38V, Low-Noise, MOS-Input, Low-Power Op Amp

Abstract

General Description The MAX9945 operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs enable the MAX9945 to feature low input bias currents and low input current noise. The device accepts a wide supply voltage range from 4.75 V to 38 V and draws a low $400 \mu \mathrm{~A}$ quiescent current. The MAX9945 is unity-gain stable and is capable of rail-to-rail output voltage swing.

The MAX9945 is ideal for portable medical and industrial applications that require low noise analog front-ends for performance applications such as photodiode transimpedance and chemical sensor interface circuits. The MAX9945 is available in both an 8-pin μ MAX ${ }^{\circledR}$ and a space-saving, 6-pin TDFN package, and is specified over the automotive operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

Applications
Medical Pulse Oximetry
Photodiode Sensor Interface
Industrial Sensors and Instrumentation
Chemical Sensor Interface
High-Performance Audio Line Out
Active Filters and Signal Processing
Features

- +4.75V to +38V Single-Supply Voltage Range
- $\pm 2.4 \mathrm{~V}$ to $\pm 19 \mathrm{~V}$ Dual-Supply Voltage Range
- Rail-to-Rail Output Voltage Swing
- 400رA Low Quiescent Current
- 50fA Low Input Bias Current
- $1 \mathrm{fA} / \sqrt{\mathrm{Hz}}$ Low Input Current Noise
- 15nV/ $\sqrt{\mathrm{Hz}}$ Low Noise
- 3MHz Unity-Gain Bandwidth
- Wide Temperature Range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Available in Space-Saving, 6-Pin TDFN Package (3mm x 3mm)
Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9945ATT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN-EP*	AUE
MAX9945AUA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

+Denotes a lead(Pb)-free/RoHS-compliant package.

* $E P=$ Exposed pad.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

38V, Low-Noise, MOS-Input, Low-Power Op Amp

ABSOLUTE MAXIMUM RATINGS

(Vcc to	
IN+, IN-, OUT Voltage....................(VEE	$\mathrm{V}_{C C}+0.3 \mathrm{~V}$)
$\mathrm{IN}+$ to IN	$\pm 12 \mathrm{~V}$
OUT Short Circuit to Ground Duration	10s
Continuous Input Current into Any Pin	$\pm 20 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
6 -Pin TDFN-EP (derate $23.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70	
Multilayer Boa	. 1904.8 m

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN-EP
Junction-to-Ambient Thermal Resistance (θ_{JA}) $42^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (JJC°).............. $9^{\circ} \mathrm{C} / \mathrm{W}$
$\mu \mathrm{MAX}$
Junction-to-Ambient Thermal Resistance (θ_{JA}) $206.3^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance $\theta_{\mathrm{Jc}} . ~ 42^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, ROUT $=100 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARACTERISTICS							
Input Voltage Range	$\mathrm{VIN}_{+}, \mathrm{VIN}$ -	Guaranteed by CMRR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Vee		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.2 \end{gathered}$	V
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	VEE		$\begin{gathered} V_{C C}- \\ 1.4 \end{gathered}$	
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.6	± 5	mV
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 8		
Input Offset Voltage Drift	Vos - $\mathrm{T}_{\text {c }}$				2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 3)	IB	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$			50	150	fA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$				12	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$				55	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				1.9	nA
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C}-1.2 \mathrm{~V}, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		78	94		dB
		$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C}-1.4 \mathrm{~V}, \\ & T_{A}=T_{M I N} \text { to } T_{M A X} \end{aligned}$		78	94		
Open-Loop Gain	AOL	$\begin{array}{\|l\|} \hline V_{E E}+0.3 V \leq V_{\text {OUT }} \leq V_{C C}-0.3 V \\ \text { ROUT }=100 \mathrm{k} \Omega \text { to GND } \\ \hline \end{array}$		110	130		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}+0.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}-0.75 \mathrm{~V}, \\ & \text { ROUT }=10 \mathrm{k} \Omega \text { to GND } \end{aligned}$		110	130		
Output Short-Circuit Current	ISC				25		mA

38V, Low-Noise, MOS-Input, Low-Power Op Amp

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, ROUT $=100 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Low	VoL	ROUT $=10 \mathrm{k} \Omega$ to GND	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 0.26 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 0.45 \end{gathered}$	V
		$\begin{aligned} & \text { ROUT }=100 \mathrm{k} \Omega \text { to } \\ & \text { GND } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		$\begin{gathered} V_{E E}+ \\ 0.05 \end{gathered}$	$\begin{gathered} V_{E E}+ \\ 0.15 \end{gathered}$	
Output Voltage High	VOH	ROUT $=10 \mathrm{k} \Omega$ to GND	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{gathered} \text { VCC }- \\ 0.45 \end{gathered}$	$\begin{gathered} V_{C C}- \\ 0.24 \end{gathered}$		V
		$\begin{aligned} & \text { ROUT }=100 \mathrm{k} \Omega \text { to } \\ & \text { GND } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & V_{C C}- \\ & 0.15 \end{aligned}$	$\begin{gathered} V_{C C}- \\ 0.03 \end{gathered}$		
AC ELECTRICAL CHARACTERISTICS							
Input Current-Noise Density	I_{N}	$\mathrm{f}=1 \mathrm{kHz}$		1			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
Input Voltage Noise	$\mathrm{V}_{\text {NP-P }}$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			2		$\mu \mathrm{V}$ P-P
Input Voltage-Noise Density	V_{N}	$\mathrm{f}=100 \mathrm{~Hz}$		25			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		16.5			
		$\mathrm{f}=10 \mathrm{kHz}$		15			
Gain Bandwidth	GBW			3			MHz
Slew Rate	SR				2.2		V/us
Capacitive Loading (Note 4)	CLOAD	No sustained oscillations		120			pF
Total Harmonic Distortion	THD	$\begin{aligned} & \text { Vout }=4.5 \mathrm{~V}_{\text {P-P, }} \mathrm{AV}=1 \mathrm{~V} / \mathrm{N}, \\ & \mathrm{f}=10 \mathrm{kHz}, \text { ROUT }=10 \mathrm{k} \Omega \text { to GND } \end{aligned}$		97			dB
POWER-SUPPLY ELECTRICAL CHARACTERISTICS							
Power-Supply Voltage Range	VCC - VEE	Guaranteed by PSRR, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		+4.75		+38	V
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=+4.75 \mathrm{~V}$ to +38 V		82	100		dB
Quiescent Supply Current	ICC	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			400	700	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				850	

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 3: Guaranteed by design. IN+ and IN- are internally connected to the gates of CMOS transistors. CMOS GATE leakage is so small that it is impractical to test in production. Devices are screened during production testing to eliminate defective units.
Note 4: Specified over all temperatures and process variation by circuit simulation.

38V, Low-Noise, MOS-Input, Low-Power Op Amp

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, ROUT $=100 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

38 V, Low-Noise, MOS-Input, Low-Power Op Amp

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, ROUT $=100 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

COMMON-MODE REJECTION RATIO vs. FREQUENCY

RESISTOR ISOLATION
vs. CAPACITIVE LOAD

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}+=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{ROUT}_{\mathrm{O}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SMALL SIGNAL-STEP RESPONSE

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Pin Description

PIN		NAME	FUNCTION
TDFN-EP	$\mu \mathrm{MAX}$		
1	6	OUT	Amplifier Output
2	4	VEE	Negative Power Supply. Bypass $V_{E E}$ with $0.1 \mu \mathrm{~F}$ ceramic and $4.7 \mu \mathrm{~F}$ electrolytic capacitors to quiet ground plane if different from V_{EE}.
3	3	$\mathrm{IN}+$	Noninverting Amplifier Input
4	2	IN-	Inverting Amplifier Input
5	1,5,8	N.C.	No Connection. Not internally connected.
6	7	VCC	Positive Power Supply. Bypass V_{CC} with $0.1 \mu \mathrm{~F}$ ceramic and $4.7 \mu \mathrm{~F}$ electrolytic capacitors to quiet ground plane or $V_{E E}$.
-	-	EP	Exposed Pad (TDFN Only). Connect to VEE externally. Connect to a large copper plane to maximize thermal performance. Not intended as an electrical connection (TDFN only).

Detailed Description

The MAX9945 features a combination of low input current and voltage noise, rail-to-rail output voltage swing, wide supply voltage range, and low-power operation. The MOS inputs on the MAX9945 make it ideal for use as transimpedance amplifiers and high-impedance sensor interface front-ends in medical and industrial applications. The MAX9945 can interface with small signals from either current-sources or high-output impedance voltage sources. Applications include photodiode pulse oximeters, pH sensors, capacitive pressure sensors, chemical analysis equipment, smoke detectors, and humidity sensors.
A high 130 dB open-loop gain (typ) and a wide supply voltage range, allow high signal-gain implementations prior to signal conditioning circuitry. Low quiescent supply current makes the MAX9945 compatible with portable systems and applications that operate under tight power budgets. The combination of excellent THD, low voltage noise, and MOS inputs also make the MAX9945 ideal for use in high-performance active filters for data acquisition systems and audio equipment.

Low-Current, Low-Noise Input Stage

 The MAX9945 features a MOS-input stage with only 50fA (typ) of input bias current and a low $1 \mathrm{fA} / \sqrt{\mathrm{Hz}}$ (typ) input current-noise density. The low-frequency input voltage noise is a low $2 \mu \mathrm{VP}$ - P (typ). The input stage accepts a wide common-mode range, extending from the negative supply, V_{EE}, to within 1.2 V of the positive supply, Vcc.Rail-to-Rail Output Stage
The MAX9945 output stage swings to within 50 mV (typ) of either power-supply rail with a $100 \mathrm{k} \Omega$ load and provides a 3 MHz GBW with a $2.2 \mathrm{~V} / \mathrm{hs}$ slew rate. The device is unity-gain stable, and unlike other devices with a low quiescent current, can drive a 120 pF capacitive load without compromising stability.

Applications Information

High-Impedance Sensor Front Ends

High-impedance sensors can output signals of interest in either current or voltage form. The MAX9945 interfaces to both current-output sensors such as photodiodes and potentiostat sensors, and high-impedance voltage sources such as pH sensors.
For current-output sensors, a transimpedance amplifier is the most noise-efficient method for converting the input signal to a voltage. High-value feedback resistors are commonly chosen to create large gains, while feedback capacitors help stabilize the amplifier by canceling any zeros in the transfer function created by a highly capacitive sensor or cabling. A combination of low-current noise and low-voltage noise is important for these applications. Take care to calibrate out photodiode dark current if DC accuracy is important. The high bandwidth and slew rate also allows AC signal processing in certain medical photodiode sensor applications such as pulse oximetry.

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Figure 1. Shielding the Inverting Input to Reduce Leakage
For voltage-output sensors, a noninverting amplifier is typically used to buffer and/or apply a small gain to, the input voltage signal. Due to the extremely high impedance of the sensor output, a low input bias current with a small temperature variation is very important for these applications.

Power-Supply Decoupling
The MAX9945 operates from a +4.75 V to +38 V , VEE referenced power supply. Bypass the power-supply inputs $V_{C C}$ and $V_{E E}$ to a quiet copper ground plane, with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $4.7 \mu \mathrm{~F}$ electrolytic capacitor, placed close to the leads.

Layout Techniques

A good layout is critical to obtaining high performance especially when interfacing with high-impedance sensors. Use shielding techniques to guard against parasitic leakage paths. For transimpedance applications, for example, surround the inverting input, and the traces connecting to it, with a buffered version of its own voltage. A convenient source of this voltage is the noninverting input pin. Pins 1,5, and 8 on the $\mu \mathrm{MAX}$ package are unconnected, and can be connected to an analog common potential, or to the driven guard potential, to reduce leakage on the inverting input.
A good layout guard rail isolates sensitive nodes, such as the inverting input of the MAX9945 and the traces connecting to it (see Figure 1), from varying or large voltage differentials that otherwise occur in the rest of the circuit board. This reduces leakage and noise effects, allowing sensitive measurements to be made accurately.

Figure 2. Input Differential Voltage Protection
Take care to also decrease the amount of stray capacitance at the op amp's inputs to improve stability. To achieve this, minimize trace lengths and resistor leads by placing external components as close as possible to the package. If the sensor is inherently capacitive, or is connected to the amplifier through a long cable, use a low-value feedback capacitor to control high-frequency gain and peaking to stabilize the feedback loop.

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Input Differential Voltage Protection
During normal op-amp operation, the inverting and noninverting inputs of the MAX9945 are at approximately the same voltage. The $\pm 12 \mathrm{~V}$ absolute maximum input differential voltage rating offers sufficient protection for most applications. If there is a possibility of exceeding the input differential voltage specification, in the presence of extremely fast input voltage transients or due to certain application-specific fault conditions, use external low-leakage pico-amp diodes and series resistors to protect the input stage of the amplifier (see Figure 2). The extremely low input bias current of the MAX9945 allows a wide range of input series resistors to be used. If low input voltage noise is critical to the application, size the input series resistors appropriately.

PROCESS: BiCMOS

38V, Low-Noise, MOS-Input, Low-Power Op Amp

Pin Configurations

38V, Low-Noise, MOS-Input, Low-Power Op Amp

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 TDFN-EP	T633+2	$\underline{\mathbf{2 1 - 0 1 3 7}}$	$\underline{90-0058}$
$8 \mu \mathrm{MAX}$	$\mathrm{U}+1$	$\underline{\mathbf{2 1 - 0 0 3 6}}$	$\underline{90-0092}$

38V, Low-Noise, MOS-Input, Low-Power Op Amp

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.$$	
A2	0.20 REF.	

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \times \mathrm{e}$
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033MK-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-3F	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

38V, Low-Noise, MOS-Input, Low-Power Op Amp

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

BOTTOM VIEW

FRONT VIEW

1. D\&E DO NOT INCLUDE MOLD FLASH
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED O.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. COMPLIES TO JEDEC MO-187, LATEST REVISION, VARIATION AA.
5. MARKING SHOWN IS FOR PKG. ORIENTATION ONLY.
6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.
-DRAWING NOT TO SCALE-

SIDE VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
b	0.010	0.014	0.25	0.36
c	0.005	0.007	0.13	0.18
D	0.114	0.122	2.90	3.10
e	0.0256	BSC	0.65	
E	0.114	0.122	2.90	3.10
H	0.188	0.198	4.78	5.03
L	0.016	0.026	0.41	0.66
α	0°		6°	
0°				6°
S	0.0207	BSC	0.5250	BSC
PKG. CODES:				
U8-1; U8-3; U8CN-1				

38V, Low-Noise, MOS-Input, Low-Power Op Amp

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/09	Initial release	-
1	12/10	Updated Input Bias Current spec in the Electrical Characteristics table and updated Note 3	2, 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
AD8033AKS-EBZ AD8044AR-EBZ AD744JR-EBZ AD8023AR-EBZ AD848JR-EBZ ADA4922-1ACP-EBZ EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ ADA4950-1YCP-EBZ MAX2634EVKIT ISL28158EVAL1Z MADL-011014-001SMB AD8137YCP-EBZ EVAL-ADA4523-1ARMZ EVAL01-HMC1013LP4E MCP6XXXEV-AMP3 MCP6XXXEV-AMP4 MCP6XXXEV-AMP2 ISL28006FH-100EVAL1Z 551012922-001/NOPB EVAL-ADCMP603BCPZ AMC1200EVM AD8417RM-EVALZ DEM-OPA-SOT-1A DEM-OPA-SO-1C DEM-BUF-SOT-1A OPA2836IDGSEVM AD633-EVALZ AD8250-EVALZ AD8418R-EVALZ ISL28433SOICEVAL1Z ISL28233SOICEVAL1Z ISL28208SOICEVAL2Z ISL28207SOICEVAL2Z ISL28006FH-50EVAL1Z ISL28005FH-50EVAL1Z 120257-HMC613LC4B DC1591A DC1150A DC1115A DC954A-C DC306A-A DC1192A 131679HMC813LC4B OPA2835IDGSEVM LMH730220/NOPB MAAP-011246-1SMB 118329-HMC627ALP5

