XR33052/XR33053/XR33055/XR33058
$\pm 60 \mathrm{~V}$ Fault Tolerant 3.0 V to 5.5 V RS-485/RS-422 Transceivers

Description

The XR33052, XR33053, XR33055, and XR33058 (XR3305x) are a family of high performance RS-485/RS-422 devices designed for improved performance in noisy industrial environments and increased tolerance to system faults.
The analog bus pins can withstand direct shorts up to $\pm 60 \mathrm{~V}$ and are protected against ESD events up to $\pm 15 \mathrm{kV}$ HBM. An extended $\pm 25 \mathrm{~V}$ common mode operating range allows for more reliable operation in noisy environments.
The XR3305x receivers include full fail-safe circuitry, guaranteeing a logic-high receiver output when the receiver inputs are open, shorted or undriven. The XR33052/53/55 receiver input impedance is at least $120 \mathrm{k} \Omega$ ($1 / 10$ unit load), allowing more than 320 devices on the bus. The XR33058 receiver input impedance is at least $30 \mathrm{~K} \Omega$ (1/2.5 unit load), allowing more than 80 devices on the bus.

The driver is protected by short circuit detection as well as thermal shutdown and maintains high impedance in shutdown or when powered off.
The DE and $\overline{\mathrm{RE}}$ pins include hot swap circuitry to prevent false transitions on the bus during power up or live insertion and can enter a 1 nA low current shutdown mode for extreme power savings.
The XR33052/55/58 are half-duplex transceivers offered in an 8 -pin NSOIC package and operates at a maximum data rates of 250 k , 1 M and 20Mbps. The XR33053 is a full-duplex transceiver offered in a 14-pin NSOIC package and operates at a maximum data rate of 1 Mbps.

FEATURES

- 3.0 V to 5.5 V operation
- $\pm 60 \mathrm{~V}$ fault tolerance on analog bus pins
- Extended $\pm 25 \mathrm{~V}$ common mode operation
- Robust ESD protection:
- $\pm 15 \mathrm{kV}$ HBM (bus pins)
- $\pm 4 \mathrm{kV}$ HBM (non-bus pins)
- Enhanced receiver fail-safe protection for open, shorted or terminated but idle data lines
- Hot swap glitch protection on DE and $\overline{\mathrm{RE}}$ pins
- Driver short circuit current limit and thermal shutdown for overload protection
- Reduced unit loads allows up to 320 devices on bus
- Industry standard 8-pin and 14-pin NSOIC packages
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ ambient operating temperature ranges

APPLICATIONS

- Industrial control networks
- HVAC networks
- Building and process automation
- Remote utility meter reading
- Energy monitoring and control
- Long or unterminated transmission lines

Ordering Information - Page 19

Typical Application

Figure 1. Typical Application
Absolute Maximum RatingsStresses beyond the limits listed below may causepermanent damage to the device. Exposure to any AbsoluteMaximum Rating condition for extended periods may affectdevice reliability and lifetime.
$V_{C C}$-0.3 V to 7.0 V
Input voltage (DE and DI) -0.3 V to 7.0 V
Input voltage ($\overline{\mathrm{RE}}$) -0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Receiver output voltage (RO) -0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Driver output voltage (Y, Z, A/Y and B/Z) $\pm 60 \mathrm{~V}$
Receiver input voltage (A, B, A/Y and B/Z) $\pm 60 \mathrm{~V}$
Transient voltage pulse, through 100Ω $\pm 100 \mathrm{~V}$
Driver output current. $\pm 250 \mathrm{~mA}$
Maximum junction temperature $150^{\circ} \mathrm{C}$
Storage temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature (soldering 10 seconds) $300^{\circ} \mathrm{C}$
ESD Ratings
HBM - Human Body Model (A, B, Y and Z pins) $\pm 15 \mathrm{kV}$
HBM - Human Body Model (all other pins) $\pm 4 \mathrm{kV}$

Operating Conditions

Supply voltage range 3.0V to 5.5 V

Operating temperature range \qquad $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Package power dissipation, 8-pin NSOIC $\theta_{\mathrm{JA}} \ldots .128 .4^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver DC Characteristics						
V_{CC}	Supply voltage range		3.0		5.5	V
Vod	Differential driver output,$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	$R_{L}=100 \Omega$ (RS-422), Figure 3	2		V_{CC}	V
		$R_{L}=54 \Omega$ (RS-485), Figure 3	1.5		V_{CC}	V
		$-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 25 \mathrm{~V}$, Figure 4	1.5		V_{CC}	V
	Differential driver output,$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V}$	$R_{L}=100 \Omega$ (RS-422), Figure 3	0.85		V_{CC}	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (RS-485), Figure 3	0.65		V_{CC}	V
$\Delta \mathrm{V}_{\text {OD }}$	Change in magnitude of differential output voltage ${ }^{(1)}$	$\begin{aligned} & \mathrm{RL}=100 \Omega \text { (RS-422) or } \\ & \mathrm{RL}=54 \Omega \text { (RS-485), Figure } 3 \end{aligned}$			± 0.2	V
V_{CM}	Driver common-mode output voltage (steady state)		1		3	V
$\Delta \mathrm{V}_{\mathrm{CM}}$	Change in magnitude of common-mode output voltage ${ }^{(1)}$				± 0.2	V
V_{IH}	Logic high input thresholds (DI, DE and RE)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.0			V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	2.4			V
$\mathrm{V}_{\text {IL }}$	Logic low input thresholds (DI, DE and $\overline{\mathrm{RE}}$)				0.8	V
$\mathrm{V}_{\mathrm{HYS}}$	Input hysteresis (DI, DE and $\overline{\mathrm{RE}}$)			100		mV
I_{N}	Logic input current (DI, DE and $\overline{\mathrm{RE}}$)	$0 V \leq V_{I N} \leq V_{C C},$ After first transition ${ }^{(2)}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {INHS }}$	Logic input current hot swap (DE and $\overline{\mathrm{RE}}$)	Until first transition ${ }^{(2)}$		100	± 200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{A}, \mathrm{B}}$	Input current (A and B)	$\begin{aligned} & V_{C C}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V} \text {, } \\ & \text { for XR33052/53/55 } \end{aligned}$			100	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-7 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V} \text {, } \\ & \text { for } \mathrm{XR} 33052 / 53 / 55 \end{aligned}$	-80			$\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {OUT }}=12 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \text {, for } X R 33058 \end{aligned}$			400	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=-7 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 5.5 V , for XR33058	-320			$\mu \mathrm{A}$
$\mathrm{I}_{\text {OL }}$	Output leakage (Y and Z) full-duplex	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=0 \mathrm{~V}$ or 5.5 V			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=-7 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=0 \mathrm{~V}$ or 5.5 V	-80			$\mu \mathrm{A}$
Iosd	Driver short-circuit output current	$-60 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V}, \mathrm{DI}=0 \mathrm{~V}$ or V_{CC}, Figure 5			± 250	mA

NOTES:

1. Change in magnitude of differential output voltage and change in magnitude of common mode output voltage are the changes in output voltage when DI input changes state.
2. The hot swap feature disables the DE and $\overline{\mathrm{RE}}$ inputs for the first $10 \mu \mathrm{~s}$ after power is applied. Following this time period, these inputs are weakly pulled to their disabled state (low for DE, high for $\overline{R E}$) until the first transition, after which they become high impedance inputs.

Electrical Characteristics (Continued)

Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver Thermal Characteristics						
$\mathrm{T}_{\text {TS }}$	Thermal shutdown temperature	Junction temperature ${ }^{(1)}$		175		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {TSH }}$	Thermal shutdown hysteresis ${ }^{(1)}$			15		${ }^{\circ} \mathrm{C}$
Receiver DC Characteristics						
$\mathrm{V}_{\text {STH }}$	Receiver differential input signal threshold voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$		± 85	± 200	mV
$\Delta \mathrm{V}_{\text {STH }}$	Receiver differential input signal hysteresis			170		mV
$\mathrm{V}_{\text {FSTH- }}$	Negative going receiver differential input fail-safe threshold voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$	-200	-125	-40	mV
$\mathrm{V}_{\text {FSTH }}$	Positive going receiver differential input fail-safe threshold voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$		-100	-10	mV
$\Delta \mathrm{V}_{\text {FSTH }}$	Receiver differential input fail-safe hysteresis			25		mV
V_{OH}	Receiver output high voltage (RO)	$\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}-0.6$			V
VOL	Receiver output low voltage (RO)	$\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}$			0.4	V
IozR	High-Z receiver output current	$\mathrm{OV} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	RX input resistance	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 25 \mathrm{~V}, \mathrm{XR} 33052 / 53 / 55$	120			k Ω
		$-25 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 25 \mathrm{~V}$, XR33058	30			$k \Omega$
Iosc	RX output short-circuit current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$			110	mA
Supply Current						
Icc	Supply current	No load, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{DI}=0 \mathrm{~V}$ or V_{CC}			4	mA
Ishdn	Supply current in shutdown mode	$\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{DE}=0 \mathrm{~V}$		0.001	1	$\mu \mathrm{A}$

NOTE:

1. This spec is guaranteed by design and bench characterization.

Electrical Characteristics (Continued)

Driver AC Characteristics - XR33052 (250kbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {DPLH }}$	Driver propagation delay (low to high)	$C_{L}=50 p F, R_{L}=54 \Omega$, Figure 7	350		1500	ns
$\mathrm{t}_{\text {DPHL }}$	Driver propagation delay (high to low)		350		1600	ns
$\mid t_{\text {DPLH-t }}{ }^{\text {dPML }}$ l	Differential driver output skew			20	200	ns
$t_{\text {DR }}, t_{\text {DF }}$	Driver differential output rise or fall time		400		1500	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	250			kbps
$t_{\text {DZ }}$	Driver enable to output high	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 8		200	2500	ns
$t_{\text {DZL }}$	Driver enable to output low			200	2500	ns
$t_{\text {DHZ }}$	Driver disable from output high				250	ns
t ${ }_{\text {DLZ }}$	Driver disable from output low				250	ns
$t_{\text {RZH (SHDN }}$)	Driver enable from shutdown to output high	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Figure 8			5500	ns
trzL(SHDN)	Driver enable from shutdown to output low				5500	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2	50	200	600	ns

Receiver AC Characteristics -XR33052 (250kbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max

NOTES:

1. The transceivers are put into shutdown by bringing $\overline{R E}$ high and $D E$ low simultaneously for at least 600 ns . If the control inputs are in this state for less than 50 ns, the device is guaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600 ns , the device is ensured to be in shutdown. Note that the receiver and driver enable times increase significantly when coming out of shutdown.
2. This spec is guaranteed by design and bench characterization.

Electrical Characteristics (Continued)

Driver AC Characteristics - XR33053 and XR33055 (1Mbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {DPLH }}$	Driver propagation delay (low to high)	$C_{L}=50 p F, R_{L}=54 \Omega$, Figure 7		150	500	ns
$\mathrm{t}_{\text {DPHL }}$	Driver propagation delay (high to low)			150	500	ns
	Differential driver output skew			5	50	ns
$t_{\text {DR }}, t_{\text {DF }}$	Driver differential output rise or fall time		100	200	300	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	1			Mbps
$\mathrm{t}_{\text {DzH }}$	Driver enable to output high	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 8		1000	2500	ns
$\mathrm{t}_{\text {DzL }}$	Driver enable to output low			1000	2500	ns
$t_{\text {DHZ }}$	Driver disable from output high				250	ns
$\mathrm{t}_{\text {DLZ }}$	Driver disable from output low				250	ns
	Driver enable from shutdown to output high	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 8		2500	4500	ns
$t_{\text {DZL }}($ SHDN $)$	Driver enable from shutdown to output low			2500	4500	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2	50	200	600	ns

Receiver AC Characteristics - XR33053 and XR33055 (1Mbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {RPLH }}$	Receiver propagation delay (low to high)	$C_{L}=15 p F, V_{I D}= \pm 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}$ rise and fall times $<15 \mathrm{~ns}$, Figure 9			200	ns
$t_{\text {RPHL }}$	Receiver propagation delay (high to low)				200	ns
$\mid \mathrm{t}_{\text {RPLL }}$-trphL \mid	Receiver propagation delay skew				30	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	1			Mbps
$\mathrm{t}_{\text {RZH }}$	Receiver enable to output high	$C_{L}=15 p F, R_{L}=1 \mathrm{k} \Omega$, Figure 10			50	ns
$t_{\text {RZL }}$	Receiver enable to output low				50	ns
$\mathrm{t}_{\mathrm{RHZ}}$	Receiver disable from output high				50	ns
$\mathrm{t}_{\text {RLZ }}$	Receiver disable from output low				50	ns
$t_{\text {RZH }}(\mathrm{SHDN})$	Receiver enable from shutdown to output high	$C_{L}=15 p F, R_{L}=1 \mathrm{k} \Omega$, Figure 10			3500	ns
$\mathrm{t}_{\text {RZL(SHDN })}$	Receiver enable from shutdown to output low				3500	ns
tshdn	Time to shutdown	Notes 1 and 2	50	200	600	ns

NOTES:

1. The transceivers are put into shutdown by bringing $\overline{\mathrm{RE}}$ high and DE low simultaneously for at least 600 ns . If the control inputs are in this state for less than 50 ns , the device is guaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600 ns , the device is ensured to be in shutdown. Note that the receiver and driver enable times increase significantly when coming out of shutdown.
2. This spec is guaranteed by design and bench characterization.

Electrical Characteristics (Continued)

Driver AC Characteristics - XR33058 (20Mbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {DPLH }}$	Driver propagation delay (low to high)	$C_{L}=50 p F, R_{L}=54 \Omega$, Figure 7			25	ns
$\mathrm{t}_{\text {DPHL }}$	Driver propagation delay (high to low)				25	ns
	Differential driver output skew				5	ns
$\mathrm{t}_{\mathrm{DR}}, \mathrm{t}_{\text {DF }}$	Driver differential output rise or fall time				15	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	20			Mbps
$\mathrm{t}_{\text {DZH }}$	Driver enable to output high	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 8			60	ns
$\mathrm{t}_{\text {DZL }}$	Driver enable to output low				60	ns
$t_{\text {DHZ }}$	Driver disable from output high				250	ns
$t_{\text {DLZ }}$	Driver disable from output low				250	ns
$t_{\text {DZH }}$ (SHDN)	Driver enable from shutdown to output high	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 8			2200	ns
$t_{\text {DZL(SHDN })}$	Driver enable from shutdown to output low				2200	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2	50	200	600	ns

Receiver AC Characteristics - XR33058 (20Mbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max

NOTES:

1. The transceivers are put into shutdown by bringing $\overline{R E}$ high and $D E$ low simultaneously for at least 600 ns . If the control inputs are in this state for less than 50 ns, the device is guaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600 ns , the device is ensured to be in shutdown. Note that the receiver and driver enable times increase significantly when coming out of shutdown.
2. This spec is guaranteed by design and bench characterization.

Pin Configuration

XR33052, XR33055 and XR33058 Half-duplex

XR33053 Full-duplex

Pin Functions

| Pin Number | | Half-duplex
 XR33052
 XR33055
 XR33058 | Full-duplex
 XR33053 | Pin Name |
| :---: | :---: | :---: | :---: | :--- | Type | Description |
| :--- |
| 1 |

Pin Functions (Continued)

Transmitting				
Inputs			Outputs	
$\overline{R E}$	$D E$	DI	Y	Z
X	1	1	1	0
X	1	0	0	1
0	0	X	High-Z	
1	0	X	High-Z (shutdown)	

Rnputs			
$\overline{\mathrm{RE}}$	DE	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$	Output
0	X	$\geq 200 \mathrm{mV}$	1
0	X	$\leq-200 \mathrm{mV}$	0
0	X	Open/shorted/idle	1
1	1	X	High-Z
1	0	x	High-Z (shutdown)

Applications Information

XR33052, XR33055 and XR33058

XR33053

Figure 2. XR33052, XR33055 and XR33058 Half-duplex and XR33053 Full-duplex

Figure 3. Differential Driver Output Voltage

Figure 4. Differential Driver Output Voltage Over Common Mode

Applications Information (Continued)

Figure 5. Driver Output Short Circuit Current

Figure 6. Transient Overvoltage Test Circuit

Figure 7. Driver Propagation Delay Test Circuit and Timing Diagram

Applications Information (Continued)

DE

Vout

Figure 8. Driver Enable and Disable Timing Test Circuits and Timing Diagrams

Applications Information (Continued)

Figure 9. Receiver Propagation Delay Test Circuit and Timing Diagram

Applications Information (Continued)

Figure 10. Receiver Enable and Disable Test Circuits and Timing Diagrams

Applications Information (Continued)

The XR3305x RS-485/RS-422 devices are part of MaxLinear's high performance serial interface product line. The analog bus pins can survive direct shorts up to $\pm 60 \mathrm{~V}$ and are protected against ESD events up to $\pm 15 \mathrm{kV}$.

Enhanced Failsafe

Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the XR3305x guarantees a logic-high receiver output when the receiver inputs are open, shorted or when they are connected to a terminated transmission line with all drivers disabled. In a terminated bus with all transmitters disabled, the receivers' differential input voltage is pulled to 0 V by the termination. The XR3305x interprets 0 V differential as a logic high with a minimum 50 mV noise margin while maintaining compliance with the RS-485 standard of $\pm 200 \mathrm{mV}$. Although the XR3305x does not need failsafe biasing resistors, it can operate without issue if biasing is used.

Hot Swap Capability

When V_{CC} is first applied, the XR3305x holds the driver enable and receiver enable inactive for approximately $10 \mu \mathrm{~s}$. During power ramp-up, other system ICs may drive unpredictable values or tristated lines may be influenced by stray capacitance. The hot swap feature prevents the XR3305x from driving any output signal until power has stabilized. After the initial $10 \mu \mathrm{~s}$, the driver and receiver enable pins are weakly pulled to their disabled states (low for $D E$, high for $\overline{R E}$) until the first transition. After the first transition, the DE and $\overline{\mathrm{RE}}$ pins operate as high impedance inputs.
If circuit boards are inserted into an energized backplane (commonly called "live insertion" or "hot swap") power may suddenly be applied to all circuits. Without the hot swap capability, this situation could improperly enable the transceiver's driver or receiver, driving invalid data onto shared buses and possibly causing driver contention or device damage.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, a driver current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. Second, a thermal shutdown circuit forces the driver outputs into a high-impedance state if junction temperature becomes excessive.

Line Length

The RS-485/RS-422 standard covers line lengths up to 4000ft. Maximum achievable line length is a function of signal attenuation and noise. Termination prevents signal reflections by eliminating the impedance mismatches on a transmission line. Line termination is generally used if
rise and fall times are shorter than the round-trip signal propagation time. Higher output drivers may allow longer cables to be used.

$\pm 15 \mathrm{kV}$ HBM ESD Protection (Unpowered Part)

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the XR3305x family have extra protection against static electricity. MaxLinear uses state-of-the-art structures to protect these pins against ESD damage:

- $\pm 15 \mathrm{kV}$ HBM for bus pins to GND
- $\pm 4 \mathrm{kV}$ HBM for all other pins

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact MaxLinear for a reliability report that documents test setup, methodology and results.

Maximum Number of Transceivers on the Bus

The standard RS-485 receiver input impedance is $12 \mathrm{k} \Omega$ (1 unit load). A standard driver can drive up to 32 unit loads. The XR33052/53/55 transceiver has a 1/10th unit load receiver input impedance of $120 \mathrm{k} \Omega$, allowing up to 320 transceivers to be connected in parallel on a communication line. The XR33058 receiver input impedance is a least $30 \mathrm{~K} \Omega$ ($1 / 2.5$ unit load), allowing more than 80 devices on the bus. Any combination of the XR3305x's and other RS-485 transceivers up to a total of 32 unit loads may be connected to the line.

Low Power Shutdown Mode
Low power shutdown mode is initiated by bringing both $\overline{\mathrm{RE}}$ high and DE low simultaneously. While in shutdown devices draw less than $1 \mu \mathrm{~A}$ of supply current. DE and $\overline{\mathrm{RE}}$ may be tied together and driven by a single control signal. Devices are guaranteed not to enter shutdown if $\overline{R E}$ is high and $D E$ is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts will enter shutdown.
Enable times t_{ZH} and t_{ZL} apply when the part is not in low power shutdown state. Enable times $\mathrm{t}_{\mathrm{ZH}(\text { SHDN) }}$ and $\mathrm{t}_{\text {ZL(SHDN }}$) apply when the parts are shutdown. The driver and receiver take longer to become enabled from low power shutdown $\mathrm{t}_{\mathrm{ZH}(\mathrm{SHDN})}$ and $\mathrm{t}_{\mathrm{ZL}(S H D N)}$ than from driver or receiver disable mode (t_{zH} and t_{ZL}).

Applications Information (Continued)

Product Selector Guide

Part Number	Operation	Data Rate	Shutdown	Receiver/Driver Enable	Nodes On Bus	Footprint
XR33052	Half-duplex	250kbps	Yes	Yes/Yes	320	8-NSOIC
XR33053	Full-duplex	1Mbps				14-NSOIC
XR33055	Half-duplex					8-NSOIC
XR33058	Half-duplex	20Mbps			80	

Mechanical Dimensions

NSOIC-8

Top View

Side View

Mechanical Dimensions

NSOIC-14
Top View

Side View

PACKAGE OUTLINE NSOIC .150" BODY JEDEC MS-012 VARIATION AB						
SYMBOLS	COMMON DIMENSIONS IN MM (Control Unit)			COMMON DIMENSIONS IN INCH (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	-	1.75	0.053	-	0.069
A1	0.10	-	0.25	0.004	-	0.010
A2	1.25	-	1.65	0.049	-	0.065
b	0.31	-	0.51	0.012	-	0.020
c	0.17	-	0.25	0.007	-	0.010
E	6.00 BSC			0.236 BSC		
E1	3.90 BSC			0.154 BSC		
e	1.27 BSC			0.050 BSC		
h	0.25	-	0.50	0.010	-	0.020
L	0.40	-	1.27	0.016	-	0.050
L1	1.04 REF			0.041 REF		
L2	0.25 BSC			0.010 BSC		
R	0.07	-	-	0.003	-	-
R1	0.07	-	-	0.003	-	-
q	0°	-	8°	0°	-	8°
41	5°	-	15°	5°	-	15°
q2	0°	-	-	0°	-	-
D	8.65 BSC			0.341 BSC		
N	14					

Ordering Information ${ }^{(1)}$

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method
XR33052ID-F		Yes ${ }^{(2)}$	8-pin SOIC	Tube
XR33052IDTR-F	-40 ${ }^{\text {to }}$			Reel
XR33052HD-F	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			Tube
XR33052HDTR-F				Reel
XR33053ID-F	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		14-pin SOIC	Tube
XR33053IDTR-F				Reel
XR33053HD-F	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			Tube
XR33053HDTR-F				Reel
XR33055ID-F			8-pin SOIC	Tube
XR33055IDTR-F				Reel
XR33055HD-F	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			Tube
XR33055HDTR-F				Reel
XR33058IDTR-F	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Reel
XR33058HD-F	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$			Tube
XR33058HDTR-F				Reel
XR33052IDEVB XR33052HDEVB XR33053IDEVB XR33053HDEVB XR33055IDEVB XR33055HDEVB XR33058IDEVB XR33058HDEVB	Evaluation Boards			

NOTE:

1. Refer to www.exar.com/XR33052, www.exar.com/XR33053, www.exar.com/XR33055, www.exar.com/XR33058 for most up-to-date Ordering Information.
2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1A	Jan 2016	Initial release of XR33053
2A	July 2016	Add XR33052, XR33055 and XR33058
2B	Feb 2017	Added missing connection from pin 2 to receiver, page 10
2C	Feb 2018	Update to MaxLinear logo. Updated format and Ordering information. Moved ESD ratings to page 2.

Corporate Headquarters: 5966 La Place Court Suite 100
Carlsbad, CA 92008
Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

High Performance Analog:
1060 Rincon Circle
San Jose, CA 95131
Tel.: +1 (669) 265-6100
Fax: +1 (669) 265-6101
Email: serialtechsupport@exar.com
www.exar.com

 mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

 risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.
 license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.
© 2016-2018 MaxLinear, Inc. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by MaxLinear manufacturer:

Other Similar products are found below :
ADP5585CP-EVALZ CHA2066-99F AS8650-DB 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX13235EEVKIT DFR0257 XR22404CG28EVB ZLR964122L ZLR88822L DC327A PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK ZSSC3240KIT P0551 MAX9121EVKIT PIM532 ZSC31010KITV2P1 UMFT4233HPEV MIKROE-2335 XR20M1172G28-0B-EB SI871XSOIC8-KIT 176418331862 EVB-USB82514 ATA6628-EK EVAL-CN0313-SDPZ 2264 MCP23X17EV PS081-EVA-HR MODULE 237 SMA2RJ45EVK/NOPB FR12-0002 MAFR-000455-001 BOB-13263 ORG4572-R01-UAR CPC5622-EVAL-600R SKYFR-000743 SKYFR-000827 SKYFR-000982 MIKROE-2750 292 DFR0065

