

High-Linearity 1700MHz to 2200MHz Down-Conversion Mixer with LO Buffer/Switch

General Description

The MAX9993 high-linearity down-conversion mixer provides 8.5dB of gain, +23.5dBm IIP3, and 9.5dB NF for UMTS, DCS, and PCS base-station applications.

The MAX9993 integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, a double-balanced mixer, and a differential IF output amplifier. The MAX9993 requires a typical LO drive of +3dBm, and supply current is guaranteed to below 230mA.

The MAX9993 is available in a compact 20-pin thin QFN package (5mm \times 5mm) with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

The MAX9993 EV kit is available; contact the factory for more information.

UMTS and 3G Base Stations

PCS1900 Base Stations

Wireless Local Loop Private Mobile Radio Military Systems

DCS1800 and EDGE Base Stations

Point-to-Point Microwave Systems

Applications

_Features

- +23.5dBm Input IIP3
- ♦ 1700MHz to 2200MHz RF Frequency Range
- ♦ 40MHz to 350MHz IF Frequency Range
- ♦ 1400MHz to 2000MHz LO Frequency Range
- 8.5dB Conversion Gain
- ♦ 9.5dB Noise Figure
- Integrated LO Buffer
- Switch-Selectable (SPDT), Two LO Inputs
- Low 0 to +6dBm LO Drive
- ♦ 40dB LO1-to-LO2 Isolation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9993ETP-T	-40°C to 85°C	20 Thin QFN-EP*

Pin Configuration/Functional Diagram

*EP = Exposed pad.

TOP VIEW **IFBIAS** Ж 16 V_{CC} 15 L02 GND RF 14 илхіли 13 GND TAP 3 12 GND GND 4 11 L01 5 GND °°, OBIAS GND

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

THIN QFN

MAX9993

ABSOLUTE MAXIMUM RATINGS

V _{CC}	0.3V to 5.5V
RF (RF is DC shorted to GND through ba	lun)50mA
LO1, LO2 to GND	
TAP, IF+, IF- to GND	0.3V to (V _{CC} + 0.3V)
LOSEL to GND0.3V	to $(V_{CC} (pin 8) + 0.3V)$
LOBIAS, IFBIAS, LEXT to GND	0.3V to (V _{CC} + 0.3V)
RF and LO Input Power	+22dBm

Continuous Power Dissipation ($T_A = +70^{\circ}C$) 20-Lead Thin QFN	
(derate 30.3mW/°C above $T_A = +70$ °C)	2200mW
θ」Α	33°C/W
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(*Typical Operating Circuit* as shown, no input RF or LO signals applied. $V_{CC} = 4.75V$ to 5.25V, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{CC} = 5.0V$ and $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{CC}		4.75	5.00	5.25	V
		Total supply current		202	230	
Supply Current	ICC	V _{CC} (pin 8)		87	105	mA
		IF+/IF- (total of both)	103	133		
LOSEL Input High Voltage	VIH		2.0			V
LOSEL Input Low Voltage	VIL				0.8	V
LOSEL Input Current	I_{IL} and I_{IH}		-5		+5	μA

AC ELECTRICAL CHARACTERISTICS

(*Typical Operating Circuit*, 4.75V < V_{CC} < 5.75V, -40°C < T_A < +85°, RF and LO ports are driven from 50 Ω sources, 0dBm < P_{LO} < +6dBm, P_{RF} = -5dBm, 1700MHz < f_{RF} < 2200MHz, 1400MHz < f_{LO} < 2000MHz, f_{IF} = 200MHz. Typical values are for T_A = +25°C V_{CC} = 5.0V, P_{LO} = +3dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, 200MHz IF.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
RF Frequency	fRF		1700		2200	MHz	
LO Frequency	fLO	(Note 6)	1400		2000	MHz	
IF Frequency	fIF		50		350	MHz	
Conversion Gain	GC	(Note 3)		8.5		dB	
Gain Variation Over Temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		0.0012		dB/°C	
Gain Variation from Nominal (3σ)				0.45		dB	
Input Compression Point	P _{1dB}			12.6		dBm	
Input Third-Order Intercept Point	IIP3	Two RF tones: -5dBm each at 1950MHz and 1951MHz, LO: +3dBm at 1750MHz	24		dDm		
(Note 3)	1143	Two RF tones: -5dBm each at 2200MHz and 2201MHz, LO: +3dBm at 2000MHz	23			– dBm	

AC ELECTRICAL CHARACTERISTICS (continued)

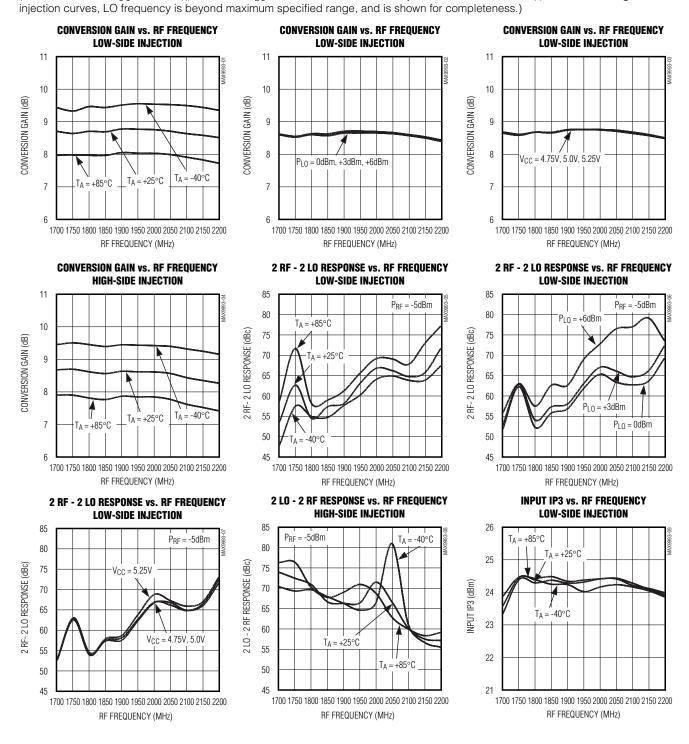
(*Typical Operating Circuit*, 4.75V < V_{CC} < 5.75V, -40°C < T_A < +85°, RF and LO ports are driven from 50 Ω sources, 0dBm < P_{LO} < +6dBm, P_{RF} = -5dBm, 1700MHz < f_{RF} < 2200MHz, 1400MHz < f_{LO} < 2000MHz, f_{IF} = 200MHz. Typical values are for T_A = +25°C V_{CC} = 5.0V, P_{LO} = +3dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, 200MHz IF.) (Notes 1, 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
IIP3 Variation Over Temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±0.5		dB
Noise Figure	perature $T_A = -40^{\circ}C$ to $+85^{\circ}C$ NF $f_{RF} = 1950MHz, f_{LO} = 1750MHz, measured single-side bandPLO2 RF - 2 LOP_{RF} = -5dBmf_{LO} = 1750MHzf_{LO} = 1750MHzf_{LO} = 1750MHzf_{LO} = 1750MHzf_{LO} = 1750MHzf_{LO} = +6dBr3 \times 33 RF - 3 LOP_{RF} = -5dBmf_{RF} = 1950MHzf_{LO} = 1750MHzf_{LO} = +6dBr3 \times 33 RF - 3 LOP_{RF} = -5dBmf_{RF} = 1950MHzf_{LO} = 1750MHzf_{LO} = 1750MHzf_{LO} = +6dBrageP_{LO} = 0dBm to +6dBm, f_{LO} = 1400MHz to 2000MHzP_{LO} = 0dBm to +6dBm, f_{LO} = 1400MHz to 2000MHzp_{LO} = -40dBm inject -200Bm at 200$,		9.5		dB	
Required LO Drive	PLO			0	3	6	dBm
	2×2	$P_{RF} = -5dBm$	$P_{LO} = +3dBm$		65		
Spurious Response at IF		$f_{LO} = 1750MHz$ $f_{SPUR} = 1850MHz$	$P_{LO} = +6dBm$	70			dBc
	3 × 3	$P_{RF} = -5 dBm$	$P_{LO} = +3dBm$		67		abo
	0.00	$f_{LO} = 1750MHz$	$P_{LO} = +6dBm$	68			
Maximum LO-to-RF Leakage		$P_{LO} = 0$ dBm to +6dBm,			-19		dBm
Maximum LO-to-IF Leakage		-			-21		dBm
Minimum RF-to-IF Isolation		$f_{RF} = 1700MHz$ to 220	00MHz		37		dB
Conversion Loss, LO to IF		20 , ,		28		dB	
LO Switching Time				<50		ns	
LO1-to-LO2 Isolation		(Note 4)			40		dB
RF Return Loss					19		dB
		LO port selected			15		-10
LO Return Loss		LO port unselected			14		dB
IF Return Loss		RF terminated, PLO =	+3dBm (Note 5)		15		dB

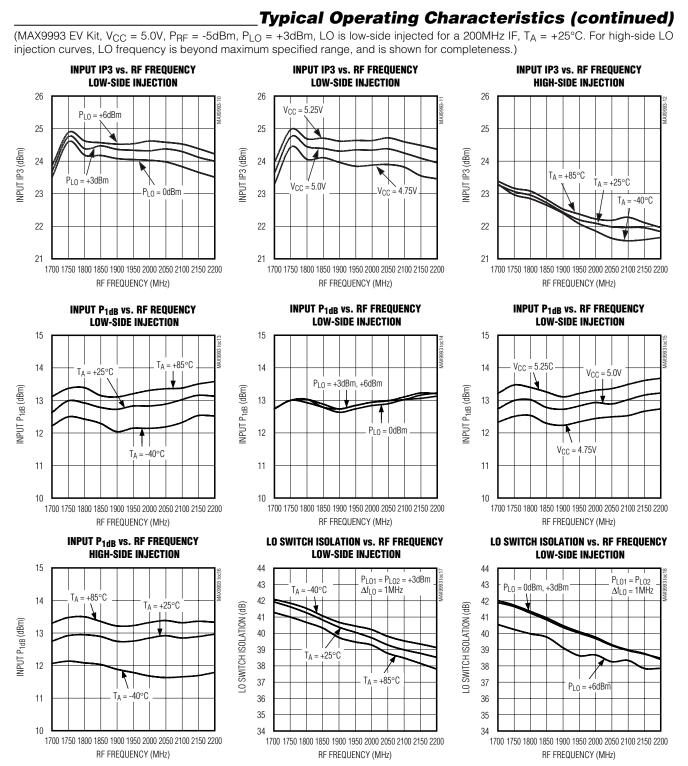
Note 1: Guaranteed by design and characterization.

Note 2: All limits reflect losses of external components. Output measurements taken at IFOUT of the Typical Application Circuit.

Note 3: Production tested.

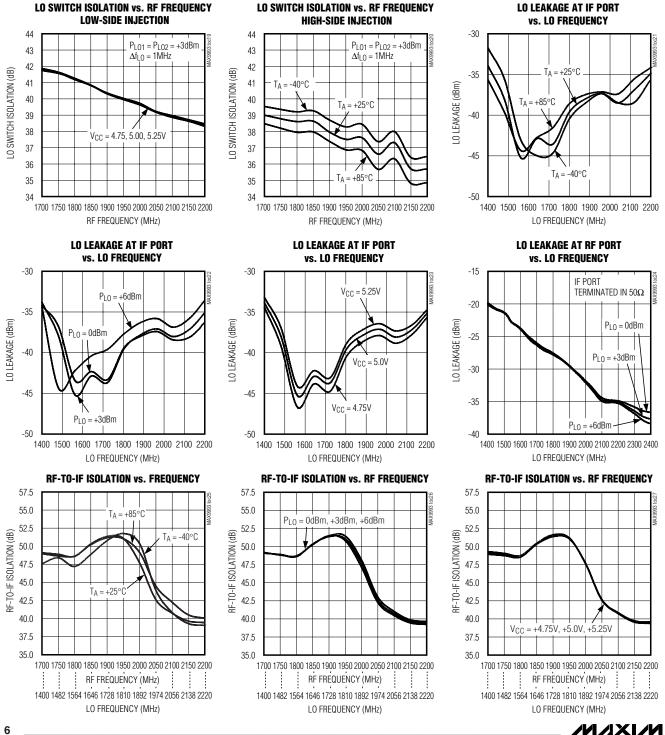

Note 4: Measured at IF port at IF frequency. f_{LO1} and f_{LO2} are offset by 1MHz, $P_{LO1} = P_{LO2} = +3dBm$.

Note 5: IF return loss can be optimized by external matching components.

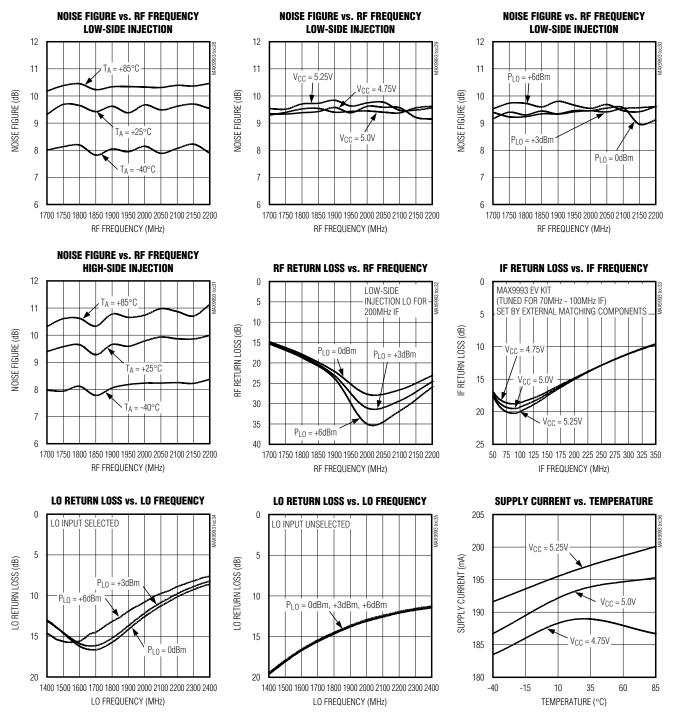

Note 6: Operation outside this range is possible, but with degraded performance of some specifications.

(MAX9993 EV Kit, V_{CC} = 5.0V, P_{RF} = -5dBm, P_{LO} = +3dBm, LO is low-side injected for a 200MHz IF, T_A = +25°C. For high-side LO

Typical Operating Characteristics


M/IXI/M

5


Typical Operating Characteristics (continued)

(MAX9993 EV Kit, V_{CC} = 5.0V, P_{RF} = -5dBm, P_{LO} = +3dBm, LO is low-side injected for a 200MHz IF, T_A = +25°C. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

(MAX9993 EV Kit, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = +3dBm$, LO is low-side injected for a 200MHz IF, $T_A = +25^{\circ}C$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

MAX9993

M/IXI/M

Pin Description

PIN	NAME	FUNCTION
1, 6, 8	V _{CC}	Power Supply Connections. See the Typical Application Circuit.
2	RF	Single-Ended 50 Ω RF Input. This port is internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required.
3	TAP	Center Tap of the Internal RF Balun. Bypass with capacitors close to the IC, as shown in the <i>Typical Application Circuit</i> .
4, 5, 10, 12, 13, 14, 17, EP	GND	Ground. Connect to supply ground. Provide multiple vias in the PC board to create a low- inductance connection between the exposed paddle (EP) and the PC board ground.
7	LOBIAS	LO Output Bias Resistor for LO Buffer. Connect a 383Ω (±1%) from LOBIAS to GND.
9	LOSEL	LO Select. Logic control input for selecting LO1 or LO2.
11	LO1	Local Oscillator Input. LO1 selected when LOSEL is low.
15	LO2	Local Oscillator Input. LO2 selected when LOSEL is high.
16	LEXT	External Inductor Connection. Connect a low-ESR 10nH inductor from LEXT to GND. This inductor carries approximately 100mA DC current.
18	IF-	Noninverting IF Output. Requires external bias to V _{CC} through an RF choke (see the <i>Typical Application Circuit</i>).
19	IF+	Inverting IF Output. Requires external bias to V _{CC} through an RF choke (see the <i>Typical Application Circuit</i>).
20	IFBIAS	IF Bias Resistor Connection for IF Amplifier. Connect a 523 Ω (±1%) from IFBIAS to GND.

Detailed Description

The MAX9993 high-linearity down-conversion mixer provides 8.5dB of gain and +23.5dBm IIP3, with a 9.5dB noise figure (typ). Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides 50ns switching time between LO inputs, with typically 40dB LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9993's inputs to 0dBm to +6dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced IIP2 performance.

Specifications are guaranteed over broad frequency ranges to allow for use in UMTS and 2G/2.5G/3G DCS1800 and PCS1900 base stations. The MAX9993 is specified to operate over an RF input range of 1700MHz to 2200MHz, an LO range of 1400MHz to 2000MHz, and an IF range of 40MHz to 350MHz. This device can operate in high-side LO injection applications with an extended LO range, but performance degrades gently as f_{LO} continues to increase. See the *Typical Operating Characteristics* for measurements taken with f_{LO} up to 2400MHz. This device is available in a compact 5mm x 5mm 20-pin thin QFN package with an exposed pad.

RF Input and Balun

The MAX9993 has one input (RF) that is internally matched to 50Ω , requiring no external matching components. A DC-blocking capacitor is required, because the input is internally DC shorted to ground through the on-chip balun. Input return loss is better than 15dB over the entire RF frequency range of 1700MHz to 2200MHz.

LO Input, Switch, Buffer, and Balun

The mixer can be used for either high-side or low-side injection applications with an LO frequency range of 1400MHz to 2000MHz. An internal LO SPDT switch selects one of two single-ended LO ports. This allows the external oscillator to settle on a particular frequency before it is switched in. LO switching time is guaranteed to be less than 50ns. This switch is controlled by a digital input (LOSEL): logic low selects LO1, logic high selects LO2. LO1 and LO2 inputs are internally matched to 50 Ω , requiring only a 22pF DC-blocking capacitor.

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from 0dBm to +6dBm. A low-loss balun along with an LO buffer drives the double-balanced mixer. All interfacing and matching from the LO inputs to the IF outputs are integrated on-chip.

MAX9993

Table 1. Component List

COMPONENT	VALUE	SIZE	DESCRIPTION
C1	4pF	0603	Microwave capacitor
C2, C6, C7, C9, C10	22pF	0603	Microwave capacitors
C3, C5, C8	0.01µF	0603	Capacitors
C4	10pF	0603	Microwave capacitor
C11, C12, C13	150pF	0603	Microwave capacitors
L1, L2	470nH	1008	Wire-wound high-Q inductors
L3	10nH	0805	Wire-wound high-Q inductor
R1	523Ω	0603	±1% resistor
R2	383 Ω	0603	±1% resistor
R3, R4	7.2Ω	1206	±1% resistors
R5	200Ω	0603	±5% resistor
T1	4:1 (200:50)		IF balun

High-Linearity Mixer

The core of the MAX9993 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer; IIP3 is typically +23.5dBm, IIP2 is typically +60dBm, and total cascaded NF is 9.5dB.

Differential IF Output Amplifier

The MAX9993 mixer has an IF frequency range of 40MHz to 350MHz. The differential, open-collector IF output ports require external pullup inductors to V_{CC}. Single-ended IF applications require a 4:1 balun to transform the 200 Ω differential output impedance to a 50 Ω single-ended output. After the balun, VSWR is typically 1.5:1.

Applications Information

Input and Output Matching

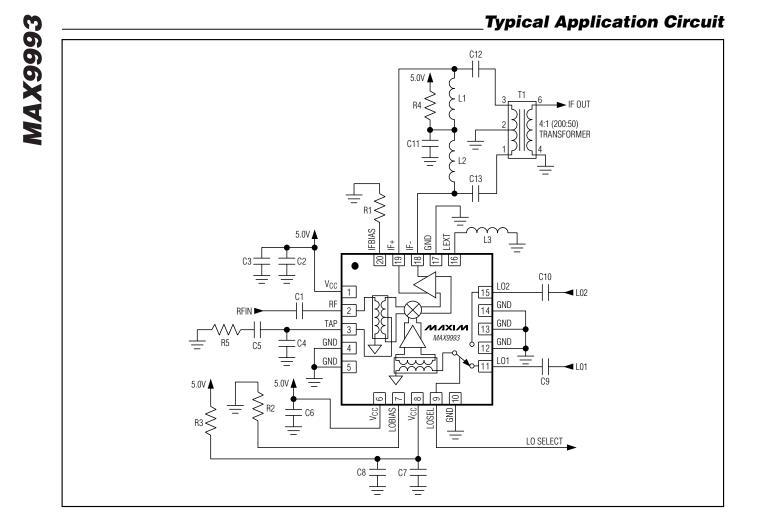
The RF and LO inputs are internally matched to 50Ω . No matching components are required. Return loss at the RF port is better than 15dB over the entire input range, 1700MHz to 2200MHz, and return loss at LO1 and LO2 is better than 10dB from 1400MHz to 2000MHz. RF and LO inputs require only DC-blocking capacitors for interfacing. These DC-blocking capacitors can be part of the matching circuit.

The IF output impedance is 200Ω differential out of the IC. An external low-loss 4:1 balun brings this impedance down to a 50Ω single-ended output (see the *Typical Application Circuit*).

Bias Resistors

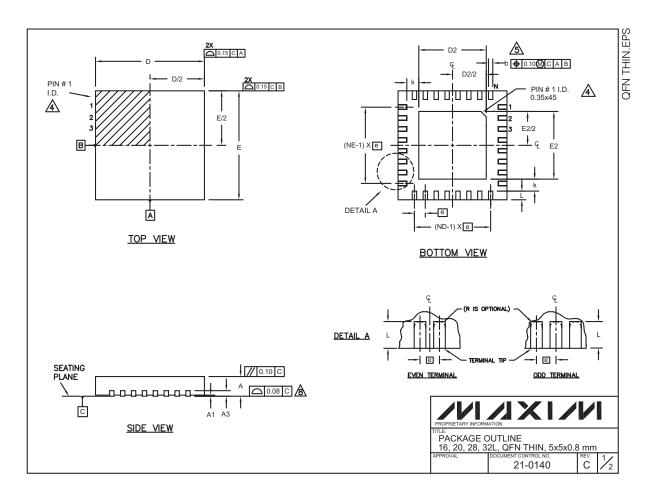
Bias currents for the LO buffer and the IF amplifier were optimized by fine-tuning the resistors at LOBIAS and IFBIAS during characterization at the factory. These currents should not be adjusted. If the 383Ω (±1%) and/or 523Ω (±1%) resistor values are not readily available, substitute standard ±5% values: 390Ω and 520Ω , respectively.

Layout Considerations


A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad.

Power Supply Bypassing

Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each V_{CC} pin and TAP with the capacitors shown in the typical application circuit. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.


Chip Information

TRANSISTOR COUNT: 989 PROCESS: SiGe BiCMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

PKG. SYMBOL		COMMON DIMENSIONS											E	EXPOS	ED P	AD VA	ARIAT	TIONS	
		16L 5x5			20L 5x5	0L 5x5 28L 5x5 32L 5x5						PKG.	D2			E2			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T1655-1	3.00	3.10	3.20	3.00	3.10	3.20
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	T2055-2	3.00	3.10	3.20	3.00	3.10	3.20
A3	(0.20 REF		().20 REF		(0.20 REI	F.		0.20 REF		T2855-1	3.15	3.25	3.35	3.15	3.25	3.35
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	T2855-2	2.60	2.70	2.80		2.70	2.80
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	T3255-2	3.00	3.10	3.20	3.00	3.10	3.20
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10							
е		0.80 BS	с.		0.65 BS	C.		0.50 BS	C.		0.50 BS0	C.							
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-							
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50							
N		16			20 28					32									
ND		4 5 7 8			-			-											
NE		4			5			7			8								
JEDEC		WHHB			WHHC			WHHD	-1		WHHD	-2							
SPP-0 ZONE	IMENSIO HE TOTA ERMINA 12. DET INDICA NSION b	ONS ARE AL NUME AL #1 IDE FAILS OF TED. THE	IN MILLI BER OF T NTIFIER TERMIN TERMIN	METERS ERMINA AND TE AL #1 ID NAL #1 II	S. ANGLE LS. RMINAL I ENTIFIEF DENTIFIE	NUMBER R ARE O R MAY E	N DEGF RING CO PTIONA BE EITH	REES. DNVENTI AL, BUT M IER A MO	MUST B	E LOCA MARKE	TED WITH D FEATU	RE.	1						
^					F TERMI														
/6\ ND ΔΝ																			
<u>6.</u> ND AN 7. DEPO					SED HEA			S WELL	AS THE	TERMI	VALS.						ς Ι		
7. DEPO		Y APPL IE	S 10 I H																
7. DEPO	ANARIT				20.								PROPRIET.	ARY INFOR	MATION				
7. DEPO	ANARIT /ING CO	NFORMS	TO JED	EC MO2										(AGE) (), 28, 3	OUTL				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Up-Down Converters category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

HMC7586-SX HMC7587 HMC8119-SX HMC7587-SX HMC6147ALC5ATR MDS-158-PIN LA8153QA-WH HMC7912LP5ETR HMC377QS16GETR MY87C CSM2-10 CHR3762-QDG AD6620ASZ-REEL ADF5904ACPZ ADF5904WCCPZ AD6623ASZ AD6633BBCZ AD6634BBCZ AD9957BSVZ AD9957BSVZ-REEL ADMV1009AEZ ADMV1010AEZ ADMV1011AEZ ADMV1012AEZ ADRF6658BCPZ HMC951ALP4E HMC1190ALP6NE HMC571 HMC6146BLC5A HMC6146BLC5ATR HMC571LC5 HMC572LC5 HMC925LC5 HMC6787ALC5A HMC6787ALC5ATR HMC683LP6CE HMC682LP6CE HMC571LC5TR HMC7911LP5E HMC7912LP5E HMC908ALC5 HMC966LP4E HMC967LP4E HMC977LP4E AD6634BBC HMC6505ALC5 MAUC-011003-TR0500 MAX19996AETP+ MAX2039ETP+ MAX2410EEI+