

N-Channel Power MOSFET

Description

The XR46000 is a silicon N-channel enhanced power MOSFET. With low conduction loss, good switching performance and high avalanche energy, it is suitable for various power supply system, especially for AC step driving application for LED lighting.

The package type is SOT-223, which comply with the RoHS standard.

Key Parameters

V _{DSS}	600V
ID	1.5A
$P_D (T_C = 25^{\circ}C)$	20W
R _{DS,ON,typ}	7.0Ω

Equivalent Circuit

Figure 1. Equivalent Cirucit

FEATURES

- Fast switching
- ESD improved capability
- Low gate charge (Typ. 7.5nC)
- Low reverse transfer capacitance (Typ. 5.0pF)

APPLICATIONS

- LED lighting applications
 - Downlight
- High bay
- Specialty
- Architectural

Pin Configuration

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

$T_C = 25^{\circ}C$ unless otherwise noted.

V _{DSS} drain-to-source voltage600	VC
I_D continuous drain current ($T_C = 25^{\circ}C$) 1.8	5A
I_D continuous drain current ($T_C = 100^{\circ}C$)0.8	5A
I _{DM} pulsed drain current	ôΑ
V _{GS} gate-to-source voltage±30	VC
P_D power dissipation ($T_C = 25^{\circ}C$)20	W
P _D derating factor above 25°C0.16W/	°C
T _{STORAGE} storage temperature range65°C to 150	°C
E _{AS} single pulse avalanche energy80r	nJ
NOTE: Unless otherwise noted, all tests are pulsed tests at the specified temperature,	

Unless otherwise noted, all tests are pulsed tests at the specified temperature therefore: $T_J = T_C = T_A$.

Operating Conditions

T_J operating junction temperature	150°C
T _A operating ambient temperature	-40°C to 85°C

Electrical Characteristics

 $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OFF Characteristic							
BV _{DSS}	Drain to source breakdown voltage $V_{GS} = 0V, I_D = 250\mu A$		600			V	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown voltage temperature coefficient $I_D = 250\mu$ A, reference 25°C			0.71		V/°C	
	$V_{DS} = 600V, V_{GS} = 0V, T_A = 25^{\circ}C$			25			
I _{DSS} Drain to source leakage current		$V_{DS} = 600V, V_{GS} = 0V, T_A = 125^{\circ}C$			250	μA	
I _{GSS(F)}	Gate to source forward leakage	V _{GS} = 30V			12		
I _{GSS(R)}	Gate to source reverse leakage	V _{GS} = -28V			-12	- µA	
ON Charact	eristic (pulse width tp \leq 380µs, $\delta \leq$ 2%)		<u>.</u>		<u> </u>	<u> </u>	
R _{DS(ON)}	Drain to source on-resistance	V _{GS} = 10V, I _D = 0.75A		7.0	8.0	Ω	
V _{GS(TH)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0		4.0	V	
Dynamic Ch	aracteristic	-					
9fs	Forward transconductance	$V_{DS} = 15V, I_D = 0.75A$		1.0		s	
C _{iss}	Input capacitance			170			
C _{oss}	Output capacitance	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz		27		pF	
C _{rss}	Reverse transfer capacitance			5			
Resistive Sv	vitching Characteristic						
t _{d(ON)}	Turn-on delay time			8			
t _r	Rise time	I _D = 1.5A, V _{DD} = 300V, V _{GS} = 10V,		30			
t _{d(OFF)}	Turn-off delay time	$R_{G} = 4.7\Omega$		22		- ns	
t _f	Fall time			55			
Qg	Total gate charge			7.5			
Q _{gs}	Gate to source charge	I _D = 1.5A, V _{DD} = 480V, V _{GS} = 10V		1.7		nC	
Q _{gd}	Gate to drain "Miller" charge			4.0		1	
Source-Drain Diode Characteristics (pulse width tp \leq 380us, $\delta \leq$ 2%)							
I _S	Continuous source current (body diode)				1.5	•	
I _{SM}	Maximun source current (body diode)				6.0	A	
V _{SD}	Diode forward voltage	I _S = 1.5A, V _{GS} =0V			1.5	V	
T _{rr}	Reverse recovery time	$I_D = 1.5A, T_J = 25^{\circ}C, dI_F/dt = 100A/\mu s,$		530		ns	
Q _{rr}	Reverse recovery charge			1100		nC	
I _{RRM}	Reverse recovery current			4.4		A	

Typical Performance Characteristics

Figure 3. Typical Drain-to-Source ON Resistance vs. Gate Voltage and Drain Current

Package Description

Top View

Front View

Side View

3 Pin SOT-223 JEDEC TO-261 Variation AA						
SYMBOLS	DIMENSIONS IN MM (Control Unit)			DIMENSIONS IN INCH (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	_	—	1.80	_	—	0.071
A1	0.02	—	0.10	0.001	—	0.004
A2	1.50	1.60	1.70	0.060	0.063	0.067
b	0.66	0.76	0.84	0.026	0.030	0.033
b2	2.90	3.00	3.10	0.114	0.118	0.122
с	0.23	0.30	0.35	0.010	0.012	0.014
D	6.30	6.50	6.70	0.248	0.256	0.264
E	6.70	7.00	7.30	0.264	0.276	0.287
E1	3.30	3.50	3.70	0.130	0.138	0.146
е	2.30 BSC			0).091 B	SC
e1	4.60 BSC			C).182 B	SC
L	0.75	—	_	0.030	—	—
L2	0.25 BSC			0	.010 BS	SC
θ	0°	—	10°	0°	—	10°
N	3				3	

Ordering Information⁽¹⁾

Part Number	Operating Temperature Range	Package	Packaging Method	Lead Free ⁽²⁾
XR46000ESETR	$-40^{\circ}C \le T_{J} \le 150^{\circ}C$	SOT-223	Tape and reel	Yes

NOTES:

1. Refer to www.maxlinear.com/XR46000 for most up-to-date Ordering Information.

2. Visit <u>www.maxlinear.com</u> for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1A	Aug 2016	Initial release
1B	Nov 2019	Updated to MaxLinear logo. Updated Ordering Information.

5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.: +1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.

© 2016 - 2019 MaxLinear, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by MaxLinear manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE2994 NTE6400A NTE2910 NTE2916 NTE2956 NTE2939 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S STF35N65DM2