}$ of supply current. Drive $\overline{\mathrm{SHDN}}$ low to put the MAX9830 into shutdown.

Click-and-Pop Suppression

The MAX9830 speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

Mono 2W Class D Amplifier

Applications Information

Filterless Class D Operation

Traditional Class D amplifiers require an output filter. The filter adds cost, size, and decreases efficiency and THD+N performance. The MAX9830's filterless modulation scheme does not require an output filter.
Because the switching frequency of the MAX9830 is well beyond the bandwidth of most speakers, voice coil movement at the switching frequency is very small. Use a speaker with a series inductance $>10 \mu \mathrm{H}$. Typical 8Ω speakers exhibit series inductances in the $20 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ range.

Component Selection

Optional Ferrite Bead Filter
Although not normally needed, in applications where speaker leads exceed 24in at VPVDD $=3 \mathrm{~V}$, use a filter constructed from an inexpensive ferrite bead and a small-value capacitor to ground (Figure 2) to provide additional EMI suppression. Use a ferrite bead with low DC resistance, high frequency ($\geq 1 \mathrm{MHz}$) impedance of 100Ω to 600Ω, and rated for at least 1 A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select the capacitor value based on EMI performance.

Speaker Amplifier Power Supply Input (PVDD) PVDD powers the speaker amplifier. PVDD ranges from 2.6 V to 5.5 V . Bypass PVDD with a $0.1 \mu \mathrm{~F}$ capacitor to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used. Ensure a rate of voltage rise at PVDD is limited to $1 \mathrm{~V} / \mu \mathrm{s}$.

Figure 2. Optional Ferrite Bead Filter

Input Filtering

The input-coupling capacitor (CIN), in conjunction with the amplifier's internal input resistance ($\mathrm{RIN}_{\mathrm{I}}$), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level. Select $0.47 \mu \mathrm{~F}$ capacitors for optimum click-and-pop performance and 17 Hz f-3dB.
If a different $\mathrm{f}-3 \mathrm{~dB}$ is required, CIN , assuming zero-source-impedance, is:

$$
\mathrm{C}_{\mathrm{IN}}=\frac{8}{\mathrm{f}_{-3 \mathrm{~dB}}}[\mu \mathrm{~F}]
$$

Use capacitors with adequately low voltage-coefficient for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.
Use wide, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, if 2 W is delivered from the speaker output to a 4Ω load through a $100 \mathrm{~m} \Omega$ trace, 49 mW is consumed in the trace. If power is delivered through a $10 \mathrm{~m} \Omega$ trace, only 5 mW is consumed in the trace. Wide output, supply and ground traces also improve the power dissipation of the device.

The MAX9830 is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top and bottom PCB planes.
The MAX9830 TDFN package features an exposed thermal pad on its underside. This pad lowers the package's thermal resistance by providing a heat conduction path from the die to the PCB. Connect the exposed thermal pad to the ground plane by using a large pad and multiple vias.

Chip Information
PROCESS: CMOS

Mono 2W Class D Amplifier

Functional Diagram

Oع86XVW

Mono 2W Class D Amplifier

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 TDFN-EP	T822+2	$\underline{\mathbf{2 1 - 0 1 6 8}}$

Mono
 2W Class D Amplifier

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	1.90	2.10
E	1.90	2.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.	
A2	0.20 REF.	

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	b	r	$[(\mathrm{N} / 2)-1] \mathrm{xe}$
T822-1	8	0.70 ± 0.10	1.30 ± 0.10	0.50 TYP.	0.25 ± 0.05	0.125	1.50 REF
T822-2	8	0.80 ± 0.10	1.20 ± 0.10	0.50 TYP.	0.25 ± 0.05	0.125	1.50 REF

NDTES

1. All dimensions are in mm. angles in degrees.
2. CIPLANARITY APPLIES TO THE EXPISED PAD AS WELL AS THE TERMINALS. CDPLANARITY SHALL NDT EXCEED 0.08 mm .
3. WARPAGE SHALL NDT EXCEED 0.08 mm .
4. package length/package width are considered as special characteristic(s).
5. CIMPLY TO JEDEC MD229 EXCEPT DZ AND E2 DIMENSIONS.
6. ${ }^{\circ} \mathrm{N}$ • IS the tatal number af leads.
7. NUMBER DF LEADS SHIWN ARE FDR REFERENCE \quad anly.

8. ALL DIMENSIONS APPLY TD BOTH LEADED AND PbFREE PARTS.
-DRAWING NDT TO SCALE-
(4DALLAS /V/IXI/VI
TJTL PACKAGE OUTLINE
8L TDFN EXPOSED PAD, $2 \times 2 \times 0.80 \mathrm{~mm}$

Mono 2W Class D Amplifier

\qquad

REVISION NUMBER	REVISION DATE	PESCRIPTION CHANGED	
0	$8 / 09$	Initial release	-
1	$4 / 10$	Removed PSRR spec from the Features section, updated EC table specs, and added new TOCs	$1,2,5$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K
THAT1646W16-U PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2
TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G
$\underline{\text { NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 }}$
ZXCD1210JB16TA

