Mic roprocessor-Compatible, 14-Bit DACs

The MX7534/MX7535 are high-performance, CMOS,
The MX7534/MX7535 are high-performance, CMOS, monolithic, 14 -bit digital-to-analog converters (DACs). Wafer-level, laser-trimmed, thin-film resistors and tempera-ture-compensated NMOS switches assure operation over the full operating temperature range with exceptional linear and gain stability.
The MX7534 accepts right-justified data in two bytes from an 8 -bit bus, while the MX7535 operates with a 14-bit data bus with separate MS-byte and LS-byte select controls. In addition, all digital inputs are compatible with both TTL and 5 V CMOS-logic levels. The MX7534/MX7535 are intended for unipolar operation, but may be operated as bipolar DACs with additional external components. Both devices are protected against CMOS latchup, and neither requires the use of external Schottky protection diodes.
The MX7534 is available in 20-pin narrow (0.3 ") DIP, wide SO, or PLCC packages. The MX7535 is available in 28 -pin, 600 mil wide DIP, wide SO, or PLCC packages.

Applications

Machine and Motion Control Systems
Automatic Test Equipment
Digital Audio
$\mu \mathrm{P}$-Controlled Calibration Circuitry
Programmable-Gain Amplifiers
Digitally Controlled Filters
Programmable Power Supplies

Features			
- 14-Bit Monotonic Over Full Temperature Rang - Full 4-Quadrant Multiplication - μ P-Compatible, Double-Buffered Inputs - Exceptionally Low Gain Tempco (2.5ppm/ ${ }^{\circ} \mathrm{C}$) - Low Output Leakage (<20nA) Over Temp. - Low Power Consumption - TTL and CMOS Compatible			
_____Ordering Information			
PART	EMP. RANGE	PIN-PACKAGE	(LS
MX7534KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP	\pm
MX7534JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plas	± 2
MX7534KCWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO	\pm
MX7534JCW	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO	± 2
MX7534KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PLCC	± 1
MX7534JP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PLCC	± 2
MX7534J/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	± 2
MX7534BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 CERDIP	± 1
MX7534AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 CERDIP	± 2
MX7534BD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Ceramic SB	± 1
MX7534AD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Ceran	± 2
MX7534KEWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO	± 1
MX7534JEWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO	± 2
MX7534TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP	± 1
MX7534SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP	± 2
MX7534TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Ceramic SB	± 1
MX7534SD	55°	20 Ceramic SB	± 2

Ordering Information continued at end of data sheet. *Dice are tested at $+25^{\circ} \mathrm{C}$, DC parameters only.

Functional Diagrams

[^0]
Microprocessor-Compatible, 14-Bit DACs

^ ABSOLUTE MAXIMUM RATINGS

$V_{\text {DD }}$ to DGND ..-0.3V, +17V	28-Pin PLCC (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW
VSS to AGND ...-15V, +0.3V	20-Pin CERDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 889 mW
REF to AGND (MX7534) ... 25 V	28-Pin CERDIP (derate $16.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).......1.33W
REFS to AGND (MX7535) .. 25 V	20-Pin Ceramic SB
REFF to AGND (MX7535) .. 25 V	(derate $11.76 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 941 mW
RFB to AGND.. 25 V	28 -Pin Ceramic SB
Digital Input Voltage to DGND......................-0.3V, VDD +0.3 V	(derate $20.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............................1.6W
IOUT to DGND ..-0.3V, VDD + 0.3V	Operating Temperature Ranges
AGND to DGND ...-0.3V, VDD +0.3 V	MX753_J/K.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	MX753_A/B .. $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
20-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 889 mW	MX753_EW_.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
28-Pin Plastic DIP (derate $14.29 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1.14W	MX753_S/T.. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
20-Pin SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 800 mW	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
28-Pin SO (derate $12.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................. 1 W	Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+11.4 \mathrm{~V}\right.$ to +15.75 V (Note 1) $, \mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IOUT }}=\mathrm{V}_{\mathrm{AGNDS}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
DC ACCURACY								
Resolution					14			Bits
Relative Accuracy	INL	MX753_K/B/T					± 1	LSB
		MX753_J/A/S					± 2	
Differential Nonlinearity		Guaranteed Monotonic					± 1	LSB
Full-Scale Error		Measured with internal RFB, includes effects of leakage current and gain TC		MX753_K/B/T			± 4	LSB
				MX753_J/A/S			± 8	
Gain Temperature Coefficient (Note 2)		MX753_K/B/T				± 0.5	± 2.5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		MX753_J/A/S				± 0.5	± 5	
Output Leakage Current	Iout	All digital inputs at 0 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				± 5	nA
		All digital inputs at 0 V , $V_{S S}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$	MX753_J/K/A/B			± 25	
				MX753_S/T			± 150	
REFERENCE INPUT								
Reference Voltage Input Resistance (Note 3)	RREF				3.5	6	10	$\mathrm{k} \Omega$
DIGITAL INPUTS								
Input High Voltage	VINH				2.4			V
Input Low Voltage	VINL						0.8	V
Input Leakage Current		Digital inputs at OV or V_{DD}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				± 1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				± 10	
Input Capacitance (Note 2)	CIN	7						pF

Mic roproc essor-Compatible, 14-Bit DACs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+11.4 \mathrm{~V}\right.$ to +15.75 V (Note 1$), \mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IOUT }}=\mathrm{V}_{\text {AGNDS }}=\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
POWER REQUIREMENTS						
Positive Supply-Voltage Range	VDD	For specific performance		11.4	15.75	V
Negative Supply-Voltage Range	VSS	For specific performance		-200	-500	mV
Positive Supply Current	IDD	Digital inputs at $\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$	MX7534		3	mA
			MX7535		4	
Negative Supply Current	Iss	Digital inputs at OV or VDD			500	$\mu \mathrm{A}$

Note 1: Specifications are guaranteed for V_{DD} of +11.4 V to +15.75 V . At $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, device is still functional with degraded specifications.
Note 2: Guaranteed by design, not tested
Note 3: Resistors have a typical $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco.
AC PERFORMANCE CHARACTERISTICS (Note 4)
$\left(\mathrm{V}_{\mathrm{DD}}=+11.4 \mathrm{~V}\right.$ to $+15.75 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IOUT }}=\mathrm{V}_{\text {AGD }}\left(\mathrm{V}_{\text {AGNDS }}\right.$ for MX 7535$)=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, output amplifier is $\mathrm{AD544}{ }^{*}$,
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Output Current Setting Time		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, to 0.003% of full-scale range, IOUT load $=100 \Omega$ \|	13pF, DAC register alternately loaded with all 1 s and all 0 s			0.8	1.5	$\mu \mathrm{s}$
Digital-to-Analog Glitch Impulse		Measured with $\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, IOUT loads $=100 \Omega$ \|	13pF, DAC register alternately loaded with all 1 s and all 0 s			50		nV -sec
Multiplying Feedthrough Error (Note 5)		$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ sine wave, DAC register loaded with all Os	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		mVp-p	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		5			
Power-Supply Rejection		$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.01	\%/\%	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 0.02		
Output Capacitance (IOUT Pin)	Cout	DAC register loaded with all 1s				260	pF	
		DAC register loaded with all 0s				130		
Output Noise Voltage Density ($10 \mathrm{~Hz}-100 \mathrm{kHz}$)		Measured between RFB and Iout			15		nV/Hz	

Note 4: These characteristics are included for design guidance only, and are not subject to test.
Note 5: Feedthrough can be further reduced by connecting the metal lid on the ceramic package to DGND.

[^1]
Microprocessor-Compatible, 14-Bit DACs

$1 \cap$ TIMING CHARACTERISTICS (MX7534)

(n) $\left(V_{D D}=+11.4 \mathrm{~V}\right.$ to $+15.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IOUT}}=\mathrm{V}_{\mathrm{AGND}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. See Figure 1a for

10 timing diagram.)
MX7534/MX75

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Address Valid to Write Setup Time	t_{1}		0			ns
Address Valid to Write Hold Time	t2		0			ns
Data Setup Time	t3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	70			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	80			
Data Hold Time	t4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	20			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	30			
Chip-Select to Write-Setup Time	t5		0			ns
Chip-Select to Write-Hold Time	t6		0			ns
Write Pulse Width	t_{7}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	170			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	240			

TIMING CHARACTERISTICS (MX7535)

$\left(\mathrm{V}_{\mathrm{DD}}=+11.4 \mathrm{~V}\right.$ to $+15.75 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IOUT }}=\mathrm{V}_{\text {AGNDS }}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. See Figure 1 b for timing diagram.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\mathrm{CSMSB}}$ or $\overline{\mathrm{CSLSB}}$ to $\overline{\mathrm{WR}}$ Setup Time	t_{1}		0			ns
$\overline{\mathrm{CSMSB}}$ or $\overline{\mathrm{CSLSB}}$ to $\overline{\mathrm{WR}}$ Hold Time	t2		0			ns
$\overline{\text { LDAC Pulse Width }}$	t3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	170			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	240			
Write Pulse Width	t4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	170			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	240			
Data-Setup Time	t5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	140			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	160			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	180			
Data-Hold Time	t_{6}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	20			ns
		$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20			
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	30			

Mic roprocessor-Compatible, 14-Bit DACs

Pin Description (MX7534)
Pin Description (MX7535)

PIN	NAME	FUNCTION
1	REF	Reference Input to DAC
2	RFB	Feedback Resistor. Used to close the loop around an external op amp.
3	IOUT	Current Output
4	AGNDS	Analog Ground Sense. Reference piont for external circuitry. AGNDS should carry minimum current.
5	AGNDF	Analog Ground Force. Carries current from internal analog ground connec- tions. AGNDS and AGNDF are tied together internally.
6	DGND	Digital Ground
7	D7	Data Bit 7
8	D6	Data Bit 6
9	D5	Data Bit 5 or Data Bit 13 (MSB)
10	D4	Data Bit 4 or Data Bit 12
11	D3	Data Bit 3 or Data Bit 11
12	D2	Data Bit 2 or Data Bit 10
13	D1	Data Bit 1 or Data Bit 9
14	D0	Data Bit 0 (LSB) or Data Bit 8
15	A1	Address Input 1
16	A0	Address Input 0
17	$\overline{\text { WR }}$	Write Input. Active low.
18	$\overline{\text { CS }}$	Chip-Select Input. Active low.
19	VDD	+12V to +15V Supply-Voltage Input
20	VSS	Bias pin for high-temperature, low-leakage configuration

PIN	NAME	FUNCTION
1	REFS	Reference Voltage Sense
2	REFF	Reference Voltage Force
3	RFB	Feedback Resistor. Used to close the loop around an external op amp.
4	IOUT	Current Output
5	AGNDS	Analog Ground Sense. Reference point for external circuitry. This pin should carry minimum current.
6	AGNDF	Analog Ground Force. Carries current from internal analog ground connections. AGNDS and AGNDF are tied together internally.
7	DGND	Digital Ground
8	D13	Data Bit 13 (MSB)
9	D12	Data Bit 12
10	D11	Data Bit 11
11	D10	Data Bit 10
12	D9	Data Bit 9
13	D8	Data Bit 8
14	D7	Data Bit 7
15	D6	Data Bit 6
16	D5	Data Bit 5
17	D4	Data Bit 4
18	D3	Data Bit 3
19	D2	Data Bit 2
20	D1	Data Bit 1
21	D0	Data Bit 0 (LSB)
22	$\overline{\text { CSMSB }}$	Chip-Select Most Significant Byte. Active low.
23	$\overline{\text { LDAC }}$	Asynchronous Load DAC Input. Active low.
low-leakage configuration		

Microprocessor-Compatible, 14-Bit DACs

Figure 1a. MX7534 Timing Diagram

Detailed Description

Digital-to-Analog Section

The basic MX7534/MX7535 digital-to-analog converter (DAC) circuit consists of a laser-trimmed, thin-film, 11-bit R-2R resistor array, a 3-bit segmented resistor array, and NMOS current switches, as shown in Figure 2. The three MSBs are decoded to drive switches A-G of the segmented array, and the remaining bits drive switches S0-S10 of the R-2R array.
Binary weighted currents are switched to either AGNDF or lout, depending on the status of each input bit. The R-2R ladder current is one-eighth of the total reference input current. The remaining seven-eighths of the current flows in the segmented resistors, dividing equally among these seven resistors. The input resistance at REF is constant; therefore, it can be driven by a voltage or current source of positive or negative polarity.
The MX7534/MX7535 are optimized for unipolar output operation (analog output from OV to -VREF), although bipolar operation (analog output from $+V_{\text {REF }}$ to -VREF) is possible with some added external components.
Figure 3 shows the equivalent circuit for the two DACs. COUT varies from about 90pF to 180pF, depending on the digital code. Ro denotes the DAC'S equivalent output resistance, which varies with the input code.

Figure 1b. MX7535 Timing Diagram
$g\left(V_{\text {REF }}, N\right)$ is the Thevenin equivalent voltage generator due to the reference input voltage, VREF, and the transfer function of the R-2R ladder, N .

Digital Section
All digital inputs are both TTL and 5V CMOS logic compatible. The digital inputs are protected from electrostatic discharge (ESD) with typical input currents of less than 1nA. To minimize power-supply currents, keep digital input voltages as close to 0 V and 5 V logic levels as possible.

Applic ations Information Unipolar Operation (2-Quadrant Multiplication)

Figures 4 a and 4 b show the circuit diagram for unipolar binary operation. With an AC input, the circuit performs 2 -quadrant multiplication. The code table for Figure 4 is given in Table 2.
Capacitor C1 provides phase compensation and helps prevent overshoot and ringing when high-speed op amps are used. Note that the output polarity is the inverse of the reference input.

Mic roprocessor-Compatible, 14-Bit DACs

Figure 2. Simplified Circuit Diagram

Zero-Offset Adjustment (Figures 4a and 4b)

1) Load the DAC register with all 0 s.
2) Adjust the offset of amplifier A1 so that V_{0} (see figure) is at a minimum (i.e., $\leq 30 \mu \mathrm{~V}$).

Gain Adjustment (Figures 4a and 4b)

1) Load the DAC register with all 1 s .
2) Trim potentiometer R1 so that VOUT $=-\mathrm{V}$ IN $\left(\frac{16383}{16384}\right)$

In fixed-reference applications, adjust full scale by omitting R1 and R2 and trimming the reference voltage magnitude. In many applications, the excellent Gain Tempco and Gain Error specifications eliminate the need for gain adjustment. However, if trims are required and the DAC is to operate over a wide temperature range, use low-tempco ($>300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors.

Bipolar Operation

(4-Quadrant Multiplication)
Bipolar or 4-quadrant operation is shown in Figures 5a and 5 b. This configuration provides for offset binary coding. Table 4 shows DAC codes and the corresponding analog outputs for Figures 5 a and 5 b . With the DAC loaded to 10000000000000 , either adjust R1 for VOUT $=0 \mathrm{~V}$, or omit R1 and R2 and adjust the ratio of R5 and R6 for Vout $=0 \mathrm{~V}$. Adjust the amplitude of VIN or vary the value of $R 7$ for full-scale trimming.
Resistors R5, R6, and R7 must be matched to 0.003%. Mismatch of R5 and R6 causes both offset and fullscale errors. For wide temperature range operation, use resistors of the same material so that their temperature coefficients match and track.

Figure 3. Equivalent Analog Output Circuit
Table 1. MX7534 Logic States

$\overline{\text { WR }}$	$\overline{\text { CS }}$	A1	A2	FUNCTION
X	1	X	X	Device not selected (Note 1)
1	X	X	X	No data transfer
0	0	0	0	DAC loaded directly from Data Bus (Note 2)
0	0	0	1	MS Input Register loaded from Data Bus
0	0	1	0	LS Input Register loaded from Data Bus
0	0	1	1	DAC Register loaded from Input Registers

Note 1: $\mathrm{X}=$ Don't Care.
Note 2: When $A 1=0$ and $A 0=0$, all DAC registers are transparent. By placing all 0 s or all 1 s on the data inputs, the user can load the DAC to zero or full-scale output in one write operation. This simplifies system calibration.

Microprocessor-Compatible, 14-Bit DACs

Figure 4a. Unipolar Binary Operation

Grounding Considerations

Since IOUT and the output amplifier noninverting input are sensitive to offset voltages, connect nodes that must be grounded directly to a single-point ground through a separate, very-low-resistance path. Note that the output currents at IOUT and AGNDF vary with input code and create code-dependent error if these terminals are connected to ground (or a virtual ground) through a resistive path.
To obtain high accuracy, it is important to use a proper grounding technique. The two AGND pins (AGNDF, AGNDS) provide flexibility in this respect. In Figures 4 a and 4b, AGNDS and AGNDF are shorted together externally and an extra op amp, A2, is not used. Voltage-drops due to bond-wire resistance are not compensated for in this circuit; this could create a linearity error of approximately 0.1 LSB due to bond-wire resistance alone. This can be eliminated by using the circuits shown in Figures 6a and 6b, where A2 maintains AGNDS at signal ground potential. By using force/sense techniques, all switch contacts on the DAC are kept at exactly the same potential, and any error caused by bond-wire resistance is eliminated.
Figure 7 shows a remote voltage reference driving the MX7535. Op amps A2 and A3 compensate for voltage drops along the reference input line and analog ground line.
Figure 8 shows a printed circuit board (PCB) layout with a single output amplifier for the MX7534. The input to REF (Pin 1) is shielded to reduce AC feedthrough, while the digital inputs are shielded to minimize digital

Figure 4b. Unipolar Binary Operation

Table 2. Unipolar Binary Code Table

BINARY NUMBER IN DAC REGISTER			ANALOG OUTPUT (VOUT)	
MSB 11	1111	1111	1111	$-\mathrm{V}_{\text {IN }}\left(\frac{16383}{16384}\right)$
10	0000	0000	0000	$-\mathrm{V}_{\text {IN }}\left(\frac{8192}{16384}\right)=-\frac{1}{2} \mathrm{~V}_{\text {IN }}$
00	0000	0000	0001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{16384}\right)$
00	0000	0000	0000	0 V

feedthrough. The traces connecting IOUT and AGNDS to the inverting and noninverting op amp inputs are kept as short as possible. Gain trim components, R3 and R4, are omitted.

Zero-Offset Adjustment
 (Figures 6a and 6b)

1) Load DAC register with all 0 s.
2) Adjust offset of amplifier A2 for minimum potential at AGNDS. This potential should be $\leq 30 \mu \mathrm{~V}$ with respect to signal ground.
3) Adjust A1's offset so that Vout is at a minimum (i.e., $\leq 30 \mu \mathrm{~V}$).

Mic roproc essor-Compatible, 14-Bit DACs

Figure 5a. Bipolar Operation
Gain Adjustment (Figures 6a and 6b)

1) Load DAC register with all 1s.
2) Trim potentiometer R3 so that VOUT $=-\left(\frac{16383}{16384}\right) \mathrm{V}_{\mathrm{IN}}$

Low-Leakage Configuration

Leakage current in the DAC flowing into the lout line can cause gain, linearity, and offset errors. Leakage is worse at high temperatures.
Negatively bias VSS for a high-temperature, low-leakage configuration.

Dynamic Considerations
In static or DC applications, the output amplifier's AC characteristics are not critical. In higher-speed applications, where either the reference input is an AC signal or the DAC output must quickly settle to a new programmed value, the output op amp's AC parameters must be considered.
Another error source in dynamic applications is the parasitic signal coupling from the REF terminal to lout. This is normally a function of board layout and lead-tolead package capacitance. Signals can also be injected into the DAC outputs when the digital inputs are switched. This digital feedthrough depends on circuitboard layout and on-chip capacitive coupling. Minimize layout-induced feedthrough with guard traces between digital inputs, REF, and DAC outputs.

Figure 5b. Bipolar Operation

Table 3. MX7535 Logic States

CSMSB	$\overline{\text { CSLSB }}$	$\overline{\text { LDAC }}$	$\overline{\text { WR }}$	FUNCTION
0	1	1	0	Load MS Input Register
1	0	1	0	Load LS Input Register
0	0	1	0	Load LS and MS Input Registers
1	1	0	X	Load DAC Register from Input Register
0	0	0	0	All registers are transparent.
1	1	1	X	No operation
X	X	1	1	No operation

Note: X = Don't Care.

Table 4. Offset Binary Bipolar Code Table

BINARY NUMBER IN DAC REGISTER				Analog Output (VOUT)
MSB 11	1111	1111	LSB 1111	$+\mathrm{V}_{\text {IN }}\left(\frac{8191}{8192}\right)$
10	0000	0000	0001	$+\mathrm{V}_{\text {IN }}\left(\frac{1}{8192}\right)$
10	0000	0000	0000	0
01	1111	1111	1111	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{8192}\right)$
00	0000	0000	0000	$-\mathrm{V}_{\text {IN }}\left(\frac{8192}{8192}\right)=-\mathrm{V}_{\text {IN }}$

Microprocessor-Compatible, 14-Bit DACs

Figure 6a. Unipolar Binary Operation with Forced Ground

Figure 6b. Unipolar Binary Operation with Forced Ground for Remote Load

Table 5. Amplifier Performance Comparisons

OP AMP	INPUT OFFSET VOLTAGE (VOS)	INPUT BIAS CURRENT (IB)	OFFSET VOLTAGE DRIFT (TC VOS)	SETTLING TO 0.003\% FS
MAX400	$10 \mu \mathrm{~V}$	2 nA	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{~s}$
Maxim OP07	$25 \mu \mathrm{~V}$	2 nA	$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{~s}$
AD554L*	$500 \mu \mathrm{~V}$	25 pA	$5 \mu /{ }^{*} \mathrm{C}$	$5 \mu \mathrm{~s}$
HA2620* *	4 mV	35 nA	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.8 \mu \mathrm{~s}$

* AD544L is an Analog Devices part; HA2620 is a Harris Semiconductor part.

Compensation

A compensation capacitor, C1, may be needed when the DAC is used with a high-speed output amplifier. The capacitor cancels the pole formed by the DAC's output capacitance and internal feedback resistance. Its value depends on the type of op amp used, but typical values range from 10 pF to 33 pF . Too small a value causes output ringing, while excess capacitance overdamps the output. Minimize C1's size and improve output settling performance by keeping the PC board trace as short as possible and stray capacitance at lout as small as possible.

Bypassing
Place a $1 \mu \mathrm{~F}$ bypass capacitor, in parallel with a $0.01 \mu \mathrm{~F}$ ceramic capacitor, as close to the DAC's VDD and GND pins as possible. Use a $1 \mu \mathrm{~F}$ tantalum bypass capacitor to optimize high-frequency noise rejection. Place a $4.7 \mu \mathrm{~F}$ decoupling capacitor at VSS to minimize the DAC output leakage current.

The MX7534/MX7535 have high-impedance digital inputs. To minimize noise pickup, connect them to either VDD or GND terminals when not in use. Connect active inputs to VDD or GND through high-value resistors ($1 \mathrm{M} \Omega$) to prevent static charge accumulation if these pins are left floating, as might be the case when a circuit card is left unconnected.

Op-Amp Selection

Input offset voltage (VOS), input bias current (IB), and offset voltage drift (TC VOS) are three key parameters in determining the choice of a suitable amplifier. To maintain specified accuracy with VREF of 10V, VOS should be less than $30 \mu \mathrm{~V}$ and IB should be less than $2 n A$. Open-loop gain should be greater than 340,000. Maxim's MAX400 has low VOS (10 $\mu \mathrm{V}$ max), low I_{B} (2nA), and low TC VOS $\left(0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ max). This op amp can be used without requiring any adjustments. For

Mic roprocessor-Compatible, 14-Bit DACs

Figure 7. Driving the MX7535 with a Remote Voltage Reference
medium-frequency applications, the OP27 is recommended. For higher-frequency applications, the HA2620 is recommended. However, these op amps require external offset adjustment (Table 5).

Mic roproc essor Interfacing

8086 with MX7535

The MX7534/MX7535 interface to both 8 -bit and 16 -bit processors. Figure 9a shows the 8086 16-bit processor interfacing to a single MX7535. In this setup, the doublebuffering feature of the DAC is not used. AD0-AD13 of the 16 -bit data bus are connected to the DAC data bus (D0-D13). The 14-bit word is written to the DAC in one MOV instruction, and the analog output responds immediately. In this example, the DAC address is D000. Table 6a shows a software routine for Figure 9a.
In a multiple DAC system, the double buffering of the DAC chips allows the user to simultaneously update all DACs. In Figure 10, a 14-bit word is loaded to each of the DAC's input registers in sequence. Then, with one instruction to the appropriate address, CS4 (i.e., $\overline{\mathrm{LDAC}}$) is brought low, updating all the DACs simultaneously.

8086 with MX7534
Figure 9b shows an interface circuit to a 16 -bit microprocessor. The bottom 8 bits (ADO-AD7) of the 16-bit data bus are connected to the DAC data bus. The

$$
\begin{aligned}
& \text { NOTE: } \\
& \text { LAYOUT IS FOR DOUBLE-SIDED } \\
& \text { PCB. BOLD LINE INDICATES } \\
& \text { TRACK ON COMPONENT SIDE. }
\end{aligned}
$$

*AD544 IS AN ANALOG DEVICES PART.
Figure 8. Suggested Layout for MX7534 Incorporating Output Amplifier

14-bit word is loaded in two bytes, using the MOV instruction. A further MOV loads the DAC register and causes the analog data to appear at the converter output. For the example given here, the appropriate DAC register addresses are D002, D004, and D006. Table 6 b shows the program for loading the DAC.

8085A with MX7534
A typical interface circuit is shown in Figure 9c. The DAC is treated as four memory locations addressed by A0 and A1. In standard operation, three of these memory locations are used. Table $6 c$ shows a sample program for loading the DAC with a 14 -bit word. The MX7534 has address locations 3000-3003.
The six MSBs are written into location 3001, and eight LSBs are written to 3002 . Then, with a write instruction to 3003, the full 14 -bit word is loaded to the DAC register.

Microprocessor-Compatible, 14-Bit DACs

MC68000 with MX7535
Figure 11a shows an interface diagram. The following routine writes data to the DAC input registers and then outputs the data via the DAC register:

O1000 MOVE.W	\#W,DO	DAC data, W, loaded into Data Register 0.
MOVE.W	D0,\$E000	Data W transferred between D0 and DAC Register.
MOVE.B	\#228,D7	Control returned to the System.
TRAP	\#14	Monitor Program

Figure 11b shows the MC68000 interface diagram. The following routine writes data to the DAC input registers and then outputs the data via the DAC register:

| .A2 E003 | Address Register 2
 loaded with E003. |
| :--- | :--- | :--- |
| MOVEP.W D0,\$0000(A2) | DAC data, W, loaded
 into Data Register 0. |
| Data W transferred | |
| between DO and the | |
| DAC's Input Register. | |
| High-ordered byte trans- | |
| ferred first. Memory | |
| address specified using | |
| the address register | |
| indirect plus displace- | |
| ment addressing mode. | |
| Address used here | |
| (E003) is odd, so data is | |
| transferred on the low- | |
| order half of the data | |
| bus (D0-D7). | |

Since this interfacing system uses only the lower half of the data bus, it is also suitable for use with the MC68008, which provides the user with an 8-bit data bus instead of the MC68000's 16-bit bus.

Figure 9a. MX7535-8086 Interface Circuit

Figure 9b. MX7534-8086 Interface Circuit

Figure 9c. MX7534-8085A Interface Circuit

Mic roproc essor-Compatible, 14-Bit DACs

Table 6a. Sample Program for Loading the MX7535

ASSUME DS:DACLOAD,CS:DACLOAD			
DACLOAD SEGMENT AT 000			
00	$8 C C 9$	MOV CX,CS	:DEFINE DATA SEGMENT REGISTER EQUAL
02	8ED9	MOVDS,CX	:TO CODE SEGMENT REGISTER
04	BF00D0	MOVDI,\#D000	:LOAD DI WITH DO00
07	C705"YZWX"	MOV MEM,\#YZWX	:DAC LOADED WITH WXYZ
$0 B$	EA0000		:CONTROL IS RETURNED TO THE MONITOR PROGRAM
$0 E$	$00 F F$		

Table 6b. Sample Program for Loading the MX7534 from 8086

ASSUME DS:DACLOAD,CS:DACLOAD			
DACLOAD SEGMENT AT 000			
00	8CC9	MOV CX,CS	:DEFINE DATA SEGMENT REGISTER EQUAL
02	8ED9	MOVDS,CX	:TO CODE SEGMENT REGISTER
04	BF02D0	MOVDI.\#D002	:LOAD DI WITH DOO2
07	C605"MS"	MOV MEM,\#"MS"	:DAC LOADED WITH "MS"
$0 A$	47	INC DI	
0B	47	INC DI	
$0 C$	C605"LS"	MOV MEM,\#"LS"	:LS INPUT REGISTER LOADED WITH "LS"
$0 F$	47	INC DI	
10	47	INC DI	
11	C60500	MOV MEM,\#00	:CONTENT OF INPUT REGISTERS ARE LOADED TO THE DAC REGISTER
14	EA0000	JMP MEM	:CONTROL IS RETURNED TO THE MONITOR PROGRAM

Table 6c. Sample Program for Loading the MX7534 from 8085A

2000	26	MVIH,\#30
01	30	
02	2 E	MVIL,\#01
03	01	
04	3 E	MVIA,\#"MS"
05	"MS"	
06	77	MOV M,A
07	$2 C$	INR L
08	$3 E$	MVI A\#"LS"
09	$" L S "$	
$0 A$	77	MOV M,A
0B	$2 C$	INR L
0C	77	MOV M,A
200D	CF	RST

Z80 with MX7534/MX7535
Figure 12a is an interface circuit for the Z80, using the MX7535. This is an example of an 8-bit processor interface for these DACs. Figure 12b shows the schematic for the MX7534.

MC6809 with MX7534
Figure 13a shows an interface circuit that enables the MX7534 to be programmed using the MC6809 8-bit microprocessor. Use the 16 -bit D accumulator to simplify data transfer. The two key processor instructions are:
LDD Load D accumulator from memory

STD Store D accumulator to memory
MC6502 with MX7534
Figure 13b shows an interface diagram for the MC6502 using the MX7534.

Digital Feedthrough
In the interface diagrams shown in Figures 9-13, the digital inputs of the DAC are directly connected to the microprocessor bus. Even when the device is not selected, activity on the bus can feed through on the DAC output through package capacitance and appear as noise. To minimize noise, isolate the DACs from the digital bus, as shown in Figures 14a and 14b.

Microprocessor-Compatible, 14-Bit DACs

Figure 10. MX7535-8086 Interface: Multiple DAC Systems

Figure 11a. MX7535-MC68000 Interface

Figure 11b. MX7534-MC68000 Interface

Mic roproc essor-Compatible, 14-Bit DACs

Figure 12a. MX7535-Z80 Interface

Figure 13a. MX7534—MC6809 Interface Circuit

Figure 14a. MX7534-Interface Circuit Using Latches to Minimize Digital Feedthrough

Figure 12b. MX7534-Z80 Interface

Figure 13b. MX7534-6502 Interface

Figure 14b. MX7535-Interface Circuit Using Latches to Minimize Digital Feedthrough
\qquad

Microprocessor-Compatible, 14-Bit DACs

MX7534/MX7535
__Functional Diagrams (continued)

_Ordering Information (c ontinued)

PART	TEMP. RANGE	PIN PACKAGE	INL (LSBs)
MX7535KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Plastic DIP	± 1
MX7535JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Plastic DIP	± 2
MX7535KCWI	$0^{\circ}{ }^{\circ}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO	± 1
MX7535JCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO	± 2
MX7535KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PLCC	± 1
MX7535JP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PLCC	± 2
MX7535J/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	± 2
MX7535BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 CERDIP	± 1
MX7535AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 CERDIP	± 2
MX7535BD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Ceramic SB	± 1
MX7535AD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Ceramic SB	± 2
MX7535KEWII	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO	± 1
MX7535JEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO	± 2
MX75355TQ	$-55^{\circ}{ }^{\circ}$ to $+125^{\circ} \mathrm{C}$	28 CERDIP	± 1
MX7535SQ	-55° t to $+125^{\circ} \mathrm{C}$	28 CERDIP	± 2
MX7535TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Ceramic SB	± 1
MX7535SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Ceramic SB	± 2

*Dice are tested at $+25^{\circ} \mathrm{C}, D C$ parameters only.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1996 Maxim Integrated Products
Printed USA
N1AXINI is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
5962-8876601LA PM7545FPCZ AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A 702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB2420E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24T-E/MQ MCP48FVB18T20E/ST MCP47FEB14T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP47FEB04T-E/MQ MCP47FVB04T-20E/ST AD7524JRZ-REEL LTC1664CGN LTC1664IGN LTC7545ACSW MCP47DA1T-A1E/OT MCP4921-E/MC UC3910D DAC39J84IAAV DAC8218SPAG DAC8562TDGSR AD5317RBRUZ-RL7 MAX545BCPD+ DAC7641YB/250 DAC7611PB DAC0800LCM TLV5638CDR TLC5615IDR

[^0]: Functional diagrams continued at end of data sheet.

[^1]: * AD544 is an Analog Devices part.

