+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 \mathrm{~dB}$ Variation

General Description

The MAX9987 and MAX9988 LO buffers/splitters each integrate a passive two-way power splitter with highisolation input and output buffer amplifiers. These buffers are designed to provide the high output $(+14 \mathrm{dBm}$ to $+20 \mathrm{dBm})$ necessary to drive the LO inputs of high-linearity passive mixers, while offering 40 dB reverse isolation to prevent LO pulling. The MAX9987 is internally matched for the cellular/GSM bands, and the MAX9988 is matched for the DCS/PCS/UMTS bands.
The typical application circuit provides a nominal +17 dBm output power with $\pm 1 \mathrm{~dB}$ variation over supply, temperature, and input power. With two optional resistors, the output power can be precision set from +14 dBm to +20 dBm . The devices offer more than 30 dB output-to-output port isolation, and are offered in $5 \mathrm{~mm} \times$ 5 mm 20-pin thin QFN packages with exposed paddle.

Applications
Cellular/GSM/DCS/PCS/UMTS Base Station
Tx/Rx LO Drive
Base Station Main and Diversity Channels
Coherent Receivers
ISM Wireless LAN
Wireless Local Loop
Local Multipoint Distribution Service
Point-to-Point Systems

Features

- $\pm 1 \mathrm{~dB}$ Output Power Variation
$\bullet+14 \mathrm{dBm}$ to +20 dBm Adjustable Output Power
- Two-Way Power Splitting
- 40dB Reverse Isolation
- More than 30dB Output-to-Output Isolation
- Low Output Noise: -170dBc/Hz at +17dBm
- 160mA Supply Current at +17dBm
- Isolated PLL Output (+3dBm)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	FREQUENCY RANGE
MAX9987ETP-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	20 Thin QFN-EP*	700 MHz to 1100 MHz
MAX9988ETP-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	20 Thin QFN-EP*	1500 MHz to 2200 MHz

*EP = Exposed paddle.

Typical Operating Circuit and Block Diagram

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 d B$ Variation

ABSOLUTE MAXIMUM RATINGS
vCC1, vCC2, VCC3,
VCCREF to GND..-0.3V to +6.0V
IN to GND. -0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
OUT1, OUT2,
OUTPLL to GND
\qquad
-0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
REF to GND .Source/Sink 5mA
INBIAS, OUTBIAS, to GND
\qquad -0.3 V to +0.75 V
PLLBIAS
\qquad Sink 25 mA
RF Input Power $+20 \mathrm{dBm}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—MAX9987
(Typical Application Circuit, $\mathrm{V}_{C C}=4.75 \mathrm{~V}$ to 5.25 V , input and outputs terminated in $50 \Omega, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical specifications are for $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.00	5.25	V
Supply Current	IcC	Low power setting (see Table 1 for resistor values)		110		mA
		Nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)	139	155	171	
		High power setting (see Table 1 for resistor values)		221		

DC ELECTRICAL CHARACTERISTICS—MAX9988

(Typical Application Circuit, $V_{C C}=4.75 \mathrm{~V}$ to 5.25 V , input and outputs terminated in $50 \Omega, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical specifications are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.00	5.25	V
Supply Current	IcC	Low power setting (see Table 1 for resistor values)		120		mA
		Nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)	150	162	175	
		High power setting (see Table 1 for resistor values)		229		

+14dBm to +20dBm LO Buffers/Splitters with $\mathbf{\pm 1 d B}$ Variation

AC ELECTRICAL CHARACTERISTICS-MAX9987

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, 50 \Omega$ environment, $+4 \mathrm{dBm}<\operatorname{PIN}<+10 \mathrm{dBm}, 700 \mathrm{MHz}<\mathrm{f} / \mathrm{N}<1100 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical specifications are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=+7 \mathrm{dBm}, \mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Frequency	f		700		1100	MHz
Output Power (Main Drivers)	Poutlo	Low power setting, $\mathrm{PIN}=+4 \mathrm{dBm}$ (see Table 1 for resistor values)		14.3		dBm
		Nominal power setting, $\begin{aligned} & +4 \mathrm{dBm}<\mathrm{PIN}<+10 \mathrm{dBm}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}< \\ & 5.25 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}, \text { and } \mathrm{R}_{5} \text { not installed }\right) \end{aligned}$		$\begin{aligned} & 17.3 \\ & \pm 0.8 \end{aligned}$		
		High power setting, $\mathrm{PIN}=+10 \mathrm{dBm}$ (see Table 1 for resistor values)		19.7		
Output Power (PLL Driver)	Poutpll			3.7		dBm
Input VSWR	VSWRIN			1.2:1		
Output VSWR	VSWRout			1.7:1		
Output-Noise Power Density	PNoise	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 100 \mathrm{MHz}$ offset ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		-152		$\mathrm{dBm} / \mathrm{Hz}$
OUT1 to OUT2 Isolation	S23	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		45		dB
OUT2 to OUT1 Isolation	S32	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		39		dB
OUT1 to RFIN Isolation	S12	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		48		dB
OUT2 to RFIN Isolation	S13	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal power setting (R_{1}, R_{2}, R_{4}, and R_{5} not installed)		50		dB

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 d B$ Variation

AC ELECTRICAL CHARACTERISTICS-MAX9988

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , 50Ω environment, $+6 \mathrm{dBm}<\mathrm{PIN}<+12 \mathrm{dBm}, 1500 \mathrm{MHz}<\mathrm{f} \mathrm{IN}<2200 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical specifications are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PIN}=+9 \mathrm{dBm}, \mathrm{f} / \mathrm{N}=1800 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Frequency	f		1500		2200	MHz
Output Power (Main Drivers)	Poutlo	Low power setting, $\mathrm{PIN}_{\mathrm{IN}}=+6 \mathrm{dBm}$ (see Table 1 for resistor values)		14.2		dBm
		Nominal power setting, $\begin{aligned} & +6 \mathrm{dBm}<\mathrm{PIN}_{\mathrm{IN}}<+12 \mathrm{dBm}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}< \\ & 5.25 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \text { (R1, } \mathrm{R}_{2}, \mathrm{R}_{4} \text {, and } \mathrm{R}_{5} \text { not installed) } \end{aligned}$		$\begin{aligned} & 17.3 \\ & \pm 0.8 \end{aligned}$		
		High power setting, PIN $=+12 \mathrm{dBm}$ (see Table 1 for resistor values)		19.5		
Output Power (PLL Driver)	Poutpll			3.6		dBm
Input VSWR	VSWRIN			1.5:1		
Output VSWR	VSWRout			1.4:1		
Output-Noise Power Density	PNoise	$\mathrm{VCC}=5.0 \mathrm{~V}, \pm 100 \mathrm{MHz}$ offset		-152		$\mathrm{dBm} / \mathrm{Hz}$
OUT1 to OUT2 Isolation	S23	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$, nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		33		dB
OUT2 to OUT1 Isolation	S32	$V_{C C}=5.0 \mathrm{~V}$, nominal power setting ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}$, and R_{5} not installed)		44		dB
OUT1 to RFIN Isolation	S12	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$, nominal power setting (R_{1}, R_{2}, R_{4}, and R_{5} not installed)		49		dB
OUT2 to RFIN Isolation	S13	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal power setting (R_{1}, R_{2}, R_{4}, and R_{5} not installed)		47		dB

Note 1: Devices are 100\% DC screened and AC production tested for functionality. Data sheet typical specifications are derived from the average of 30 units from a typical lot, and are tested under the conditions specified for the typical specifications.

+14dBm to +20dBm LO Buffers/Splitters with $\mathbf{\pm 1 d B}$ Variation

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$, nominal bias, $\mathrm{f} / \mathrm{N}=900 \mathrm{MHz}, \mathrm{PIN}_{\mathrm{I}}=+7 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Shaded regions are outside the guaranteed operating range, and are provided for reference only.)

MAX9987

OUTPUT POWER vs. INPUT POWER, OUTPLL

OUTPUT POWER vs. INPUT POWER OUT1

OUTPUT POWER vs. FREQUENCY, OUT1

OUTPUT POWER AND SUPPLY CURRENT

OUTPUT POWER vs. FREQUENCY, OUT2

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 d B$ Variation

\qquad
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$, nominal bias, $\mathrm{fIN}_{\mathrm{I}}=900 \mathrm{MHz}, \mathrm{PIN}=+7 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Shaded regions are outside the guaranteed operating range, and are provided for reference only.)

MAX9987

IN ISOLATION vs. FREQUENCY

INPUT RETURN LOSS vs. FREQUENCY

OUT1 AND OUT2 ISOLATION vs. FREQUENCY

OUTPUT NOISE POWER
vs. INPUT POWER

+14dBm to +20dBm LO Buffers/Splitters with $\mathbf{\pm 1 d B}$ Variation

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, nominal bias, $\mathrm{fiN}_{\mathrm{I}}=1800 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=+7 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Shaded regions are outside the guaranteed operating range, and are provided for reference only.)

OUTPUT POWER vs. FREQUENCY, OUT2

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 \mathrm{~dB}$ Variation

Typical Operating Characteristics (continued)
$\left(V_{C C}=5.0 \mathrm{~V}\right.$, nominal bias, $\mathrm{fIN}_{\mathrm{I}}=1800 \mathrm{MHz}, \mathrm{PIN}=+7 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Shaded regions are outside the guaranteed operating range, and are provided for reference only.)

PLL ISOLATION vs. FREQUENCY

MAX9988

INPUT RETURN LOSS vs. FREQUENCY

OUT TO OUT ISOLATION vs. FREQUENCY

OUTPUT NOISE vs. INPUT POWER

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 \mathrm{~dB}$ Variation

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,4,8,9,13 \\ 17,18, E P \end{gathered}$	GND	Ground
2	IN	Input. Internally matched 50Ω RF input. AC couple to this pin.
3	VCCREF	Supply. Supply connection for on-chip voltage and current references. See Applications Information for information on decoupling.
5	REF	Voltage Reference Output. Output for on-chip 1.5V bandgap voltage reference. See Applications Information section for information on decoupling.
6	BIASIN	Bias Connection for Input Buffer. Set compressed power point for input amplifier with a resistor to REF or GND. For +17 dBm output power, no external biasing resistors are required. See Applications Information section for information.
7	BIASOUT	Bias Connection for Output Amplifiers. Set compressed power point for OUT1 and OUT2 with a resistor to REF or ground. For +17 dBm output power, no external biasing resistors are required. See Applications Information section for information.
10	OUT2	Output 2. Internally matched 50Ω RF output. AC couple to this pin.
11, 12	VCC3	Supply. Supply connection for OUT2.
14, 15	VCC2	Supply. Supply connection for OUT1.
16	OUT1	Output 1. Internally matched 50Ω RF output. AC couple to this pin.
19	VCC1	Supply. Supply connection for input amplifier.
20	OUTPLL	Output PLL. Output for driving optional external PLL.

Detailed Description

The MAX9987/MAX9988 LO amplifiers/splitters each consist of a single input amplifier, a two-way passive power splitter, two separate output amplifiers, as well as a third buffer amplifier to drive the LO's PLL. The bias currents for the amplifiers are adjustable through off-chip resistors. This allows the output level to be precision set anywhere from +14 dBm to +20 dBm . The PLL output is preset to +3 dBm (about 900mVp-p into 50Ω).
Power levels are typically $\pm 1 \mathrm{~dB}$ over the full supply, input power, frequency, and temperature range. Precision power control is achieved by internal control circuitry. Maintaining tight power control keeps the system engineer from over specifying the LO drive in order to guarantee a linearity specification in the base-station mixer.
More than 40dB isolation between the LO outputs and the input prevents VCO pulling, and the 30 dB output-to-output isolation reduces branch-to-branch coupling.
The MAX9987 is specified from 700 MHz to 1100 MHz , and the MAX9988 is specified from 1500 MHz to 2200 MHz . Both are offered in compact $5 \mathrm{~mm} \times 5 \mathrm{~mm} 20-$ pin QFN packages with exposed paddle.

Input Amplifier

A single low-noise input amplifier before the passive splitter provides gain and isolation. The compressed output power for this stage is controlled by the bias setting resistors R_{1} or R_{4} (see Typical Application Circuit). These resistors are not required for the nominal +17 dBm output; see Table 1 for bias resistor values to obtain +14 dBm to +20 dBm output power.
The input is internally matched to 50Ω, and typical VSWR is no more than 2:1 over all operating conditions. Since the input is internally biased, provide a DC block at the input pin.

PLL Amplifier and Output A small amount of power is tapped off from the input amplifier's output, and fed to a high-isolation buffer to drive the PLL output at +3 dBm . If the PLL output is not required, it can be disabled by removing R3; disabling the PLL output saves 12 mA supply current.

Passive Two-Way Splitter

The input amplifier drives an integrated power splitter. All impedance matching between stages is on-chip, so no external tuning components are required.

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 \mathrm{~dB}$ Variation

Table 1. External Resistor Values for +14 dBm to +20 dBm Output Power

NOMINAL OUTPUT POWER $\mathbf{(d B m})$	$\mathbf{R}_{\mathbf{1}}(\Omega)$	$\mathbf{R}_{\mathbf{2}}(\Omega)$	$\mathbf{R}_{\mathbf{4}}(\Omega)$	$\mathbf{R}_{\mathbf{5}}(\Omega)$	MAX9987 INPUT DRIVE $\mathbf{(d B m)}$	MAX9988 INPUT DRIVE $\mathbf{(d B m)}$
+20	1.35 k	2.0 k	Open	Open	10 ± 3	12 ± 3
+19	2.2 k	3.0 k	Open	Open	9 ± 3	11 ± 3
+18	5.0 k	6.0 k	Open	Open	8 ± 3	10 ± 3
+17	Open	Open	Open	Open	7 ± 3	9 ± 3
+16	Open	Open	1.8 k	3.0 k	6 ± 3	8 ± 3
+15	Open	Open	0.9 k	1.1 k	5 ± 3	7 ± 3
+14	Open	Open	0.6 k	0.6 k	4 ± 3	6 ± 3

Table 2. Component Values for Typical Application Circuit

DESIGNATION	COMPONENT VALUE	
	MAX9987 (LOWBAND)	MAX9988 (HIGHBAND)
$\mathrm{C} 1, \mathrm{C} 6$	100 nF	100 nF
C 3	100 pF	100 nF
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 8$, $\mathrm{C} 9, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14$	47 pF	22 pF
$\mathrm{C} 10, \mathrm{C} 11$	5 pF	10 pF
R1, R2, R4, R5	See Table 1	See Table 1
R3	100Ω	100Ω

Driver Amplifiers and Outputs
Each of the output amplifiers are similar to the input amplifier, except they are biased higher to provide more output power. For example, with an input power of +10 dBm , the MAX9987 can deliver +20 dBm at both outputs. The bias is adjustable; see Table 1 for details.
Both RF outputs are internally matched to 50Ω, with a typical VSWR limit of 2:1. Provide DC blocking capacitors at the outputs.

Applications Information

Input and Output Matching

All input and output matching is accomplished on-chip; no external matching circuitry is required. Use a DC block of about 47pF (lowband) or 22pF (highband) at the input and the outputs. Because these parts are internally broadband matched, adjusting external component values can optimize performance for a particular band.

Input Drive Level
In the case of the MAX9987, the typical required input drive level is +7 dBm for +17 dBm output, or +10 dBm for +20 dBm output. The MAX9988 uses slightly higher input levels (see Table 1). The typical VCO cannot provide sufficient drive by itself; the typical application follows the VCO with attenuation (about +3 dB), and then with a low-noise gain block. This allows the VCO to drive the MAX9987/MAX9988 input at the required level without being load-pulled.

Output Drive Level

The output drive of the MAX9987/MAX9988 is nominally $+17 \mathrm{dBm} \pm 1 \mathrm{~dB}$. This is the typical application, with no external bias-setting resistors at INBIAS and OUTBIAS. Output power can be set from +14 dBm to +20 dBm by using the bias-setting resistor values listed in Table 1.

Layout Considerations

A properly designed PC board is an essential part of any $\mathrm{RF} /$ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad must be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad.

Chip Information
TRANSISTOR COUNT: 89
PROCESS: BiCMOS

+14dBm to +20dBm LO Buffers/Splitters with $\mathbf{\pm 1 d B}$ Variation

Typical Application Circuit/Pin Configuration

+14dBm to +20dBm LO Buffers/Splitters with $\pm 1 d B$ Variation

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Amplifier category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15\#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMCAUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310

