High Current Power Switch

FEATURES

- Max Rds(ON) . 377 Ohms
- Overcurrent deactivation 800 mA
- Max leakage current less than $2 \mu \mathrm{~A}$ while deactivated
- Small 6 pin SOT-23 package
- Built-in Over-temperature Protection
- 4.5 V to 5.5 V Input voltage range

APPLICATIONS

- Ultra low cost handsets
- PDA, DSC, MP3 players
- Cell phones
- Power Distribution Switch
- Battery-Charger Circuit

DESCRIPTION

The SP619 is a low $R_{\mathrm{DS}(\mathrm{ON})}$ high current switch designed with precision current limiting to protect connected devices from damage due to a short circuit condition or against current surges that may cause the supply voltages to fall out of regulation. This switch is functional over an input voltage range of 2.5 V to 7 V , but is targeted at 5 V applications. The SP619 is also protected from thermal overload which limits power dissipation. In shutdown mode, the supply current drops to $2 \mu \mathrm{~A}$.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
VIN.-0.3V to 7V
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
ESD RATING
Human Body Model. 2000V
Machine Model 200V
OPERATING RATINGSThermal resistance SOT23-6Junction to Ambient.$191^{\circ} \mathrm{C}$
Junction to lead $.50^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Unless otherwise specified: $\mathrm{VIN}=4.5 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{CIN}=0.1 \mu \mathrm{~F}, \mathrm{TA}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
Operating Input Voltage Range		4.5		5.5	V
Overcurrent Deactivation Range	EN=1.5V	620	800	1010	mA
Overcurrent Duration Before Deactivation	EN=1.5V	1		5.25	ms
Shutdown Supply Current	$\mathrm{VIN}=4.5 \mathrm{~V}$			2	$\mu \mathrm{A}$
Quiescent Supply Current	$\begin{gathered} \mathrm{EN}=1.5 \mathrm{~V} \text { VIN }=4.5 \mathrm{~V} \\ \text { lout }=0 \mathrm{~mA} \end{gathered}$			350	$\mu \mathrm{A}$
Quiescent Supply Current	$\begin{gathered} \mathrm{EN}=1.5 \mathrm{~V} \mathrm{VIN}=4.5 \mathrm{~V} \\ \text { Iout }=725 \mathrm{~mA} \end{gathered}$			5.25	mA
Rds(on)	$\begin{gathered} \hline \mathrm{VIN}=4.5 \mathrm{~V} \text { IOUT }=100 \mathrm{~mA} \\ \mathrm{EN}=1.5 \mathrm{~V} \end{gathered}$. 377	Ω
Post Fault Output Load for Recovery	Enable=1.5V	10	15	23	K Ω
Post Fault Activation Turn On Time	Enable=1.5V	1		55	ms
Thermal Shutdown Die Temperature	SP619 will self recover when temperature drops below the trip point	120	150	180	${ }^{\circ} \mathrm{C}$
Thermal Restart Die Temperature		90	120	135	${ }^{\circ} \mathrm{C}$
ENABLE Logic LOW	Driver is disabled			. 5	V
ENABLE Pin Logic HIGH	Driver is active	. 655		1.4	V
Turn On Delay	$\begin{gathered} \hline \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{CL}=0.01 \mu \mathrm{~F} \\ \text { (Note 2,3) } \end{gathered}$			600	$\mu \mathrm{s}$
Turn Off Delay	$\begin{gathered} \hline \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{CL}=0.01 \mu \mathrm{~F} \\ \text { (Note 2,4) } \\ \hline \end{gathered}$			200	$\mu \mathrm{s}$
Rise Time	$\begin{gathered} \hline \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{CL}=0.01 \mu \mathrm{~F} \\ \text { (Note 2) } \end{gathered}$			100	$\mu \mathrm{s}$
Fall Time	$\begin{gathered} \text { RL=100k } \Omega, C L=0.01 \mu \mathrm{~F} \\ \text { (Note 2) } \end{gathered}$			2500	$\mu \mathrm{s}$

Note 1: Typicals are TJ=25 ${ }^{\circ} \mathrm{C}$
Note 2: Characterized, not 100% tested
Note 3: Turn on delay is measured from the time the enable pin is turned on to the time it takes the output to rise to 10% of its final value.
Note 4: Turn off delay is measured from the time the enable pin is turned to the time it takes for the output to fall to 90% of its current value.

Enable	Load	Temperature (TJ)	Previous State	Switch	Current State/Fault $\left(\right.$ Note $\left.^{*}\right)$
Low	X	X	X	Open	Off
High	$<800 \mathrm{~mA}$	$<163^{\circ} \mathrm{C}$	Off	Closed	Normal
High	$<800 \mathrm{~mA}$	$>163^{\circ} \mathrm{C}$	Off	Open	Thermal Cutoff
High	$>800 \mathrm{~mA}$	$<163^{\circ} \mathrm{C}$	Off	Open	Overcurrent
High	$>800 \mathrm{~mA}$	$>163^{\circ} \mathrm{C}$	Off	Open	Thermal Cutoff, Overcurrent
High	$<15 \mathrm{k} \Omega$	$<163^{\circ} \mathrm{C}$	Overcurrent	Open	Load Condition
High	$<15 \mathrm{k} \Omega$	$>163^{\circ} \mathrm{C}$	Overcurrent	Open	Thermal Cutoff, Overcurrent, Load Condition
High	$>15 \mathrm{k} \Omega$	$<163^{\circ} \mathrm{C}$	Overcurrent	Closed	Normal
High	$>15 \mathrm{k} \Omega$	$>163^{\circ} \mathrm{C}$	Overcurrent	Open	Thermal Cutoff
High	$<15 \mathrm{k} \Omega$	$<120^{\circ} \mathrm{C}$	Thermal Cutoff	Open	Load Condition
High	$<15 \mathrm{k} \Omega$	$>120^{\circ} \mathrm{C}$	Thermal Cutoff	Open	Load Condition, Thermal Cutoff
High	$>15 \mathrm{k} \Omega$	$<120^{\circ} \mathrm{C}$	Thermal Cutoff	Closed	Normal
High	$>15 \mathrm{k} \Omega$	$>120^{\circ} \mathrm{C}$	Thermal Cutoff	Open	Thermal Cutoff

*Note: This table is for fault conditions, not for continuous operation, else damage to the device may occur. In order to recover to the normal state after a Thermal Cutoff fault, the part's junction temperature must decrease below $120^{\circ} \mathrm{C}$ and the load on its output must be greater than $15 \mathrm{k} \Omega$.

PIN ASSIGNMENTS

PIN	PIN	FUNCTION
NUMBER	NAME	Input power supply pin (4.5V to 5.5V)
1	VIN	Ground connection
2	GND	A logic high turns on the switch
3	Enable	No connect
4	NC	No connect
5	NC	Switch output
6	Vout	

THEORY OF OPERATION

The SP619 is a switch capable of handling up to 800 mA of current.

The SP619 is targeted as a 5V USB protection power distribution switch. And can be used in general power distribution applications where short circuits are likely to be encountered.

Short circuit operation

When the SP619 enters a short circuit condition, the switch is disabled. The output of the SP619 will not restart until the output impedance is greater than $15 \mathrm{~K} \Omega$. The enable pin can be used to re-enable the SP619 into any load condition that is not a fault condition. Refer to the truth table on page 4 for more information on the different SP619 switch states. The typical deactivation time is about 2 ms .

Enable

The enable pin allows easy control of the SP619. The enable pin should not be enabled high prior to a voltage being present on the input of the device. The enable pin should not exceed the input voltage by more than 0.1 V due to an internal ESD diode. Doing so will affect the operation of the SP619 and could damage the device. In a typical application an $80 \mathrm{~K} \Omega$ resistor to GND should be used on the enable pin. This resistor will pull the enable low when an enable signal is not present. This prevents the SP619 from falsely turning on. The enable pin can also be used to restart the part into a load condition that is high in current. Please refer to the truth table on page 4 for more details.

Inrush Current

The SP619 is a simple resistive switch. When the switch is turned on into a highly capacitive load there could be a significant
inrush current that can be encountered. At 6 volts in, the inrush current was about 250 mA into a $100 \mu \mathrm{~F}$ capacitor.

Output Voltage Rise Time

The output voltage of the SP619 has an output capacitance dependency on the slope of Vout. A simple RC circuit is created when the switch is turned on.
Equation 1

$$
V(t)=\operatorname{VO}+V_{I N}\left(\frac{-t}{1-e^{\operatorname{RDS}(O N) \cdot C O U T}}\right)
$$

Where Vo is initial Voltage condition typically OV
VIN is the input voltage
Rds(on) is the switch resistance Cout is the output capacitance
For 4.2 V VIN and $100 \mu \mathrm{~F}$ output capacitance we get about 150 ns delay in figure 2 .

This is comparable to actual measured value in figure 3.

Overtemperature Protection

The SP619 has built-in overtemperature protection to protect the part against damage if the die temperature gets too hot. The typical thermal cutoff is about $150^{\circ} \mathrm{C}$. The part will self recover if the temperature drops below the thermal restart threshold of about $120^{\circ} \mathrm{C}$.

Layout Considerations

The input and output decoupling capacitors should be placed as close as possible to the input and output pins. The GND pin should be stitched to the GND plain to help with thermal performance. The input and output traces should be as large as possible. The $100 \mathrm{~K} \Omega$ is also recommended in the design and should be placed close to the output decoupling cap.

Recommended Layout

Part number	Operating Temperature Range	Lead-Free	Package Type	Packaging Method
SP619EK-L/TR ${ }^{(3)}$	-10 to $+85^{\circ} \mathrm{C}$	Yes ${ }^{(2)}$	6 pin SOT23	Tape and Reel
SP619EK-L/TRR3	-10 to $+85^{\circ} \mathrm{C}$			Tape and Reel (reverse orientation)

NOTE:

1. Refer to www.exar.com/SP619 for most up-to-date Ordering Information
2. Visit www.exar.com for additional information on Environmental Rating.
3. NRND - Not recommended for new designs.

Corporate Headquarters:
5966 La Place Court Suite 100
Carlsbad, CA 92008
Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

High Performance Analog:
48720 Kato Road
Fremont, CA 94538
Tel.: +1 (510) 668-7000
Fax: +1 (510) 668-7001
Email: powertechsupport@exar.com www.exar.com

Abstract

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.

© 2008-2017 MaxLinear, Inc. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by MaxLinear manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF1504UCX TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7

