Comlinear ${ }^{\oplus}$ CLC1009, CLC2009

0.2 mA , Low Cost, 2.5 to $5.5 \mathrm{~V}, 35 \mathrm{MHz}$ Rail-to-Rail Amplifiers

FEATURES

- 208 A supply current
- 35MHz bandwidth
- Input voltage range with 5 V supply: -0.3 V to 3.8 V
- Output voltage range with 5 V supply:
0.08 V to 4.88 V
- 27V/ Hs slew rate
- $21 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input voltage noise
- 13 mA linear output current
- Fully specified at 2.7 V and 5V supplies
- Replaces MAX4281

APPLICATIONS

- Portable/battery-powered applications
- Mobile communications, cell phones, pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical Equipment
- Portable medical instrumentation

General Description

The COMLINEAR CLC1009 (single) and CLC2009 (dual) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only $208 \mu \mathrm{~A}$ of supply current and are designed to operate from a supply range of 2.5 V to 5.5 V (± 1.25 to ± 2.75). The input voltage range extends 300 mV below the negative rail and 1.2 V below the positive rail.

The CLC1009 and CLC2009 offer high bipolar performance at a low CMOS price. They offer superior dynamic performance with a 35 MHz small signal bandwidth and $27 \mathrm{~V} / \mu \mathrm{s}$ slew rate. The combination of lowpower, high bandwidth, and rail-to-rail performance make the CLC1009 and CLC2009 well suited for battery-powered communication/ computing systems.

Typical Performance Examples

Ordering Information

Part Number	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CLC1009IST5X	SOT23-5	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC1009ISO8X	SOIC-8	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC2009ISO8X	SOIC-8	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel

[^0]

CLC1009 Pin Configuration

CLC2009 Pin Configuration

CLC1009 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	$-V_{S}$	Negative supply
3	+ IN	Positive input
4	- IN	Negative input
5	$+V_{S}$	Positive supply

CLC2009 Pin Configuration

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+ IN1	Positive input, channel 1
4	$-V_{S}$	Negative supply
5	+ IN2	Positive input, channel 2
6	- IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	$+V_{S}$	Positive supply

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	0	6	V
Input Voltage Range	$-\mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V}$	$+\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}$	V
Continuous Output Current	-30	30	mA

Reliability Information

Parameter	Min	Typ	Max	Unit
Junction Temperature			175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65		150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Package Thermal Resistance		221		${ }^{\circ} \mathrm{C} / \mathrm{W}$
5-Lead SOT23		100		${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC				

Notes:
Package thermal resistance $\left(\theta_{\mathrm{JA}}\right)$, JDEC standard, multi-layer test boards, still air.
Recommended Operating Conditions

Parameter	Min	Typ	Max	Unit
Operating Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
Supply Voltage Range	2.5		5.5	V

Electrical Characteristics at +2.7 V

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		28		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		15		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		7		MHz
GBWP	Gain Bandwdith Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		16		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step; (10% to 90\%)		16		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		140		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		1		\%
SR	Slew Rate	2V step, G = -1		20		$\mathrm{V} / \mu \mathrm{s}$
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		-85		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		-63		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		62		dB
e_{n}	Input Voltage Noise	$>10 \mathrm{kHz}$		23		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {pp, }}, 100 \mathrm{kHz}$		98		dB
DC Performance						
V_{IO}	Input Offset Voltage			0.8		mV
$\mathrm{dV}_{\mathrm{IO}}$	Average Drift			11		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current			0.37		$\mu \mathrm{A}$
dI_{b}	Average Drift			1		$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OS }}$	Input Offset Current			8		nA
PSRR	Power Supply Rejection Ratio (1)	DC	56	60		dB
$\mathrm{A}_{\text {OL }}$	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$		65		dB
I_{S}	Supply Current	per channel		185		$\mu \mathrm{A}$
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		>10		M Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.4		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 1.5 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{DC}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5$		92		dB
Output Characteristics						
$V_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.08 \text { to } \\ 2.6 \\ \hline \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.06 \text { to } \\ 2.62 \end{gathered}$		V
$\mathrm{I}_{\text {Out }}$	Output Current			± 8		mA
$\mathrm{I}_{\text {SC }}$	Short Circuit Output Current			± 12.5		mA

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Electrical Characteristics at +5 V

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		35		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		18		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		8		MHz
GBWP	Gain Bandwdith Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		20		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}$ step; (10% to 90%)		13		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		140		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		1		\%
SR	Slew Rate	2 V step, G = -1		27		V/ $\mu \mathrm{s}$
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		-78		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		-66		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 100 \mathrm{kHz}$		65		dB
e_{n}	Input Voltage Noise	$>10 \mathrm{kHz}$		21		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {pp, }}, 100 \mathrm{kHz}$		98		dB
DC Performance						
$\mathrm{V}_{\text {IO }}$	Input Offset Voltage ${ }^{(1)}$		-5	-1.5	5	mV
$\mathrm{dV}_{\mathrm{IO}}$	Average Drift			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current ${ }^{(1)}$		-1.3	0.37	1.3	$\mu \mathrm{A}$
dI_{b}	Average Drift			1		$n A /{ }^{\circ} \mathrm{C}$
I_{0}	Input Offset Current ${ }^{(1)}$			7	130	nA
PSRR	Power Supply Rejection Ratio (1)	DC	56	60		dB
A_{OL}	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$	56	62		dB
I_{S}	Supply Current ${ }^{(1)}$	per channel		208	260	$\mu \mathrm{A}$
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		>10		M Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.2		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 3.8 \\ \hline \end{gathered}$		V
CMRR	Common Mode Rejection Ratio ${ }^{(1)}$	$\mathrm{DC}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5$	65	95		dB
Output Characteristics						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2{ }^{(1)}$	$\begin{gathered} 0.2 \text { to } \\ 4.7 \end{gathered}$	$\begin{gathered} \hline 0.1 \text { to } \\ 4.8 \\ \hline \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.08 \text { to } \\ 4.88 \\ \hline \end{gathered}$		V
$\mathrm{I}_{\text {Out }}$	Output Current			± 8.5		mA
$\mathrm{I}_{\text {SC }}$	Short Circuit Output Current			± 13		mA

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Non-Inverting Frequency Response

Non-Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Frequency Response vs. Vout

Inverting Frequency Response

Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Open Loop Gain \& Phase vs. Frequency

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

2nd \& 3rd Harmonic Distortion

Small Signal Pulse Response

2nd \& 3rd Harmonic Distortion at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

PSRR

Large Signal Pulse Response

Typical Performance Characteristics - Continued
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Output Swing vs. R_{L}

Input Voltage Noise

Application Information

General Description

The CLC1009 family are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The CLC1009 offers 35 MHz unity gain bandwidth, $27 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and only $208 \mu \mathrm{~A}$ supply current. It features a rail-to-rail output stage and is unity gain stable.

The design utilizes a patent pending topology that provides increased slew rate performance. The common mode input range extends to 300 mV below ground and to 1.2 V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5 V , the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.
The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.
Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applicaitons.

Figure 1. Typical Non-Inverting Gain Circuit

Figure 2. Typical Inverting Gain Circuit

Figure 3. Unity Gain Circuit

Figure 4. Single Supply Non-Inverting Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated $2 \mathrm{k} \Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of $150^{\circ} \mathrm{C}$. To calculate the junction temperature, the package thermal resistance value Theta $_{\mathrm{JA}}\left(\Theta_{\mathrm{JA}}\right)$ is used along with the total die power dissipation.

$$
\mathrm{T}_{\text {Junction }}=\mathrm{T}_{\text {Ambient }}+\left(\Theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{D}}\right)
$$

Where $T_{\text {Ambient }}$ is the temperature of the working environment. In order to determine P_{D}, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$
P_{D}=P_{\text {supply }}-P_{\text {load }}
$$

Supply power is calculated by the standard power equation.

$$
\begin{gathered}
P_{\text {supply }}=V_{\text {supply }} \times I_{R M S} \text { supply } \\
V_{\text {supply }}=V_{S_{+}}-V_{S-}
\end{gathered}
$$

Power delivered to a purely resistive load is:

$$
\mathrm{P}_{\text {load }}=\left(\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }^{2}}\right) / \text { Rload }_{\text {eff }}
$$

The effective load resistor (Rload ${ }_{\text {eff }}$) will need to include the effect of the feedback network. For instance,

Rload $_{\text {eff }}$ in Figure 3 would be calculated as:

$$
R_{L} \|\left(R_{f}+R_{g}\right)
$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_{D} can be found from

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\text {Quiescent }}+\mathrm{P}_{\text {Dynamic }}-\mathrm{P}_{\text {Load }}
$$

Quiescent power can be derived from the specified IS values along with known supply voltage, $\mathrm{V}_{\text {Supply. }}$. Load power can be calculated as above with the desired signal amplitudes using:

$$
\begin{gathered}
\left(\mathrm{V}_{\text {LOAD }}\right)_{\mathrm{RMS}}=\mathrm{V}_{\text {PEAK }} / \sqrt{ } 2 \\
\left(\mathrm{I}_{\text {LOAD }}\right)_{\text {RMS }}=\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }} / \text { Rload }_{\text {eff }}
\end{gathered}
$$

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLC1009 and CLC2009 will typically recover in less than $20 n s$ from an overdrive condition.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. CADEKA has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include $6.8 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors for power supply decoupling
- Place the $6.8 \mu \mathrm{~F}$ capacitor within 0.75 inches of the power pin
- Place the $0.1 \mu \mathrm{~F}$ capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board	Products
CEB002	CLC1009 in SOT23
CEB003	CLC1009 in SOIC
CEB006	CLC2009 in SOIC

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 8-14. These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

1. Short -Vs to ground.
2. Use $C 3$ and $C 4$, if the $-V_{S}$ pin of the amplifier is not directly connected to the ground plane.

Figure 8. CEB002 \& CEB003 Schematic

Figure 9. CEB002 Top View

Figure 10. CEB002 Bottom View

Figure 11. CEB003 Top View

Figure 12. CEB003 Bottom View

Figure 11. CEB006 Schematic

Figure 12. CEB006 Top View

Figure 13. CEB006 Bottom View

Mechanical Dimensions

SOT23-5 Package

notes:

1. Dimensions and tolerances are as per ANSI Y14.5M-1982.
2. Package surface to be matte finish VDI $11 \sim 13$.
3. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
4. The footlength measuring is based on the guage plane method.

A Dimension are exclusive of mold flash and gate burr.
\triangle Dimension are exclusive of solder plating.

SOIC-8

SOIC-8		
SYMBOL	MIN	MAX
A1	0.10	0.25
B	0.36	0.48
C	0.19	0.25
D	4.80	4.98
E	3.81	3.99
e	1.27 BSC	
H	5.80	6.20
h	0.25	0.5
L	0.41	1.27
A	1.37	1.73
θ_{1}	0°	8°
X	0.55 ref	
θ_{2}	7° BSC	

NOTE:

1. All dimensions are in millimeters.
2. Lead coplanarity should be 0 to $0.1 \mathrm{~mm}\left(0.004^{\mathrm{\prime} \mathrm{\prime}}\right)$ max.
3. Package surface finishing: VDI $24 \sim 27$
4. All dimension excluding mold flashes.
5. The lead width, B to be determined at 0.1905 mm from the lead tip.

For Further Assistance:
Exar Corporation Headquarters and Sales Offices
48720 Kato Road
Fremont, CA 94538 - USA

Fremont, CA 94538 - USA

notice

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

 has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by MaxLinear manufacturer:

Other Similar products are found below :
LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF SCY6358ADR2G LTC2065HUD\#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6472T-E/MS MCP6491T-ELTY MCP662-E/MF TLC073IDGQR TLC081AIP

[^0]: Moisture sensitivity level for all parts is MSL-1.

