1MHz, 20رA, Rail-to-Rail I/O Op Amps with Shutdown

General Description

The single MAX9914/MAX9915 and dual MAX9916/ MAX9917 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered applications such as portable instrumentation, portable medical equipment, and wireless handsets. These CMOS op amps feature an ultra-low 1 pA input bias current, rail-to-rail inputs and outputs, low $20 \mu \mathrm{~A}$ supply current, and operate from a single 1.8 V to 5.5 V supply. For additional power conservation, the MAX9915/MAX9917 feature a low-power shutdown mode that reduces supply current to 1 nA , and puts the amplifier outputs in a high-impedance state. These devices are unity-gain stable with a 1 MHz gain-bandwidth product.
The MAX9914 and MAX9915 are available in 5-pin and 6 -pin SC70 packages, respectively. The MAX9916 is available in an 8-pin SOT23 package, and the MAX9917 in a 10-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended operating temperature range.

Applications

- Portable Medical Devices
- Portable Test Equipment
- RF Tags
- Laptops
- Data-Acquisition Equipment

Typical Operating Circuit

Features

- High 1 MHz GBW
- Ultra-Low $20 \mu \mathrm{~A}$ Supply Current
- Single 1.8 V to 5.5 V Supply Voltage Range
- Ultra-Low 1pA Input Bias Current
- Rail-to-Rail Input and Output Voltage Ranges
- Low $\pm 200 \mu \mathrm{~V}$ Input Offset Voltage
- Low $0.001 \mu \mathrm{~A}$ Shutdown Current
- High-Impedance Output During Shutdown (MAX9915/MAX9917)
- Unity-Gain Stable
- Available in Tiny SC70, SOT23, and μ MAX Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9914EXK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC 70	AGB
MAX9914EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC 70	AGB
MAX9915EXT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70	ACB
MAX9915EXT- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70	ACB
MAX9916EKA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT 23	AEJZ
MAX9916EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT 23	AEJZ
MAX9917EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9917EUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

Selector Guide

PART	AMPLIFIERS PER PACKAGE	SHUTDOWN MODE	PACKAGE
MAX9914EXK+T	1	No	5 SC70
MAX9915EXT+T	1	Yes	6 SC70
MAX9916EKA+T	2	No	8 SOT23
MAX9917EUB+	2	Yes	10μ MAX

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

$1 \mathrm{MHz}, 20 \mu \mathrm{~A}$, Rail-to-Rail I/O Op Amps with Shutdown

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Supply Voltage Range	$V_{\text {DD }}$	Guaranteed by PSRR test		1.8	5.5	V
Supply Current	IDD	MAX9914/MAX9915	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	20		$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	20	25	
		MAX9916/MAX9917	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	40		
			$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	40	50	
Shutdown Supply Current	$\mathrm{I}_{\mathrm{DD}(\overline{\text { SHDN_) }} \text {) }}$	SHDN_ = GND, MAX9915/MAX9917		0.001	0.5	$\mu \mathrm{A}$
Input Offset Voltage	V_{OS}			± 0.2	± 1	mV
Input-Offset-Voltage Matching		MAX9916/MAX9917		± 250		$\mu \mathrm{V}$
Input Bias Current	I_{B}	(Note 2)		± 1	± 10	pA
Input Offset Current	los	(Note 2)		± 1	± 10	pA
Input Resistance	$\mathrm{R}_{\text {IN }}$	Common mode		1		G Ω
		Differential mode, $-1 \mathrm{mV}<\mathrm{V}_{\text {IN }}<+1 \mathrm{mV}$		10		
Input Common-Mode Range	V_{CM}	Guaranteed by CMRR test		$\mathrm{V}_{\text {SS }}-0.1$	D +0.1	V
Common-Mode Rejection Ratio	CMRR	$-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		$70 \quad 80$		dB
Power-Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$		$65 \quad 85$		dB
Open-Loop Gain	AVOL	$\begin{aligned} & 25 \mathrm{mV}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$		95120		
		$\begin{aligned} & 100 \mathrm{mV}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}-100 \mathrm{mV}, \\ & \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		95110		
Output-Voltage-Swing High	V_{OH}	$V_{\text {DD }}-V_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	250		
Output-Voltage-Swing Low	V_{OL}	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {SS }}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	2.5	5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	50	70	
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	250		
Channel-to-Channel Isolation	$\mathrm{CH}_{\text {ISO }}$	Specified at DC, MAX9916/MAX9917		100		dB
Output Short-Circuit Current	IOUT(SC)			± 15		mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SHDN_ Logic Low	V_{IL}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6V, MAX9915/MAX9917				0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9915/MAX9917				0.8	
SHDN_ Logic High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6V, MAX9915/MAX9917		1.4			V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9915/MAX9917		2			
SHDN_Input Bias Current	IIL	$\overline{\text { SHDN }}^{\prime}=\mathrm{V}_{\text {SS }}$, MAX9915/MAX9917 (Note 2)				1	nA
	$\mathrm{IIH}^{\text {H }}$	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {DD }}$, MAX9915/MAX9917				500	
Output Leakage in Shutdown	lout(SHDN_)	$\begin{aligned} & \overline{S H D N}_{=}=V_{\text {SS }}, V_{\text {OUT }}=0 V \text { to } V_{D D}, \\ & \text { MAX9915/MAX9917 } \end{aligned}$			1	500	nA
Gain-Bandwidth Product					1		MHz
Phase Margin		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			45		degrees
Gain Margin		$C_{L}=15 \mathrm{pF}$			10		dB
Slew Rate					0.5		V/ s
Capacitive-Load Stability (See the Driving Capacitive Loads Section)	CLOAD	No sustained oscillations	$A_{V}=1 \mathrm{~V} / \mathrm{V}$		30		pF
			$A_{V}=10 \mathrm{~V} / \mathrm{V}$		100		
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}$		100		
			$\mathrm{R}_{\text {ISO }}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}$		100		
Input Voltage-Noise Density		$\mathrm{f}=1 \mathrm{kHz}$			160		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density		$\mathrm{f}=1 \mathrm{kHz}$			0.001		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Settling Time		To $0.1 \%, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ step, $\mathrm{A}_{\mathrm{V}}=-1 \mathrm{~V} / \mathrm{V}$			3.5		$\mu \mathrm{s}$
Delay Time to Shutdown	${ }_{\text {ts }}$	$I_{D D}=5 \%$ of normal operation, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SHDN}}=5.5 \mathrm{~V}$ to 0 step			2		$\mu \mathrm{s}$
Delay Time to Enable	t_{EN}	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$ settles to 0.1%, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{SHDN}}-}=0$ to 5.5 V step			10		$\mu \mathrm{s}$
Power-Up Time		$\mathrm{V}_{\mathrm{DD}}=0$ to 5.5 V step			2		$\mu \mathrm{s}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{S H D N}_{-}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Supply Voltage Range	$V_{\text {DD }}$	Guaranteed by PSRR test		1.8	5.5	V
Supply Current	IDD	MAX9914/MAX9915	$V_{D D}=5.5 \mathrm{~V}$		29	$\mu \mathrm{A}$
		MAX9916/MAX9917			60	
Shutdown Supply Current	l $\mathrm{DD}(\overline{\text { SHDN_) }}$	SHDN_ = GND, MAX9915/MAX9917			1	$\mu \mathrm{A}$
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$				± 3	mV

$1 \mathrm{MHz}, 20 \mu \mathrm{~A}$, Rail-to-Rail I/O Op Amps with Shutdown

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty$ connected to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{S H D N}_{-}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Input-Offset-Voltage Temperature Coefficient (Note 2)	TCVos			± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}				± 30	pA
Input Offset Current	Ios				± 20	pA
Input Common-Mode Range	V_{CM}	Guaranteed by CMRR test		$\mathrm{V}_{S S}-0.05$	$\mathrm{V}_{\mathrm{DD}}+0.05$	V
Common-Mode Rejection Ratio	CMRR	$-0.05 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}+0.05 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		60		dB
Power-Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$		60		dB
Open-Loop Gain	AVOL	$\begin{aligned} & 25 \mathrm{mV}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}, \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		85		dB
		$\begin{aligned} & 150 \mathrm{mV}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}-150 \mathrm{mV}, \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		85		
Output-Voltage-Swing High	V_{OH}	$V_{D D}-V_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		6	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
Output-Voltage-Swing Low	V_{OL}	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {SS }}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		5	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		90	
SHDN_ Logic Low	VIL	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6 V , MAX9915/MAX9917			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9915/MAX9917			0.8	
$\overline{\text { SHDN_ Logic High }}$	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.6V, MAX9915/MAX9917		1.4		V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5V, MAX9915/MAX9917		2		
$\overline{\text { SHDN_ Input Bias Current }}$	IIL	SHDN_ $=V_{\text {SS }}$, MAX9915/MAX9917			5	nA
	$\mathrm{IIH}^{\text {H }}$	$\overline{\text { SHDN }}=\mathrm{V}_{\text {DD }}$, MAX9915/MAX9917			1000	nA
Output Leakage in Shutdown	IOUT($\overline{\text { SHDN_ }}$)	$\begin{aligned} & \overline{S H D N}_{=}=V_{\text {SS }}, V_{\text {OUT }}=0 V \text { to } V_{D D}, \\ & \text { MAX9915/MAX9917 } \end{aligned}$			1000	nA

Note 1: Specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (exceptions noted). All temperature limits are guaranteed by design.
Note 2: Guaranteed by design, not production tested

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)
 $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)
 $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN				NAME	FUNCTION
MAX9914	MAX9915	MAX9916	MAX9917		
1	1	-	-	IN+	Noninverting Amplifier Input
2	2	4	4	V $_{\text {SS }}$	Negative Supply Voltage
3	3	-	-	IN-	Inverting Amplifier Input
4	4	-	-	OUT	Amplifier Output
5	6	8	10	V $_{\text {DD }}$	Positive Supply Voltage
-	5	-	-	$\overline{\text { SHDN }}$	Shutdown
-	-	1	1	OUTA	Amplifier Output Channel A
-	-	2	2	INA-	Inverting Amplifier Input Channel A
-	-	3	3	INA+	Noninverting Amplifier Input Channel A
-	-	-	5	$\overline{\text { SHDNA }}$	Shutdown Channel A
-	-	-	6	$\overline{\text { SHDNB }}$	Shutdown Channel B
-	-	5	7	INB+	Noninverting Amplifier Input Channel B
-	-	6	8	INB-	Inverting Amplifier Input Channel B
-	-	7	9	OUTB	Amplifier Output Channel B

Detailed Description

Featuring a maximized ratio of gain bandwidth to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX9914MAX9917 are an excellent choice for precision or gen-eral-purpose low-current, low-voltage, battery-powered applications. These CMOS devices consume an ultra-low $20 \mu \mathrm{~A}(\mathrm{typ})$ supply current and a $200 \mu \mathrm{~V}$ (typ) offset voltage. For additional power conservation, the MAX9914/ MAX9917 feature a lowpower shutdown mode that reduces supply current to 1 nA (typ), and puts the amplifiers' output in a highimpedance state. These devices are unity-gain stable with a 1 MHz gain-bandwidth product driving capacitive loads up to 30 pF . The capacitive load can be increased to 100 pF when the amplifier is configured for a 10V/V gain.

Rail-to-Rail Inputs and Outputs

The MAX9914-MAX9917 amplifiers all have a parallelconnected n - and p -channel differential input stage that allows an input common-mode voltage range that extends 100 mV beyond the positive and negative supply rails, with excellent common-mode rejection.

The MAX9914-MAX9917 are capable of driving the output to within 5 mV of both supply rails with a $100 \mathrm{k} \Omega$ load. These devices can drive a $5 \mathrm{k} \Omega$ load with swings to within 60 mV of the rails. Figure 1 shows no clipping at the output voltage swing of the MAX9914-MAX9917 configured as a unity-gain buffer powered from a single 3 V supply.

Low Input Bias Current

The MAX9914-MAX9917 feature ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1 \mathrm{G} \Omega$).

Applications Information

Driving Capacitive Loads

The MAX9914-MAX9917 amplifiers are unity-gain stable for loads up to 30pF. However, the capacitive load can be increased to 100 pF when the amplifier is configured for a minimum gain of $10 \mathrm{~V} / \mathrm{V}$.
Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_{L} (about $5 k \Omega$), the capacitive load can be increased up to 100 pF .

Power-Supply Considerations

The MAX9914-MAX9917 are optimized for single 1.8 V to 5.5 V supply operation. A high amplifier power-supply rejection ratio of 85 dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The MAX9914-MAX9917 typically require 2μ s after pow-er-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows the MAX991_ in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately 3.5μ s for $V_{D D}$ $=3 \mathrm{~V}$ (see the Typical Operating Characteristics for the Power-Up Settling Time graph).

Shutdown Mode

The MAX9915 and MAX9917 feature active-low shutdown inputs. The MAX9915 and MAX9917 enter shutdown in $2 \mu \mathrm{~s}$ (typ) and exit shutdown in $10 \mu \mathrm{~s}$ (typ). The amplifiers' outputs are high impedance in shutdown mode. Drive SHDN low to enter shutdown. Drive SHDN high to enable the amplifier. The MAX9917 dual amplifier features separate shutdown inputs. Shut down both amplifiers for lowest quiescent current.

Power-Supply Bypassing and Layout

Bypass $V_{D D}$ with a $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the pin as possible to minimize noise.
Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amp's inputs and outputs. Minimize stray capacitance and inductance, by placing external components close to the IC.

RAIL-TO-RAIL OUTPUT VOLTAGE RANGE

Figure 1. Rail-to-Rail Output Voltage Range

Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Figure 3. Power-Up Test Configuration

Pin Configurations

Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	$\mathrm{X} 5+1$	$\underline{\mathbf{2 1 - 0 0 7 6}}$	$\underline{90-0188}$
6 SC70	$\mathrm{X} 6 \mathrm{SN}+1$	$\underline{21-0077}$	$\underline{90-0189}$
8 SOT23	$\mathrm{K} 8+5$	$\underline{\mathbf{2 1 - 0 0 7 8}}$	$\underline{90-0176}$
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10+2$	$\underline{\mathbf{2 1 - 0 0 6 1}}$	$\underline{90-0330}$

$1 \mathrm{MHz}, 20 \mu \mathrm{~A}$, Rail-to-Rail
I/O Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$11 / 04$	Initial release	-
1	$10 / 05$	Removed future product asterisks from MAX9916/MAX9917, edited $V_{\text {OL }} /$ $V_{\text {OH }}$ specifications in the EC table, removed MAX9916 8-pin $\mu M A X ~ p a c k a g e . ~$	$1,2,11$
2	$6 / 13$	Updated Electrical Characteristics	3,4
3	$11 / 14$	Updated Absolute Maximum Ratings and Electrical Characteristics	$2,3,4$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD\#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY

