General Description

The XR1009 (single) and XR2009 (dual) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only $208 \mu \mathrm{~A}$ of supply current and are designed to operate from a supply range of 2.5 V to 5.5 V (± 1.25 to ± 2.75). The input voltage range extends 300 mV below the negative rail and 1.2 V below the positive rail.
The XR1009 and XR2009 offer superior dynamic performance with a 35 MHz small signal bandwidth and $27 \mathrm{~V} /$ us slew rate. The combination of low power, high bandwidth, and rail-to-rail performance make the XR1009 and XR2009 well suited for battery-powered communication/ computing systems.

FEATURES

- $208 \mu \mathrm{~A}$ supply current
- 35MHz bandwidth
- Input voltage range with 5 V supply: -0.3V to 3.8V
- Output voltage range with 5 V supply: 0.08 V to 4.88 V
- $27 \mathrm{~V} / \mu$ s slew rate
- $21 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input voltage noise
- 13 mA linear output current
- Fully specified at 2.7 V and 5 V supplies
- Replaces MAX4281

APPLICATIONS

- Portable/battery-powered applications
- Mobile communications, cell phones, pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical equipment
- Portable medical instrumentation
- Interactive whiteboards

Frequency Response

Output Swing vs. R_{L}

Absolute Maximum Ratings
Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

$\begin{aligned} & \mathrm{V}_{\mathrm{S}} . ~ 0 V ~ t o ~ 6 V ~ \\ & \mathrm{~V}_{\mathrm{IN}} \text {... - } \mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V} \text { to }+\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V} \end{aligned}$	
	Continuous Output Current..............................-30mA to +30

Operating Conditions

Supply Voltage Range .. 2.5 to 5.5V
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range................................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) $260^{\circ} \mathrm{C}$

Package Thermal Resistance

θ_{JA} (TSOT23-5) ... $215^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$ (SOIC-8) .. $150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$ (MSOP-8) .. 200 C / W
Package thermal resistance $\left(\theta_{J A}\right)$, JEDEC standard, multi-layer test boards, still air.

ESD Protection

XR1009 (HBM) ...2kV
XR2009 (HBM) ...2.5kV
ESD Rating for HBM (Human Body Model).

Electrical Characteristics at +2.7 V

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2 ; \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		28		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		15		MHz
BW ${ }_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		7		MHz
GBWP	Gain Bandwidth Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		16		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step; (10% to 90%)		16		ns
t_{s}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		140		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		1		\%
SR	Slew Rate	$\mathrm{G}=-1,2 \mathrm{~V}$ step		20		V/us
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}$		-85		dBc
HD3	3rd Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}$		-63		dBc
THD	Total Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{pp}}$		62		dB
e_{n}	Input Voltage Noise	$>10 \mathrm{kHz}$		23		$\mathrm{nV} / \mathrm{JHz}$
XTALK	Crosstalk	$100 \mathrm{kHz}, \mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		98		dB
DC Performance						
V_{10}	Input Offset Voltage			0.8		mV
$\mathrm{d}_{\mathrm{VIO}}$	Average Drift			11		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.37		$\mu \mathrm{A}$
dl_{B}	Average Drift			1		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current			8		nA
PSRR	Power Supply Rejection Ratio	DC	56	60		dB
$\mathrm{A}_{\text {OL }}$	Open Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {S }} / 2$		65		dB
Is	Supply Current	per channel		185		$\mu \mathrm{A}$
Input Characteristics						
$\mathrm{R}_{\text {IN }}$	Input Resistance	Non-inverting		>10		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.4		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 1.5 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{DC}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5 \mathrm{~V}$		92		dB
Output Characteristics						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.08 \text { to } \\ 2.6 \\ \hline \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.06 \text { to } \\ 2.62 \end{gathered}$		V
Iout	Output Current			± 8		mA
ISC	Short Circuit Current			± 12.5		mA

Electrical Characteristics at +5 V

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2 ; \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Frequency Domain Response						
UGBW ${ }_{\text {SS }}$	Unity Gain -3dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUT }}=0.05 \mathrm{~V}_{\text {pp }}, \mathrm{R}_{\mathrm{f}}=0$		35		MHz
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}<0.2 \mathrm{~V}_{\mathrm{pp}}$		18		MHz
BW ${ }_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		8		MHz
GBWP	Gain Bandwidth Product	$\mathrm{G}=+11, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		20		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step; (10% to 90%)		13		ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		140		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		1		\%
SR	Slew Rate	$\mathrm{G}=-1,2 \mathrm{~V}$ step		27		V/us
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}$		-78		dBc
HD3	3rd Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}$		-66		dBc
THD	Total Harmonic Distortion	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		65		dB
e_{n}	Input Voltage Noise	>10kHz		21		$\mathrm{nV} / \mathrm{JHz}$
XTALK	Crosstalk	$100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {pp }}$		98		dB
DC Performance						
V_{10}	Input Offset Voltage		-5	-1.5	5	mV
$\mathrm{d}_{\mathrm{VIO}}$	Average Drift			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-1.3	0.37	1.3	$\mu \mathrm{A}$
dl_{B}	Average Drift			1		$n A /{ }^{\circ} \mathrm{C}$
los	Input Offset Current			7	130	nA
PSRR	Power Supply Rejection Ratio	DC	56	60		dB
A_{OL}	Open Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {S }} / 2$	56	62		dB
$I_{\text {S }}$	Supply Current	per channel		208	260	$\mu \mathrm{A}$
Input Characteristics						
RIN	Input Resistance	Non-inverting		>10		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.2		pF
CMIR	Common Mode Input Range			$\begin{gathered} -0.3 \text { to } \\ 3.8 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{DC}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5 \mathrm{~V}$	65	95		dB
Output Characteristics						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$	$\begin{gathered} 0.2 \text { to } \\ 4.7 \end{gathered}$	$\begin{gathered} 0.1 \text { to } \\ 4.8 \end{gathered}$		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$		$\begin{gathered} 0.08 \text { to } \\ 4.88 \end{gathered}$		V
Iout	Output Current			± 8.5		mA
Isc	Short Circuit Current			± 13		mA

XR1009 Pin Configurations

 TSOT-5

SOIC-8

XR2009 Pin Configuration

SOIC-8 / MSOP-8

XR1009 Pin Assignments

TSOT-5

Pin No.	Pin Name	Description
1	OUT	Output
2	$-\mathrm{V}_{\mathrm{S}}$	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	$+\mathrm{V}_{\mathrm{S}}$	Positive supply

SOIC-8

Pin No.	Pin Name	Description
1	NC	No Connect
2	- IN	Negative input
3	+ IN	Positive input
4	$-V_{\text {S }}$	Negative supply
5	NC	No Connect
6	OUT	Output
7	$+V_{\text {S }}$	Positive supply
8	NC	No Connect

XR2009 Pin Assignments

SOIC-8 / MSOP-8

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+ IN1	Positive input, channel 1
4	$-\mathrm{V}_{\mathrm{S}}$	Negative supply
5	+ IN2	Positive input, channel 2
6	- IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	$+\mathrm{V}_{\mathrm{S}}$	Positive supply

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2 ; \mathrm{G}=2$; unless otherwise noted.

Non-Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Non-Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Frequency Response vs. $\mathrm{V}_{\text {Out }}$

Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Open Loop Gain \& Phase vs. Frequency

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2 ; \mathrm{G}=2$; unless otherwise noted.

2nd \& 3rd Harmonic Distortion at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

CMRR

Small Signal Pulse Response

2nd \& 3rd Harmonic Distortion at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

PSRR

Large Signal Pulse Response

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2 ; \mathrm{G}=2$; unless otherwise noted.

Output Swing vs. R_{L}

Input Voltage Noise

Application Information

General Description

The XR1009 and XR2009 are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The XR1009 offers 35 MHz unity gain bandwidth, $27 \mathrm{~V} / \mu$ s slew rate, and only $208 \mu \mathrm{~A}$ supply current. It features a rail-to-rail output stage and is unity gain stable.
The design utilizes a patent pending topology that provides increased slew rate performance. The common mode input range extends to 300 mV below ground and to 1.2 V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5 V , the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.

The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

Figure 1: Typical Non-Inverting Gain Circuit

For optimum input offset voltage set $R_{1}=R_{f} \| R_{g}$

Figure 2: Typical Inverting Gain Circuit

Figure 3: Unity Gain Circuit

Figure 4: Single Supply Non-Inverting Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated $2 \mathrm{k} \Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.
Maximum power levels are set by the absolute maximum junction rating of $150^{\circ} \mathrm{C}$. To calculate the junction temperature, the package thermal resistance value Theta ${ }_{J A}$ $\left(\theta_{\mathrm{JA}}\right)$ is used along with the total die power dissipation.

$$
\mathrm{T}_{\text {Junction }}=\mathrm{T}_{\text {Ambient }}+\left(\theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{D}}\right)
$$

Where $T_{\text {Ambient }}$ is the temperature of the working environment.

In order to determine P_{D}, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$
P_{D}=P_{\text {supply }}-P_{\text {load }}
$$

Supply power is calculated by the standard power equation.

$$
\begin{gathered}
P_{\text {supply }}=V_{\text {supply }} \times I_{\text {RMSsupply }} \\
V_{\text {supply }}=V_{S_{+}}-V_{S-}
\end{gathered}
$$

Power delivered to a purely resistive load is:

$$
\mathrm{P}_{\text {load }}=\left(\left(\mathrm{V}_{\text {load }}\right)_{\mathrm{RMS}^{2}}\right) / \mathrm{Rload}_{\text {eff }}
$$

The effective load resistor (Rload ${ }_{\text {eff }}$) will need to include the effect of the feedback network. For instance,

Rload $_{\text {eff }}$ in Figure 3 would be calculated as:

$$
R_{L} \|\left(R_{f}+R_{g}\right)
$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_{D} can be found from

$$
P_{D}=P_{\text {Quiescent }}+P_{\text {Dynamic }}-P_{\text {load }}
$$

Quiescent power can be derived from the specified I_{S} values along with known supply voltage, $\mathrm{V}_{\text {supply. }}$. Load power can be calculated as above with the desired signal amplitudes using:

$$
\begin{gathered}
\left(\mathrm{V}_{\text {load }}\right)_{\mathrm{RMS}}=\mathrm{V}_{\text {peak }} / \sqrt{ } 2 \\
\left(\mathrm{I}_{\text {load }}\right)_{\mathrm{RMS}}=\left(\mathrm{V}_{\text {load }}\right)_{\mathrm{RMS}} / \mathrm{Rload}_{\mathrm{eff}}
\end{gathered}
$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$
P_{\text {Dynamic }}=\left(V_{S_{+}}-V_{\text {load }}\right)_{\text {RMS }} \times\left(I_{\text {load }}\right)_{\text {RMS }}
$$

Assuming the load is referenced in the middle of the power rails or $\mathrm{V}_{\text {supply }} / 2$.
The XR1009 is short circuit protected. However, this may not guarantee that the maximum junction temperature $\left(+150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. Figure 5 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

Figure 5. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_{S}, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 6.

Figure 6. Addition of R_{S} for Driving Capacitive Loads

Overdrive Recovery

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The XR1009, and XR2009 will typically recover in less than 20ns from an overdrive condition.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include $6.8 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors for power supply decoupling
- Place the $6.8 \mu \mathrm{~F}$ capacitor within 0.75 inches of the power pin
- Place the $0.1 \mu \mathrm{~F}$ capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board \#	Products
CEB002	XR1009 in TSOT
CEB003	XR1009 in SOIC
CEB006	XR2009 in SOIC
CEB010	XR2009 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-18 These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

1. Short $-V_{S}$ to ground.
2. Use C 3 and C 4 , if the $-V_{S}$ pin of the amplifier is not directly connected to the ground plane.

Figure 9. CEB002 \& CEB003 Schematic

Figure 10. CEB002 Top View

Figure 11. CEB002 Bottom View

Figure 12. CEB003 Top View

Figure 13. CEB003 Bottom View

Figure 14. CEB006 \& CEB010 Schematic

Figure 15. CEB006 Top View

Figure 16. CEB006 Bottom View

Figure 17. CEB010 Top View

Figure 18. CEB010 Bottom View

Mechanical Dimensions

TSOT-5 Package

MSOP-8 Package

Top View

Side View

Front View

SOIC-8 Package

Front View

8 Pin SOICN JEDEC MS-012 Variation AA						
SYMBOLS	$\begin{gathered} \text { DIMENSIONS IN MM } \\ \text { (Control Unit) } \end{gathered}$			$\begin{gathered} \text { DIMENSIONS IN INCH } \\ \text { (Reference Unit) } \end{gathered}$		
	MIN	Nom	max	MIN	NOM	MAX
A	1.35	-	1.75	0.053	-	0.069
A1	0.10	-	0.25	0.004	-	0.010
A2	1.25	-	1.65	0.049	-	0.065
b	0.31	-	0.51	0.012	-	0.020
c	0.17	-	0.25	0.007	-	0.010
E	6.00 BSC			0.236 BSC		
E1	3.90 BSC			0.154 BSC		
e	1.27 BSC			0.050 BSC		
h	0.25	-	0.50	0.010	-	0.020
L	0.40	-	1.27	0.016	-	0.050
L1	1.04 REF			0.041 REF		
L2	0.25 BSC			0.010 BSC		
R	0.07	-	-	0.003	-	-
R1	0.07	-	-	0.003	-	-
θ	0°	-	8°	0	-	$8{ }^{\circ}$
${ }^{61}$	5.	-	15°	$5{ }^{\circ}$	-	15°
${ }^{82}$	0°	-	-	0^{*}	-	-
,	4.90 BSC			0.193 BSC		
N	,			.		

Ordering Information

Part Number	Package	Green	Operating Temperature Range	Packaging Quantity	Marking
XR1009 Ordering Information					
XR1009IST5X	TSOT-5	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5k Tape \& Reel	UC
XR1009IST5MTR	TSOT-5	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	250 Tape \& Reel	UC
XR1009IST5EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR1009ISO8X	SOIC-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5k Tape \& Reel	XR1009
XR1009ISO8MTR	SOIC-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	250 Tape \& Reel	XR1009
XR1009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR2009 Ordering Information					
XR2009ISO8X	SOIC-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5k Tape \& Reel	XR2009
XR2009ISO8MTR	SOIC-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	250 Tape \& Reel	XR2009
XR2009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR2009IMP8X	MSOP-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2.5k Tape \& Reel	2009
XR2009IMP8MTR	MSOP-8	Yes	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	250 Tape \& Reel	2009
XR2009IMP8EVB	Evaluation Board	N/A	N/A	N/A	N/A

Moisture sensitivity level for all parts is MSL-1.

Revision History

Revision	Date	Description
1A	June 2014	Initial Release [ECN 1426-10 I 06/24/14]
1B	Sept 2014	Added XR1009 ESD, increased operating temperature range, updated package outline drawings, and removed Preliminary note on XR1009. [ECN 1436-03 I O9/04/14]

For Further Assistance:

Email: CustomerSupport@exar.com or HPATechSupport@exar.com

Exar Corporation Headquarters and Sales Offices

48760 Kato Road	Tel.: +1 (510) 668-7000
Fremont, CA 94538-USA	Fax: +1 (510) 668-7001

NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by MaxLinear manufacturer:
Other Similar products are found below :
AD8033AKS-EBZ AD8044AR-EBZ AD744JR-EBZ AD8023AR-EBZ AD848JR-EBZ ADA4922-1ACP-EBZ EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ ADA4950-1YCP-EBZ MAX2634EVKIT ISL28158EVAL1Z MADL-011014-001SMB EVAL-ADA4523-1ARMZ EVAL01-HMC1013LP4E MCP6XXXEV-AMP3 MCP6XXXEV-AMP4 MCP6XXXEV-AMP2 ISL28006FH-100EVAL1Z EVAL-ADCMP603BCPZ AMC1200EVM AD8417RM-EVALZ AD8250-EVALZ AD8418R-EVALZ ISL28433SOICEVAL1Z ISL28233SOICEVAL1Z ISL28006FH-50EVAL1Z ISL28005FH-50EVAL1Z DC1591A DC1115A DC954A-C OPA2835IDGSEVM 118329-HMC627ALP5 125932-HMC874LC3C AD8129AR-EBZ AD8130ARM-EBZ AD8209A-EVALZ AD8232EVALZ AD8304-EVALZ AD8309-EVALZ AD8335-EVALZ AD8369-EVALZ AD8556CP-EBZ ADA4806-1RJ-EBZ ADCMP380EVALZ ADL5330-EVALZ ADL5530-EVALZ DC1016A-A DC1264A

