

XR33193/XR33194/XR33195

3.3V, 20Mbps, TSOT23 RS-485/RS-422 Transmitters with ±15kV ESD Protection

Description

The XR33193, XR33194, and XR33195 are a high performance RS-485/RS-422 driver family offered in a tiny TSOT23 package designed to meet the increasing system requirements found in today's performance serial communication applications. These standalone drivers operate off a single 3.3V supply and meet RS-485 and RS-422 standards for balanced RS-485 and RS-422 serial communications networks.

The driver family offers several speed options to maximize performance in different applications. The XR33193 and XR33194 have slew limited outputs for reduced EMI and for error free communication over long or improper/unterminated data cables or multi-drop applications with unterminated stubs. The XR33195 driver operates at data rates up to 20Mbps with tight skew and prop delay spec's required by demanding high speed applications. All parts in the XR33193/94/95 driver family operate over the extended temperature range of -40°C to 125°C.

The XR33193/94/95 driver family is protected by short-circuit detection as well as thermal shutdown and will maintain a high impedance state in shutdown or when powered off. The driver family also includes hot swap circuitry to protect against false transitions on the bus during power-up or live insertion.

For companion standalone RS-485/RS-422 receivers in tiny TSOT23 packages see our XR33180/81/83/84 product datasheet.

FEATURES

- Date rate options of 250kbps, 2.5Mbps and 20Mbps
- Tiny 6-pin TSOT23 package
- 3.3V ±5% supply operation
- Robust ESD protection
 - □ ±15kV Human Body Model (bus pins)
 - ±4kV Human Body Model (all other pins)
- Short-circuit protection
- Thermal protection circuitry
- Hot swap glitch protection
- Extended -40°C to 125°C operating temperature range
- Low current shutdown mode (2uA max)
- Lead-free (RoHS compliant)

APPLICATIONS

- Clock distribution
- Robotic control
- Space constrained systems
- Security camera networks
- Industrial and process control equipment

Ordering Information – back page

Typical Application

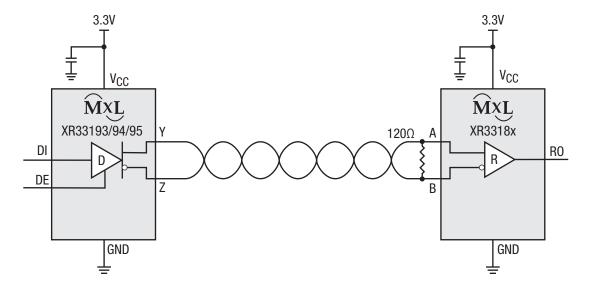


Figure 1. Typical Application

REV1B 1/12

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Supply voltage (V _{CC})	0.3V to 7.0V
Maximum junction temperature	150°C
Input voltages, DI and DE	0.3V to 7.0V
Bus output voltages Y and Z	±18V
Transient voltage pulse through 100Ω , F	igure 7±100V

Operating Conditions

Operating temperature range	40°C to 125°C
V _{CC} supply range	3.135V to 3.465V
Storage temperature range	65°C to 150°C
Lead temperature (soldering, 10s)	300°C

Thermal Information

6-pin TSOT23 θ_{JA}	167.3°C/W
6-pin TSOT23 θ_{JC}	61.6°C/W

ESD Ratings

HBM - Human Body Model (Y and Z pins) ±15kV HBM - Human Body Model (all other pins) ±4kV

Electrical Characteristics

Specifications are at $T_A = 25^{\circ}C$, $V_{CC} = 3.3V \pm 5\%$ unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}C$, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Supply	Supply						
V _{CC}	Supply voltage range		3.135		3.465	V	
Icc	Supply current	No load (DE = V _{CC} , DI = 0V)		0.18	0.375	mA	
I _{SNDN}	Supply current in shutdown mode	No load (DE = 0V)		0.5	2	μA	
Logic Input	s/Outputs						
V _{IH}	Logic high input thresholds	DI and DE	2			V	
V _{IL}	Logic high input thresholds	DI and DE			0.8	V	
I _{IN}	Input current	DI and DE	-2		2	μΑ	
Driver DC	Characteristics						
		No load	3			V	
V	Differential driver voltage	$R_L = 100\Omega$ (RS-422), Figure 4	2			V	
V _{OD}		$R_L = 54\Omega$ (RS-485), Figure 4	1.5			V	
		-7V ≤ V _{CM} ≤ 12V, Figure 5	1.5			V	
ΔV _{OD}	Change in magnitude of differential driver output voltage	R_L = 54Ω (RS-485) or 100Ω (RS-422), DE = V_{CC} , Figure 4			±0.2	V	
V _{CM}	Driver common-mode output voltage (steady state)	$R_L = 54\Omega$ (RS-485) or 100Ω (RS-422), DE = V_{CC} , DI = V_{CC} or GND, Figure 4	-1	V _{CC} /2	3	V	
ΔV_{CM}	Change in magnitude of driver common-mode output voltage	R_L = 54Ω (RS-485) or 100Ω (RS-422)			0.2	V	
V _{OL}		Y and Z, V _{OUT} = 12V, DE = 0V, V _{CC} = 3.3V or GND	-20		20	μΑ	
	Output leakage	Y and Z, V _{OUT} = -7V, DE = 0V, V _{CC} = 3.3V or GND	-20		20	μA	
I _{OSD}	Driver short-circuit output current	-7V ≤ V _{OUT} ≤ 12V, Figure 6			±250	mA	

REV1B 2/12

Electrical Characteristics (Continued)

Specifications are at T_A = 25°C, V_{CC} = 3.3V \pm 5% unless otherwise noted. Typical values represent the most likely parametric norm at T_A = 25°C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Thermal (Characteristics					
T _{TS}	Thermal shutdown temperature			165		°C
T _{TSH}	Thermal shutdown hysteresis			40		°C
Driver AC	Characteristics XR33193 (250kbps)					
t _{DPLH}	Driver propagation delay (low to high)		400		1300	ns
t _{DPHL}	Driver propagation delay (high to low)	$C_L = 50pF$, $R_L = 54\Omega$, Figure 8	400		1300	ns
t _{SKEW}	Driver propagation delay skew, lt _{DPLH} -t _{DPHL}				400	ns
t _R , t _F	Differential output rise or fall time	$C_L = 50$ pF, $R_L = 54\Omega$, Figure 8	400		1200	ns
	Device to device propagation delay matching ⁽¹⁾	Same power supply, maximum temperature difference between devices = 30°C			900	ns
	Maximum data rate	$C_L = 50 pF$, $R_L = 54 \Omega$, duty cycle 40 to 60%	250			kbps
t _{DZH}	Driver enable to output high				2000	ns
t _{DZL}	Driver enable to output low	0 400-F B 5000 Firms			2000	ns
t _{DHZ}	Driver disable from output high	$C_L = 100$ pF, $R_L = 500Ω$, Figure 9			1000	ns
t _{DLZ}	Driver disable from output low				1000	ns
Driver AC	Characteristics XR33194 (2.5Mbps)					
t _{DPLH}	Driver propagation delay (low to high)		24		70	ns
t _{DPHL}	Driver propagation delay (high to low)	$C_L = 50$ pF, $R_L = 54\Omega$, Figure 8	24		70	ns
t _{SKEW}	Driver propagation delay skew, lt _{DPLH} -t _{DPHL}				40	ns
t _R , t _F	Differential output rise or fall time	$C_L = 50$ pF, $R_L = 54\Omega$, Figure 8	10		70	ns
	Device to device propagation delay matching ⁽¹⁾	Same power supply, maximum temperature difference between devices = 30°C			46	ns
	Maximum data rate	$C_L = 50 pF$, $R_L = 54 \Omega$, duty cycle 40 to 60%	2.5			Mbps
t _{DZH}	Driver enable to output high				400	ns
t _{DZL}	Driver enable to output low	C 100°F B 5000 Firming 0			400	ns
t _{DHZ}	Driver disable from output high	$C_L = 100 \text{pF}, R_L = 500 \Omega, \text{ Figure 9}$			100	ns
t _{DLZ}	Driver disable from output low				100	ns

NOTE:

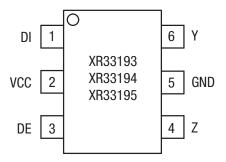
1. Guaranteed by design; not production tested.

REV1B 3/12

Electrical Characteristics (Continued)

Specifications are at T_A = 25°C, V_{CC} = 3.3V \pm 5% unless otherwise noted. Typical values represent the most likely parametric norm at T_A = 25°C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Driver AC	Driver AC Characteristics XR33195 (20Mbps)						
t _{DPLH}	Driver propagation delay (low to high)				25	ns	
t _{DPHL}	Driver propagation delay (high to low)	$C_L = 15pF$, $R_L = 54\Omega$, Figure 8			25	ns	
t _{SKEW}	Driver propagation delay skew, t _{DPLH} -t _{DPHL}			5		ns	
t _R , t _F	Differential output rise or fall time	T_A = -40°C to 125°C, C_L = 50pF, R_L = 54 Ω , Figure 8			18.5	ns	
	·	$T_A \le 85^{\circ}C$, $C_L = 50pF$, $R_L = 54\Omega$, Figure 8			15	ns	
	Device to device propagation delay matching ⁽¹⁾	Same power supply, maximum temperature difference between devices = 30°C			25	ns	
	Maximum data rate	$T_A \le 85^{\circ}\text{C}$, $C_L = 50\text{pF}$, $R_L = 54\Omega$, duty cycle 40 to 60%	20			Mbps	
	Maximum data rate	$C_L = 50 pF$, $R_L = 54 \Omega$, duty cycle 40 to 60%	16			Mbps	
t _{DZH}	Driver enable to output high				400	ns	
t _{DZL}	Driver enable to output low				400	ns	
t _{DHZ}	Driver disable from output high	$C_L = 100$ pF, $R_L = 500Ω$, Figure 9			100	ns	
t _{DLZ}	Driver disable from output low				100	ns	


NOTE:

REV1B 4/12

^{1.} Guaranteed by design; not production tested.

Pin Configuration

TSOT23-6, Top View

Pin Functions

	Pin Number		Pin Name	Туре	Description
XR33193	XR33194	XR33195			
1	1	1	DI	Input	Driver input. A low on DI forces the Y output low and the Z output high. A high on DI forces the Y output high and the Z output low.
2	2	2	VCC	Supply	Power supply (V _{CC} = 3.3V \pm 5%). Bypass with 0.1µF capacitor to ground.
3	3	3	DE	Input	Driver output enable. A high on DE enables the driver outputs (Y and Z). A low on DE will disable the driver outputs (Y and Z), tri-stating the outputs and putting the device into shutdown (low power) state. The hot swap function is implemented on the DE pin, see Applications Information section for a description of hot swap function.
4	4	4	Z	Bus Output	±15kV ESD protected, RS-485/RS-422 inverting driver output.
5	5	5	GND	Supply	Ground.
6	6	6	Y	Supply	±15kV ESD protected, RS-485/RS-422 non-inverting driver output.

REV1B 5/12

Functional Block Diagram

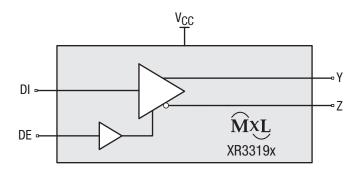


Figure 2. Functional Block Diagram

Applications Information

The XR3319x RS-485/RS-422 devices are part of MaxLinear's high performance serial interface product line. These standalone drivers operate off a single 3.3V supply and meet RS-485 and RS-422 standards for balanced RS-485 and RS-422 serial communications networks.

Hot Swap Capability

When V_{CC} is first applied the XR3319x family holds the driver enable inactive for approximately 10µs. During power ramp-up, other system ICs may drive unpredictable values or tristated lines may be influenced by stray capacitance. The hot swap feature prevents the XR3319x family from driving any output signal until power has stabilized. After the initial 10µs, the driver enable pin is weakly pulled to the disabled state(low for DE) until the first transition. After the first transition, the DE pin operate as high impedance input.

If circuit boards are inserted into an energized backplane (commonly called "live insertion" or "hot swap") power may suddenly be applied to all circuits. Without the hot swap capability, this situation could improperly enable the transceiver's driver, driving invalid data onto shared buses and possibly causing driver contention or device damage.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, a driver current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. Second, a thermal shutdown circuit forces the driver outputs into a high impedance state if junction temperature becomes excessive.

Line Length

The RS-485/RS-422 standard covers line lengths up to 4000ft. Maximum achievable line length is a function of signal attenuation and noise. Termination prevents signal reflections by eliminating the impedance mismatches on a transmission line. Line termination is generally used if rise and fall times are shorter than the round trip signal propagation time. Higher output drivers may allow longer cables to be used.

±15kV HBM ESD Protection (Unpowered Part)

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs of the XR3319x family have extra protection against static electricity. MaxLinear uses state-of-the-art structures to protect these pins against ESD damage:

- ±15kV HBM for bus pins to GND
- ±4kV HBM for all other pins

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact MaxLinear for a reliability report that documents test setup, methodology and results.

Low Power Shutdown Mode

The XR3319x has a low-power shutdown mode that is initiated by bringing DE low (to disable the XR33193/94/95). While in shutdown the XR3319x draws less than $2\mu A$ of supply current.

REV1B 6/12

Product Selector Guide

Part Number	Data Rate (Mbps)	Slew-Rate Limited	Package
XR33193	0.25	Yes	
XR33194	2.5	Yes	6-pin TSOT23
XR33195	20	No	

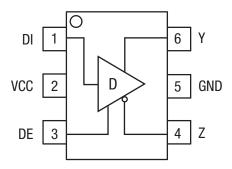


Figure 3. Differential Driver

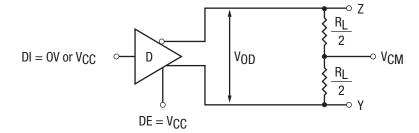


Figure 4. Differential Driver Output Voltage

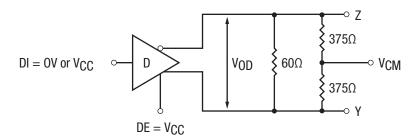


Figure 5. Differential Driver Output Voltage Over Common Mode

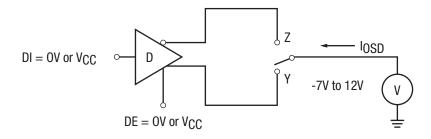


Figure 6. Driver Output Short-Circuit Current

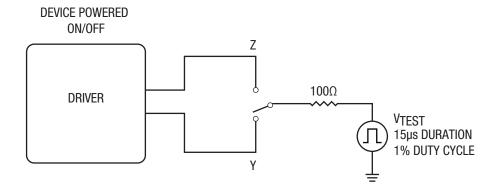
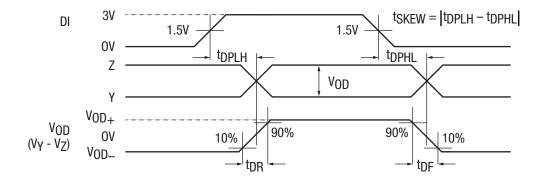



Figure 7. Transient Overvoltage Test Circuit

REV1B 8/12

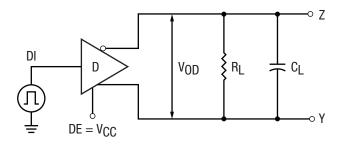
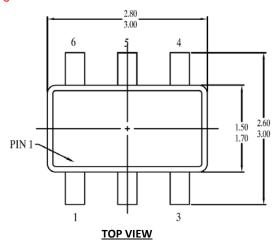
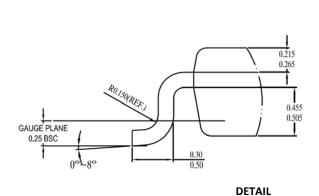
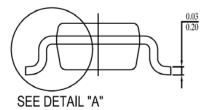


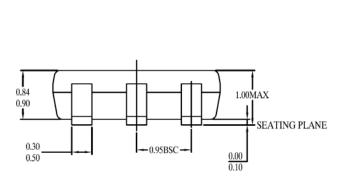
Figure 8. Driver Propagation Delay Test Circuit and Timing Diagram

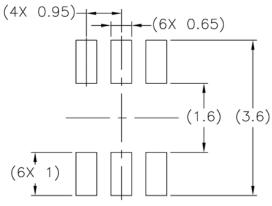




Figure 9. Driver Enable and Disable Timing Test Circuits and Timing Diagrams



Mechanical Dimensions


TSOT23-6



SIDE VIEW-1

TYPICAL RECOMMENDED LAND PATTERN

11/12

SIDE VIEW - 2

1. All dimensions are in Millimeters

- 2. Dimensions and tolerance per Jedec MO-193
 - Drawing No. : POD 00000077

Revision: A.1

REV1B

Ordering Information⁽¹⁾

Part Number	Speed (Mbps)	Slew Rate Limited	Operating Temperature Range	Lead-Free	Package	Packaging Method
XR33193ESBTR	0.250	Yes				
XR33194ESBTR	2.50	Yes	-40°C to 125°C	Yes ⁽²⁾	6-pin TSOT23	Tape and Reel
XR33195ESBTR	20	No				
XR33193ESBEVB						
XR33194ESBEVB	Evaluation bo	ard				
XR33195ESBEVB						

NOTE:

- 1. Refer to www.exar.com/XR33193, www.exar.com/XR33194, www.exar.com/XR33195 for most up-to-date Ordering Information.
- 2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1A	July 2016	Initial release.
1B	February 2018	Update to MaxLinear logo. Update format and Ordering Information format. Moved ESD ratings to page 2.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711

Fax: +1 (760) 444-8598 www.maxlinear.com High Performance Analog:

1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101

Email: serialtechsupport@exar.com

www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.

© 2016 - 2018 MaxLinear, Inc. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by MaxLinear manufacturer:

Other Similar products are found below:

ADP5585CP-EVALZ CHA2066-99F AS8650-DB 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ

MAXREFDES23DB# MAX13235EEVKIT DFR0257 XR22404CG28EVB ZLR964122L ZLR88822L DC327A PIM511 PIM536 PIM517

DEV-17512 STR-FUSB3307MPX-PPS-GEVK ZSSC3240KIT P0551 MAX9121EVKIT PIM532 ZSC31010KITV2P1 UMFT4233HPEV

MIKROE-2335 XR20M1172G28-0B-EB SI871XSOIC8-KIT 1764 1833 1862 EVB-USB82514 ATA6628-EK EVAL-CN0313-SDPZ 2264

MCP23X17EV PS081-EVA-HR MODULE 237 SMA2RJ45EVK/NOPB FR12-0002 MAFR-000455-001 BOB-13263 ORG4572-R01-UAR

CPC5622-EVAL-600R SKYFR-000743 SKYFR-000827 SKYFR-000982 MIKROE-2750 292 DFR0065